
STANFORD ARTIFICIAL INTELLIGENCE PROJECT
Memo No . 49

February 15 , 1967

Abstract :

DENDRAL - A COMPUTER PROGRAM FOR GENERATING

AND FILTERING CHEMICAL STRUCTURES

by Georgia Sutherland

A computer program has been ,lri tten "'hich can
generate all the structural isomers of a chemical
composition . The generated structures al'e inspected
for forbidden substructures in order to eliminate
struc ture s "'hich are chemically impossible from
the output . In addition, the program contains
heuristics for determining the most plausible
structures, for utilizing supplementary data, and
for interrogating the on - line user as to desired
options and procedures . The program incorporates
a memory so that past experiences are utilized in
later ",ork.

The research reported here "'as supported in part by the Advanced Research
Projects Agency of the Office of the Secretary of Defense (SD- 183)

Table of Contents

1. Dendral Representation of Chemical Structures

2. Dendral Implementation

3. The Dendral Program

4. Modifications to the Dendra! Program

5 . Graph Matching in Dendral

6: S~ary and Discussion

2

,!. ·1

1. DENDRAL REPRESENTATION OF CHEMICAL STRUCTURES

Dendral is a system of topological ordering of organic

molecules as tree structures.* The essential features are detailed in

the first of the references and are summarized here.

Proper Dendral includes precise rules to maintain the unique-

ness and the non-ambiguity of its representations of chemical structures.

Each structure has an ordered place, regardless of its notation; the

emphasis is upon topological uniqueness and efficient representation of

molecular structures. The principal distinction of Dendral is its

algorithmic character. Dendral aims (1) to establish a unique (i.e.,

canonical) description of a given structure; (2) to arrive at the canoni-

cal form through mechanistic rules, minimizing r.epetitive searches and

~ geometric intuition; and (3) to facilitate the ordering of the isomers

at any point in the scan, thus also facilitating the enumeration of all

of the isomers.

The Dendral representation of a structure is made up of

operators and operands. The operators are valence bonds issuing from

an atom. Each bond looks for a single complete operand. An operand

is (recursively) defined as an unbonded atom, or an atom whose following

bonds are all satisfied in turn by operands. Hydrogen atoms are usually

omitted, but are assumed to complete the valence requirements of each

atom in the structure. If the structure has unsaturations (one unsatur-

ation for each pair of hydrogen atoms by which the structure falls short

*References: J. Lederberg, DENDRAL-64, A System for Computer
Construction, Enumeration and Notation of Organic Molecules as Tree
Structures and Cyclic Graphs, Parts I-V, Interim Report to the National
Aeronautics and Space Administration, December 1964.

3

of saturation), these are indicated by locations of double and triple bond

. operators. Single, double, and triple bonds are represented by . , . ,
and: respectively. The operator may be represented by = and the

operator by $ or < depending on the available character set.

As an example, the molecule NH - C __ 0-CH
3

2 ~S

has one unsaturation and may be written in many ways, including:

1) C. 0 • C • : NS
2) C. O. C: • SN
3) 0 •• CC. :NS
4) o •• C. :NSC
5) C •• : O'~'CNS
6) C.:. o. CSN
7) C.:.NSO.C (canonical)
8) C: •• SNO.C
9) S:C •• O'.:CN

10) N. C. : O. CS

Each of these ten notations is a non-ambiguous representa-

tion of the molecule. However, proper Dendral also specifies that the

representation be unique. The key to obtaining the unique or "canonical"

representation is the recognition of the unique center of any tree

structure and the subsequent ordering of successive branches of the tree.

The centroid of a tree-type chemical structure is the bond

or atom that most evenly divides the tree. A molecule will fall into

just ~ of the following categories, tested in sequence. Let V be the

count of non-hydrogen atoms in the molecule. Then either

A. Two central radicals of equal count are either (1) united

by a leading bond (V is even) or (2) sister branches from an apical

node (V is odd); or

B. Three ~ ~ central radicals, each counting less than

V/2, stem from a single apical node.

4

1

In the first case, the centroid is a bond, and the canonical

representation is an operator followed by two operands. In the other two

cases the centroid is an atom, and the canonical representation is an

operand in the form of an atom followed by two or more bonds and operands.

In every case where two or more bonds follow an atom, the operands must

be listed in ascending Dendral order.

Dendral order (or simply "weight") is a function of the

composition and arrangement of a structure and finds its primary use when

comparing two operands (radicals). The weight of a radical is evaluated

by the following criteria (in descending significance): count, composi

tion, unsaturation, next node, attached substructures.

Count is the number of skeletal (non-hydrogen) atoms. Of

~ two radicals, the one with the higher count is of higher weight.

Composition refers to the atoms contained in the radical. An

arbitrary ordering of the atoms makes carbon less than nitrogen less

than oxygen less than phosphorus less than sulfur, C < N < 0 < P < s.

(This ordering is alphabetical as well as by atomic number.) When com

paring two radicals of the same count, the one with the fewer number of

carbons has lesser weight. If carbons are equal, the one with the fewer

nitrogens is of lesser weight~ And so forth.

Unsaturation counts the number of extra bonds (1 for a

double bond, 2 for a triple bond) in the radical, including those (if

any) in the afferent link (the bond leading into the radical). Of two

radicals, the one with the greater number of unsaturations has the greater

weight.

5

The next node or apical node refers to the first atom in the

radical (the one connected to the afferent link). When comparing two

apical nodes, the following three criteria are evaluated (in order of

decreasing significance):

Degree is the number of efferent (attached) radicals. The

apical node with the most radicals attached to it has the greater

weight.

Composition refers to the type of atom. A carbon atom is

the lowest apical node, while a sulfur atom is the highest.

Afferent link refers to the bond leading to the apical

node. A single bond afferent link is the lowest, a triple bond is

the highest.

If the above criteria fail to determine which of two racicals

has the greater weight, then the radicals appendant on the two apical

nodes must be arranged in increasing order and compared in pairs. The

first inequality in weight of appendant radicals determines the relative

weight of the original radicals.

The canonical representation for the molecule in the example

given earlier is notation~. It must be a central atom molecule since

its count (ignoring hydrogen atoms) is 5; and the non-terminal carbon

atom is the only atom which has all its appendant radicals with counts

less than 5/2. Of the three appendant radicals, the one containing

two atoms has the highest count and thus is the heaviest. Of the two

radicals containing a single atom each, the one with the double bond

is the heavier because it has more unsaturations.

6

Even-count molecules may have a bond for center, if the count

of the molecule is evenly divided by cutting that bond. Thus, the
NH2 /OH

canonical form for "CH2 - CH2 is .C.NC.O, a leading bond,

the first dot, calling for two operands.

The collection of rules and conventions-described above

provides a unique and non-ambiguous representation for any non-ringed

chemical structure. (Ringed structures have been dealt with by more

complex rules.) In addition, the rules also allow us to construct the

"lowest" structure which can be made from a composition (collection of

atoms). Once this lowest structure has been made, it may be trans-

formed by a process of rearranging its atoms and unsaturations into

the "next to lowest" structure. This "incrementing" process may be

continued until the "highest" structure has been made.

Th.e computer program which is descr ibed in later sections of

this report is designed to do these operations and therefore to con-

struct all of the (topologically possible) isomers of a composition.

2. DENDRAL IMPLEMENTATION

The task set forth in the Dendral Report is the manipulation

of chemical graphs to produce all the isomers of a given chemical

formula. The list processing language, LISP, was used to write a

computer program implementing the proposed scheme. The choice of this

language led to the representation of the chemical graPE as tree type

lists.

The list representation is a straightforward translation of

~ Dendral dot notation. The bonds are represented by the integers 1,

7

2, and 3. Each radical is a sublist and is enclosed in parentheses.

The list notation for a structure is a three part list. The first

part specifies the afferent link; the second part specifies the

apical node; and the third part specifies the efferent radicals in

list notation. If the structure is a molecule, its afferent link will

be NIL. For a central-bond molecule the apical node is NIL also.

Central-bond molecules have two efferent radicals; central atom mole-

cules have two or more efferent radicals, and radicals may have any

number (including zero) of efferent radicals.

As an example, the dot notation C.:oOOS.N is translated into

(NIL C (1 0)(2 0)(1 S(l N»); and the molecule represented in dot

notation as .C.:SS C.O.P •• CC:C becomes

~ (NIL NIL (1 C(l S)(2 S»(l C(l 0(1 PCl C)(lC(3C»»))o

The list notation is easily manipulated by the computer

program, so all operations are performed using this representation.

Output, however, is given in Dendral dot notation. Certain functions

are available within the Dendral program for converting back and

forth between the two types of notation. The function INDOT reads

dot notation and converts the dots to integers. (This is the so-called

Dendral Polish notation.) The function UNSTRING converts Polish

notation to list notation. The function DOTORD also reads dot

notation, but converts it to cannonical dot notation. The functions

MOLORD (for molecules) and RADORD (for radicals) convert list

notation into cannonical list notation. The functions TOPMOL (for

molecules) and TOPRAD (for radicals) convert list notation to dot

notation and print the dot notation.

8

The Dendral program operates on a chemical composition in

order to produce the structural formulas of all isomers with that

composition. A composition is a list of numbers of atoms, such as:

C4HIO ' or C2H
5

NO. The internal form of a composition is a list of

dotted pairs in which the number of hydrogen atoms is replaced by the

number of unsaturations (extra bonds) in the composition. The formula

for obtaining the number of unsaturations (U) in a composition is the

following:

N = 2U = ~1
all

types
of

atoms

(number of atoms\
\ of this type) x

{valence of this _21
\ type of atom -;

Examples of composition lists are (U. O)(C . 4)) and

«(U . l)(C . 2)(N . 1)(0 . 1)).

Some compositions imply molecular structures while others

imply radicals. If N = 2U is an odd integer, then the structures will

be radicals. If N = 2U is even (including zero), the structures will

be molecules. If N = 2U is negative, there are no structures

possible for that composition.

In the process of generating all structures corresponding to

a chemical formula, the program starts with the formula given as a

composition list. The program then constructs the molecule* of lowest

. Dendral value for this composition. Once the molecule of lowest

* The current discussion will concentrate on molecular structures.
Radicals are generated in an analogous fashion.

9

value is established, the process of generating all the isomers consists

of incrementing this molecule to the next higher Dendral structure, then

taking the new molecule and repeating the process until it is no longer

possible to make a molecule of higher Dendral value than the previous

one 0

The following computer program is a precise statement of the

g~nerating algorithm mentioned in the Dendral Report, with the following

added features:

ao The number and type of radicals that can be made

from a given composition may be determined in advance

and placed in a dictionary list for that compos

itiono When a dictionary list is encountered

(during structure generation) for a composition,

the algorithm will generate only those radicals

on the dictionary listo Thus a dictionary is a

"memory" for past work. The program knows how to

make use of its memory efficiently.

bo At any given node it is possible to represent the

efferent radical in an implied format (by

composition rather than by structure).

c. Several options are available which may limit the

output by eliminating or bypassing some structures which

are topologically possible but which are not of

interest or perhaps are not chemically meaningful.

30 THE DENDRAL PROGRAM

The computer program to implement Dendral is written in

10

LISP. The program is made up of over a hundred separate LISP functions

'\ofhich call each other to perform certain tasks relevant to different

pa.rts of' the structure generation. Most of the functions are simple

utility programs. The main logic is contained in eight or ten primary

functions \vhich are described in the following pages.

The·LISP function called GENMOL will make the molecule of

lowest Dendral value from a given composition. If the composition

contains an even number of atoms, GENMOL will attempt to make a central

bond molecule by making two radicals with equal count and identical

afferent linkso If this fails or if the composition contains an odd

number of atoms, then a central node is selected, starting with the

atom of lowest Dendral value (C < N < 0 < p < S) in the composition.

MAKERADS is then given the remainder of the composition and instructed

to make two efferent radicals of lowest Dendral value. If this fails,

then GENMOL selects the next possibility for the central node and the

process of generating two efferent radicals is attempted again. If

no atom in the composition leads to a structure with degree two, then

the lowest atom is again chosen for the central node; and MAKER ADS

attempts to make three efferent radicals, and so forth.

The function MAKERADS takes a composition and produces a

list of a specified number of radicals. These radicals have the lowest

Dendral value which is possible in view of the valence requirements

specified in the arguments to MAKERADS. Each radical except the last

must have a specified number of atoms, and the radicals must be listed

in increasing Dendral order. First the total composition is split into

11

the proper number of compositions by MAKELSTCLS. These separate com

positions (listed in increasing Dendral order) are then made into

radicals by GENRADo If any of the compositions cannot be converted

to a radical then this composition is incremented to the next greater

Dendral valueo Any compositions which are greater than the one

incremented are reset to compositions greater than or equal to the new

one 0 The process of converting these lists to radicals is then

continued as before 0 Once the compositions are all converted to

radicals, the radicals are checked to see if certain valence require

ments are met. If not, an attempt is made to decrease the afferent

link of each radical in turn starting with the radical of greatest

Dendral valueo When a radical has the lowest allowable afferent

link and the valence requirements are not satisfied, then the com

positions of this radical and those of greater Dendral value are

incremented by trading atoms among compositionso New radicals are

generated from each composition and the process of decreasing afferent

links continues 0

GENRAD takes a composition and makes the radical of lowest

Dendral value within valence limitations specifiedo If the composition

consists of a single atom then this atom with an afferent link

accounting for all the unsaturations in the composition will be the

desired radicalo otherwise, the lowest apical node is selected from

the composition, the lowest possible afferent link is chosen (consid

ering the atoms and unsaturations in the remaining composition), and

GENRAD is used (recursively) to generate a single efferent radical

12

from the remaining composition. If this fails, the afferent link will

be increased and GENRAD tried againo If this too fails, then the

composition of the apical node will be increased, the afferent link

reset, and the whole process repeated unti.l there are no more possib

iIi ti.es for a new apical node 0 If this process fails, then it is

repeated allowing GENRAD to generate two efferent radicals. The number

of efferent radicals continues to be increased if necessary and is

limited only by the valence of the apical nodeG

UPRAD increments a given radical to its next highest Dendral

value 0 This is done by first trying to increment one of the efferent

radicals from the apical node of the radical (if there are any efferent

radicals) 0 Starting with the efferent radical of greatest Dendral

value., UPRAD is applied to obtain a new efferent radical and to reset

all of the efferent radi.cals of greater Dendral value so that they are

as low as possible but still higher than the one just generated 0 If

this proves unsuccessful, then an attempt is made to, first, raise the

afferent link of the radical (using the function UPLINKNODE), or to

increase the composition of the apical node (using the function UPCOMPNODE),

or, finally, to increase the degree of the apical node (using the function

TJPDEGHODE) . If none of these is successful, and there are radicals of

higher,Dendral value concurrent with the one being incremented, then

MAKERADS is used to make a new set of efferent radicals in which the

composition of the first radical is greater than that of the present

radical being incremented 0

UPMOL uses UPRAD in an attempt to step up one of the

13

"'~- ..

efferent radicals from the center of a molecule 0 These efferent radicals

are given to UPRAD one at a time starting with the one of greatest

Dendra1 value 0 If it is not possible to step up any of the efferent

radicals ,1 then an attempt is made to find a central node of greater

compositional value and then use MAKERADS wit.h the remaining composition

to find the set of efferent radicals for this central nodeo (If this

is a molecule with a bond as its center, then liistead of finding a new

central node UPMOL tries to increase the value 6f the central bondo)

If these steps fail, then UPMOL tries to rais~ the degree of the

central node while resetting this node to it~(lowest value.

The three functions UPLINKNODE, uFC OMPN ODE , and UPDEGNODE

operate on a radical and attempt to make the next higher radical out of

the same elementso In each case the function MAKERADS is the primary

toolo UPIIINKNODE is asked to retur-n a radical with a higher afferent

link 0 UPCOMPNODE is asked to return a radical with an apical node of

higher composition 0 UPDEGNODE is asked to return a radical in which

the apica.l node has an. increased number of efferent radicalso

The main contro.l function for the structure generation is

a function ca.lled WORKLISTo WORKLIST causes generation of all structures

from al~. ':!omposition lists which are subsets of a given composition

l:i.sto The user specifies this composition list and requests either

molecules or radicals to be generatedo WORKLIST calls TESTDENDRAL

(for molecules) or TSTRAD (for radicals) 0 TESTDENDRAL first calls

GENMOL to obtain the lowest molecular structure for that composition

list 0 The resulting structure is printed" and TESTDENDRAL then

alternately calls UPMOL and OUTDEN (a print function) until UPMOL

14

o

returns the value NIL, indicating tha.t no higher structures can be

generated 0 TSTRAD calls GENRAD and UPRAD in an analogous fashion for

radicals.

The usual case is that the user has in mind a single

chemical formula for which he wishes to see all the allowable structures.

The function CHNOPSXVQW takes a chemical formula and converts it to a

composition list by calculating the number of unsaturations. CHNOPSXVQW

also c..e·termL'1es whether molecules or radicals will result 0 Then

WORKLIST i.8 called and instructed to generate structures from this

single composition list.

The input to the function CHNOPSXVQW is a list of ten

elements ,9 corresponding to the letters in the name of the function 0 The

first six e.lements are the number of carbon, hydrogen) nitrogen, oxygen,

phosphorus, and sulfur atoms in the formula. X is the name of any other

atom in t.he formula. (If X is the word NIL, then no other atoms are

present) 0 V is the valence of X; Q is the number of X atoms in the

formula; and W is the atomic weight of X.

oth~r functions have been. supplied to accept different

forms of input and call CHNOPSXVQW after constructing the appropriate

':'lst of al~guments 0 The function ISOMERS takes a single argument which

is a composition name (ice." G3HlO, C2H5NO., CH3COOH, etc.). The

function DENDRAL takes no arguments, but later requests the user to

specify desired options and to input a composition nameo The function

STRUCTURES alternately requests composition names and calls ISOMERS

so that it ·is easy for the user to examine the isomers of many

compositions in successionu

15

..

4 . MODIFICATIONS TO THE DENDRAL PROGRAM

The program described above does indeed produce all the

structural isomers from a chemical composition 0 Sometimes, however,

the number of isomers is so large that a user may not want to see all

of themo Thus, the program will pause after each N structures (N may

be set by the user) and ask the user whether or not to continue

generating structures.

The "model" of chemistry in basic Dendral includes the

following subjects:

a)

b)

c)

Atoms; there are seven distinct atoms (C,H,N,O,P,S and

X)o Of these, all are treated the same except Ho

Valence of an atom; valence specifies the number of

attachments an atom may acquireo

Unsaturations; the program knows that unsaturations

indicate multiple order attachments and the program

knows how to calculate the number of unsaturati.ons

for any composition.

Using the above concepts and the Dendral rules for building structures,

the program constructs all of the topologically possible structures for

any given composition. However, any chemist inspecting the output list

for a composition would realize that the program knows little chemistry,

since many chemically meaningless structures are included in the class

of topologically possible structures 0 So additional information and

programming was added to the Dendral Program in order to eliminate

certain types of structures which are always chemically impossible.

16

This was done in two ways. The first uses the notion of illegal

attachment. For instance, an oxygen atom cannot be attached to another

oxygen atom. (other such conditions hold for nitrogen and sulfur atoms.)

Whenever the program picks an atom to be the apical node of a radical,

it checks the partially built structure to be sure that this atom will

not be attached to a forbidden atom or structure. The second and more

general way of avoiding certain chemically impossible structures is by

presenting the program with a list of impossible sUbstructures. Each

generated structure is then examined and rejected if it contains any of

the forbidden substructures" The process of checking for certain sub

structures led to the incorporation of a graph matching algorithm in

the Dendral program" The graph matching process is described in detail

in later sections of this report.

Eliminating chemically impossible structures from the

program output means that the program no longer creates all structural

isomers of a chemical composition" Rather, the program now contains

some knowledge of chemistry. The on-line user of the program may want

to impart more knowledge to the programo A small step toward this goal

is provided in three ways.

a) Supervising structure generation:

The program can be made to pause every time it is

about to add an atom to a partially generated radical.

The program prints out the current status and requests

permission to continue" A "no" answer at this point

should invoke some (as yet unwritten) learning dialog

17

to find out why not to continue.

b) Examining molecular partitions:

Certain groupings of atoms are more plausible

(chemically speaking) than others. The program can be

made to print (in advance of any structure generating)

all the partitions of the composition. The user may

then rearrange the list of partitions, eliminating

any in which he is not interested. The program will then

generate structures in the order specified by the list of

partitions 0 The learning process whLch could be inserted

at this point would interrogate the user as to why some

partitions were left out and why some are more plausible

than others.

An option is included at this point which allows the user

to rearrange the partition list on the basis of a built-in plausibility

fW'lction. This fW'lction calculates a "plausibility score" for each

partition and then rearranges the partition list, putting the partitions

with the highest scores at the beginning of the list. The criteria

which are considered in calculating the score of a partition are built

into the program.

The function GETSCORE examines a partition (a list of

compositions) and returns a number between 1 and 10 which is an

assessment of the value of the partition. If any of the compositions

with more than one atom contains no carbon atoms, then the score for

the whole partition is 1. otherwise the score is the average of

two numbers:

18

The first number is obtained by considering the proposed

center of the structure. A central bond is assigned the value 10. A

non-carbon central atom is assigned the value 3. A central carbon with

degree two is assigned the value 100 A central carbon with degree three

is assigned the value 6. And a central carbon with degree four is

assigned the value 1.

The second number is the average of N values, where N is

the number of compositions in the partition (aside from the central

node, if present). If the composi~ion is COOH then the value is 10.

otherwise the value is a number between 0 and 10 measuring how closely

the proportion of carbon to non-carbon atoms matches the overall pro

portion for the whole partition.

c) Using other data (spectra):

Spectral information may be used to further shorten the

list of isomers of a chemical formula 0 A spectrum is a

list of numbers corresponding to weights of sUbstructures.

The Dendral program "knows" the atomic weight of each atom,

and can calculate the weight of any structure or sub

structure. If a spectrum is present, then no structure or

substructure will be generated unless its weight appears in

the spectrum. A function called HSTGRM will calculate the

spectrum of a structure in list notation. Another function

called USESPECTRUM requires the user to input a spectrum or

structure from which to generate a spectrum. This function

then sets SPECTRUM and calls structure generating functions.

19

•

When structure generation is complete,

USESPECTRUM sets SPECTRUM to NIL •

Future plans for the Dendral program include expanding the

dialog, partition, and spectral facilities, streamlining the graph

matching algorithm, allowing several levels of memory, and providing

more utility functions for the benefit of the program user.

5 0 GRAPH MATCHING IN DENDRAL

The Dendral program may be made to generate all topologically

possible structures from a chemical formula, restricted only by the

valence limitations on the atoms. Many of the structures generated

by the Dendral algorithm are not chemically meaningful because they

contain certain impossible subst:r"uctures. The forbidden substructures

were few enough in number that they could be listed; and a graph match

ing algorithm was introduced to check each generated structure against

the list of forbidden substructures. If a structure generated by the

rules of Dendral is found to contain even one of the forbidden sub

structures, it is not acceptable output, and the Dendral program

attempts to find the next higher structure whi.ch does not contain a

forbidden substructure.

The fi.rst graph matching algoritrJID that was implemented to

compare Dendral-generated structures was essentially that of

E. H. Sussenguth Jr 0 of Harvard. This a.lgorithm is described in detail

in an appendix to tb.is report 0 After us ing this algorithm for some

time, however , it was determined to be inefficient in the sense that

previous work was constantly bei.ng repeated. This resulted from the

20

fact that graph matching was performed at each level of structure gen-

eration, whenever an atom was added to a partially built structure. The

Sussenguth method considers the total structure and calculates charact-

eristics of each node (atom). Yet, the nature of the structure gener-

ating algorithm implied that if any forbidden substructures were to be

present, they would have to include the most recently added portion

since the remainder would have been checked previously.

Thus, a simpler graph matching algorithm is now being employed.

The structure to be checked is first put into the appropriate format.

This format is identical with the list notation representation of the

structure except that hydrogen atoms must be included. The function

ADDH(S) converts the structure S to the appropriate format. The

function NEWCHECK causes this conversion to be made, and then compares

the structure with each element of BADLIST to determine whether any

forbidden substructure is present.

BADLIST is merely a list of forbidden substructures. Each

element is the list notation representation of a structure, with the

following alterations:

1) The substructures have no afferent links.

2) If any node can be one of several types of atoms, the

list of atoms is put in place of the usual single atom name.

NEWCHECK examines BADLIST and extracts those structures whose

apical node is the same as the apical node of the structure being

* checked. Then the structure is searched for each of the appendant

* Because of this, BADLIST must contain several entries for
some structures, one entry for each possible apical node. Thus the
elements of BADLIST are not all in canonical form.

21

•

radicals of the forbidden substructure. If all are found, then the

substructure is present, and NEWCHECK returns the value T.

The primary tool used in this process is the function

COMPAR. COMPAR takes two arguments, S and L. Each argument is a

list of radicals representing some or all of the efferent radicals of

the two graphs being matched. The radicals on L come from the

forbidden substructure. If not all elements of L are on S, then

COMPAR returns NIL. If all elements of L are on S then COMPAR

returns the dotted pair (T.R) where R is the remainder of list S

after the elements of L have been removed.

This graph matching algorithm is far simpler than the:one

described in the appendix. It requires much less code (and consequently

uses much less core memory) and should prove to be quite a bit more

efficient for the types of problems encountered in structure generation.

6. SUMMARY AND DISCUSSION

The Dendral program is constantly being modified as new and

better ways of doing things are conceived. The basic structure gen

erating functions are written independently in such a way that new

supervisory functions can be easily inserted into the system. It is

hoped that the Dendral program will eventually be able to benefit from

the user-on-line characteristics of the time-sharing system in order

to "extract knowledge" from chemists and other users of the program.

One goal is to be able to give the program a real mass

spectrum and have the program predict only a small number of structures

which are most plausible. Considerable work must be done before this

22

•

goal can be realized. One problem is the determination of which

composition was represented by the original substance. Another

problem is "cleaning up" a real spectrum. A third problem is

obtaining a prediction of the spectrum of a given structure for

purposes of comparing with real data. The present spectrum predictor

is only a crude, first-order attempt at generating the spectrum of

a structure.

The process of generating the most plausible structure from

a given composition can be improved by making use of a chemist's

knowledge about commonly occurring substructures. Soon the program

will contain a GOODLIST which can keep track of likely combinations

of atoms. Then, during the initial consideration of the composition,

the program can remove certain groups of atoms and replace them by a

symbol representing the substructure. Then, using the arbitrary

atom X in the function CHNOPSXVQW, the program can treat this sub

structure as an atomic unit and insure that all generated structures

will contain the desired substructure.

other proposed modifications to the program include the

following items:

1) Revising the method of remembering past work so that

the "dictionary of structures ll requires less core storage

space.

2) Putting the plausibility parameters within the reach

of the user so that different schemes for rating plausible

partitions may be compared.

•

3) Introducing more efficient "tree pruning" methods

so that the search space for plausible structures will

be made smaller.

4) Introducing "mood items" for BADLIST so that the

program can interrogate the user as to what general class

of compounds he expects. Certain structures will be

added to or removed from BADLIST as a result of the

user's "mood".

It should be evident that the Dendral program is constantly

expanding and becoming more sophisticated. In evaluating the

efforts performed up until now, the importance of the basic Dendral

notation for providing unique, non-ambiguous, and algorithmic

representation of chemical structures cannot be overstated. Not

only has the Dendral notation allowed all the isomers of a

chemical formula to be quickly, accurately, and completely generated;

but also it has provided a base for studying a certain "inductive

and enquiring" system.

24

•

APPENDIX 1

The Sussenguth Method of

Graph Matching as Implemented in the Dendral Program

1. GRAPH MATCHING IN DENDRAL

The Dendral program may be made to generate all topolog

ically possible structures from a chemical formula, restricted only by

the valence limitations on the atoms. Many of the structures generated

by the Dendral algorithm are not chemically meaningful because they

contain certain impossible substructures. The forbidden substructures

were few enough in number that they could be listed; and a graph match

ing algorithm was introduced to check each generated structure against

the list of forbidden substructureso If a structure generated by

Dendral is found to contain even one of the forbidden substructures, it

is not acceptable output and the Dendral algorithm attempts to find the

next higher structure which does not contain a forbidden substructure.

The graph matching algorithm that has been implemented to

compare Dendral-generated structures against the BADLIST is essentially

that presented in the PhD thesis of E. H. Sussenguth, Jr. at Harvard,

1964. This algorithm considers two graphs, made up of nodes (atoms)

and connections (bonds), and compares sets of nodes with equal properties.

Using set operations such as union and intersection, and making assign

ments of node correspondences where sufficient information is not

1

present for a unique determination, the algorithm avoids a time-consuming

direct node-by-node comparison of the two graphs. This algorithm is

especially efficient in determining when no match exists. The process

of actually finding an isomorphism takes somewhat longer.

\2.. NOTATION FOR GRAPH MATCHING·

The form of a graph G is a list of elements, each element

representing a node of the graph.

Each node-element has three parts:

1) a node number- an integer. Node numbers must be

unique. And each node number is equal to the position

of that node-element in the list that forms the graph.

2) a node type- the name of the atom at that node (usually

C, N, 0, P, or 8 -- but sometimes an abbreviation for a

whole structure that is to be treated as a unit - such as

OH, NHR, COOH, etc.)

3) A list of connections- This list has as many elements

as the node has bonds connected to it. Thus the length of

this list cannot (theoretically) be greater than the

valence of the node. (In practice this restriction is

irrelevant.) Each connection is a two element list of the

form (CN CB). CN is the node number of the connected

node and CB denotes the type of connection:

CB=T (triple bond), CB=D (double bond), CB=8 (single bond)

For example, the Dendral notation • C = 0 N.C. = C C

would be represented by «1 C(2 D)(3 8))(2 0(1 8))(3 N(l 8)(4 8))(4 C(3 8)

(5 8)(6 D))(5 c(4 8))(6 C(4 D))) for purposes of graph matching.

2:

Operations comprising the graph matching algorithm depend

heavily on the use of node numbers, both alone and in list (sets). An

isomorphism (answer) is a pair of lists of node numbers, one from each

of the two structures being considered, and where nodes in corresponding

positions are isomorphic.

A property for a graph is a list of node numbers headed

by an atom denoting the value common to all the nodes. Various property

values are used in matching the graphs. They are described briefly

below:

1) Node value. All nodes with value C are grouped

together and headed by the atom "C". (etc. for N, 0, P, ••)

2) Branch value. All nodes adjacent to single bonds are

grouped together and headed by "S". (similarly for D and T)

3) Gamma degree. The gamma set of a node n is the list

of nodes reachable from ~ by a path of a specified length

(i.e., by traversing a specified number of bonds). Thus,

the gamma=l set for a node n is a list of all nodes

immediately adjacent (connected) to node~. The

gamma=2 set for node n is the list of all nodes connected

to the nodes in the gamma=l set of node~. The gmmna=m

degree of node n is the number of nodes (length) of the

gamma=m set for node ~.

4) Quasi-order. The quasi-order of node n is the number

of bonds (connections) that must be traversed before getting

back to the given node~. Direct backtracking is forbidden.

·3

Thus, the quasi~order for any node in a non-ringed or

tree structure must be zero. (Quasi-order is not in-

cluded in the current version of the Dendral program

since ring structures are not included.)

5) Connectivity. Connectivity of a set of nodes is

another set of nodes representing all nodes which can

be reached by a path of given length from any one of

the original nodes. Thus, connectivity of a set of

nodes is the union of the gamma sets of all its nodes.

Connectivity is usually found for paths of length 1 or 2,

but it could be calculated for longer paths until redun-

dant answers begin to be generated.

3 · DESCRIPTION OF THE GRAPH MATCHING ALGORITHM

The computer program for the graph matching algorithm is

written in the language LISP. The operation of the algorithm is based

on comparing corresponding properties from each of two graphs in an

attempt to find pairs of nodes w:ith identical properties. During this

pairing process, careful checks are made to determine whether other-

wise stmilar nodes have contradictory properties. Such a situation

indicates "no match", and the algorithm terminates immediately.

The algorithm makes heavy use of variables which are

global to all LISP functions. These variables are certain lists which

are set, changed, and translated by the major functions. Eight of

these lists deserve special mention:

1) G -- one of the two graphs to be matched. This

o

variable is set as input to the algorithm and never

changed.

2) GS -- the other graph to be matched. GS must be

the larger of the two (in the sense of having more

nodes) .

3-4) -- L and 18 are lists whose elements are sets of

nodes with corresponding properties from G and GS

respectively.

5-6) -- V and VS are edited versions of Land LS, being

lists of sets of nodes of G and GS with corresponding

properties. Non-informative sets have been removed, and

pairs of nodes that are known to correspond are removed

from the sets in which they appearo

7-8) -- K and KS are lists of corresponding (known) nodes

for G and GS. The first element of K is the node corres

ponding to the first element of KS. If the length of these

sets equals the number of nodes in graph G, then an

isomorphism is determined. There may be more than one

isomorphism, but the current version of the algorithm is

satisfied with a single one.

There are two classes of functions making up the Dendral

graph matching algorithm. The first class contains all functions that

are an integral part of the pure subgraph matching. The second cla ss

of functions contains all those needed to use the graph matching from

within Dendral. This class depends on the presence of both pure

5

subgraph matching and pure Dendral.

The important functions in the first class are ISOLISP

(the supervisory function), SETFORM (which extracts properties of

graphs), FF (a function which obtains families of corresponding nodes),

PAR (the function which obtains correspondents of the nodes of the

smaller graph), and NEWABLK and NEXTASSIGN (which provide for systematic

assignment of correspondences in cases where previous work has failed

to find a unique correspondent for some node).

The function CHECKMATCR is the link between Dendral and

the graph matching algorithm. It converts a structure to notation

suitable for graph matching and calls -ISOLISP for each element of
~ .. :

BADLIST which may be contained in the test structure.

BADLIST is a global variable which contains information

about all of the II forbidden" chemical structures. Each element of

BADLIST contains the following pieces of ~nformation about a forbidden

structure:

1) A predicate which :indicates whether (T) or not (NIL)

the structure to be matched with this 8ubgraph should be

checked for terminal OR and flHR before matching.

2) A number indicating the number of- atoms (nodes) in

the subgraph.

3) The composition list for the subgraph.

4) The subgraph itself in the notation required by

the graph matching algorithm.

The fUnction ISOLISP is called only if the number of atoms

in the subgraph is less than or equal to the number of atoms in the

:6.

\ ''''.

•

test structure and if the composition of the subgraph is contained in the

composition of the test structure. The value of CHECKMATCH is T if any

forbidden subgraph is found in the test structure. otherwise the value of

CHECKMATCH is NIL.

4. PRIMARY FUNCTIONS FOR GRAPH MATCHING

ISOLISP - 2 arguments

G - a graph

GS - a graph

ISOLISP is the control function for the algorithm. It calls other

functions which construct and use the lists L, LS, V, VS, K and KS.

ISOLISP recognizes when an isomorphism has been found or denied and

calls for assignments to be made if necessary.

The first action of ISOLISP is to set up lists L and LS

from the properties of graphs G and GS by calling the function

SETFORM. Next, the elements of Land LS are examined 'and non-

redundant sets of nodes are placed on V and VS by the function FF which

checks for possible contradictions in properties of G and GS. The

function CONNEC places new sets on L and LS. These sets are obtained by

applying the property of connectivity to all sets on V and VS. The

function PAR obtains the set of correspondents for each node of G ~fuch

is not on list K. These sets are added to V and VS by the function PAR.

If the sets V, VS, K and KS are unchanged after the functions

FF and PAR have both been executed, then an isomorphism cannot be

determined without making an assignment. The function NEWABLK causes

a node assignment to be made and added to the lists K and KS. If no

7\

o

assignment is possible, then a previous assignment must be contradicted.

(If no previous assignment was made, then no isomorphism is possible).

The variable called ASTACK contains a record of current assignments.

NEXTASSIGN revises the most recent assignment if possible. otherwise,

the most recent assignment is discarded and the state of the system

prior to that assignment is retrieved in order to revise the previous

assignment.

FF-O arguments

FF uses the lists L and LS to form families of corresponding

nodes. Each pair of elements (L. , 18.) is examined for useful infor-
1. 1.

mation. Known corresponding nodes are removed (by the function REMK)

from L. and 18. • If exactly one node remains in each of L. and 18. ,
1. 1. 1. 1.

then this becomes a new known correspondence, the nodes are placed on

K and KS and removed from the elements of V and VS (by the function

REMNEWK) • otherwise, the elements L. and 18. are places on lists V
1. 1.

and VS (by the function MERGESET), provided they do not contradict (no

isomorphism) or duplicate any pair of elements (V. , VS.).
J J

After FF has considered all elements on Land 18, the length

of lists K and KS determines the future action of the algorithm. If

the number of correspondences (length of K) is equal to the number of

nodes of graph G, an isomorphism is found and FF terminates with a

value of 1. If the length of K is greater than the number of nodes of

G then a contradiction must exist and no isomorphism will be- possible.

In such a case FF exits with a value of O. otherwise FF terminates

with a value of 2 indicating that more work has to be done.

8-

PAR - 0 arguments --
PAR examines elements of V.and VS and combines sets (using

operations similar to union, intersection, and complement) to find

single node correspondences. PAR returns 0 if an isomorphism is im-

possible, 1 if an isomorphism is found, and 2 if more work needs to

be done.

In doing this, PAR takes each node of G and constructs the

list of its possible correspondents by considering each pair of sets

V. and VS.o Initially the known correspondents of node n are all the
J J

non-known nodes of graph GSo If node n is in V. then VS. is inter-
- J J

sected with the set of possible correspondents for node~. If n is

not in V. then the complement of VS. is intersected with the set of
J J

possible correspondents for node ~o If the set of correspondents has

length 1 then node n becomes a known node and is added to list K,

otherwise n is added to V and its set of correspondents is added to VS.

SETFORM - 0 arguments

SETFORM uses set generating (property generating) functions

to set Land LS to lists of corresponding nodes of G and GS. The

properties are: gamma degree = 1, gamma degree = 2, node value and

branch valueD

NEWABLK - 0 arguments

NEWABLK adds a new assignment block to ASTACK. An assign-

ment block is a list of the form (XS X SS V VS K KS) where the corres-

pondence (assignment) X:XS was made from set SS which is part of LIST

VS. Values of V, VS, K, and KS are prior to assignment so they can

be restored if the assignment fails. X is added to ASLIST, and

9

lists K, KS, V, and VS are all updated using the new assignment.

ASSIGNI - 1 argument

A - a number or NIL

ASSIGN! finds a possible correspondent of node X in set

SSe (Both X and SS are global to ASSIGNI, being set within NEWABLK

and NEXTASSIGN which" are the functions which can call ASSIGNI.): If

A is not NIL, then it is the last correspondent used for X, and the

search for a new correspondent starts with the successor of A in

list SSe The new correspondence X:XS is checked for validity against

the sets of V and VS.

NEXTASSIGN .. 0 arguments

NEXTASSIGN makes the next assignment in the current block.

The current block is the first element of ASTACK, which has kept

tract of all assignments made in the current attempt to locate an

isomorphism.

10

\

