
GRAMMATICAL COMPLEXITY AND INFERENCE

BY
JEROME A. FELDMAN

JAMES G I PS
JAMES J. HORNING

STEPHEN REDER

SPONSORED BY

ADVANCED RESEARCH PROJECTS AGENCY

ARPA ORDER NO. 457

TECHNICAL REPORT NO. CS 125

JUNE 1969

STANFORD ARTIFICIAL INTELLIGENCE PROJECT

COMPUTER SCIENCE DEPARTMENT

School of Humanities and Sciences

STANFORD UN IVERS ITY

cs 125
STANFORD ARTIFICIAL INTELLIGENCE PROJECT
MEMO ~1-89

GRAMMATICAL COMPLEXITY AND INFERENCE

bY

Jerome A. Feldman

James Gips

James J. Horning

Stephen Reder

Computer Science Department

Stanford University

JlTNE 1969

The research reported here was supported in part by the Advanced Research
Projects Agency of the Office of the Department of Defense (SD-183).

L

i
L

i

i
L-

i

-

IL-

Abstract

The problem of inferring a grammar for a set of symbol strings

is considered and a number of new decidability results obtained.

Several notions of grammatical complexity and their properties are

studied. The question of learning the least complex grammar for a

set of strings is investigated leading to a variety of positive and

negative results. This work is part of a continuing effort to study

the problems of representation and generalization through the gram-

matical inference question. Appendices A and B and Section 2a.O

are primarily the work of Reder, Sections 2b and 3d of Horning,

Section 4 and Appendix C of Gips, and the remainder the responsibility

of Feldman.

i

i

L

ii

-- 1

I %
I

. . .:>

L
I
f -
L
L
1
L
1
L
L
L
1
L
L
I
6
L

i
i

GRAMMATICAL COMPLEXITY AND INFERENCE

1. Preliminaries

la. Introduction

lb. Definitions, Notation

2. Grammatical Complexity

2a.o Introductory Measures

2a. Introductory Definitions and Examples

2b. Grammar-grammar, Complexity of Grammars

2c. Normalized Complexity Measures

3* Grammatical Inference

3a * Introduction, Basic Model and Terminology

3b l
New Results on Grammatical Inference

3c* Learning Good Grammars

3d. Using Frequency Information to Assist Inference

4. Programs for Grammatical Inference

4a. Introduction and Definition of Pivot Grammars

4b . Program Descriptions

Appendix A. Representations of Finite-State Grammars

Appendix B. Size Measures of Regular Languages

Appendix C. Sample Computer Runs

References

1

. .

1. Preliminaries

la. Introduction

IL The problem of generalization (induction, concept formation) has

interested workers from a wide range of fields. In this paper, a particular

form of generalization, grammatical inference, is discussed. The notion

of grammatical complexity is introduced to help measure which grammar is

the best one for a given set of strings.

l- The grammatical inference problem is easy to state; one is interested

in algorithms for choosing the best grammar from a given class for a

L sequence of symbol strings. For example,- we would like to discover that

L the sequence of strings

car, cdr, caar, cdadr, cddadadr, etc.

L

L
can be described by the rule: each string is a 'c' followed by any

sequence of 'a's and 'd's followed by Y . Or in Backus-Naur Form

<string> ::= c <seq> r

<seq> ::= a 1 d 1 <seq> a 1 <seq> d

The question of how to infer a grammar and to measure how well you've

1,
done it will be the main topics of this paper.

The grammatical inference problem has received relatively little

attention. The main theoretical formulation to date has been that of

Gold [67] which will be discussed in Section 3. Solomonoff [64] considers

L the problem as a special case of sequence extrapolation; we have argued

against this notion [Feldman 671 but are indebted to Solomonoff for some

of the basic ideas on grammatical complexity in Section 2. There has

also been some related work in Computer Science [Amarel 62, London 641 and

4

Psychology [Miller 6, Suppes 561. There is, of course, a vast literature

on pattern recognition [Uhr 661, but it has been exclusively concerned

with pattern descriptions which are structurally simpler than grammars.

Early studies of grammatical inference referred to it as a form of

induction. The term "induction" has been used as a description of

generalization processes. Unfortunately, it has also been used in dozens

of other ways and is threatening to become meaningless. We favor

restricting the term "induction" to statistical modes of inference such

as those of Solomonoff [64] as is done currently in Philosophy. The

particular model which we found most appropriate is the hypothetico-deductive-

empirical (HDE) mode of inference. An HDE inference consists of forming

hypotheses, deducing conclusions about the data and testing these conclusions

for validity. This characterizes the scientific method and is quite close

to the "scientific induction" of Lederberg and Feigenbaum [68]. In our

dase a hypothesis is a grammar rule, a deduction is a derivation, and the

data are the sample strings.

The results of this paper are one part of a many-pronged attack on

the grammatical inference problem [Feldman 671. The results here are largely

theoretical, but include a heuristic program to infer grammars. Other

efforts involve psychological study of human grammatical inference. We

also hope to be able to relate theoretical results with the heuristics

of the program and to consider how these relate to human learning of

language and other theories. To the extent that e.g. pictures [Miller

and Shaw 681 are well represented by grammars, the grammatical inference

work may be of some practical use in pattern recognition.

.s
\
i-

t
t

i
L

4-

t

i
c

I
I

i

iL

\
i

lb. Definitions, Notation

This paper makes use of ideas from several research areas, and it is

impossible to agree with all their notational conventions. We deviate from -

the usual formulation of context free grammars in requiring all

vocabularies to be subsets of a fixed collection of symbols. There is

no loss of generality in doing this, but many results in the literature

would require careful consideration of substitution rules [cf. Church 561.

The universal terminal alphabet 7 is the set of symbols (a,al,a, . ..I .L

The universal variable alphabet 111 is the set of symbols (X = Z,Zl,Z2 . ..} .

We will also uSe the following notational conventions. The string of

zero symbols is denoted by e , the empty set by p . If S is any set

of symbols, S* is the set of finite strings of symbols from S and

S+ = S* - e .

A context free grammar (cfg) is a quadruple G = (V,T,X,P) where

V,T are finite sets , V C l& U 3' , T = 7 n V , XeV-T , and P is a

finite set of productions (rules) of the form Z + w , with ZeV-T ,

wcv* . In such a production, Z is called the left side and w the- -

s i d e .right We will abbreviate a set of productions Z + wl,Z + w2,...,

z + Wk with the same left side as z -+ w1 1 w2 1 . . . Wk .

If G is a cfg, and w,yeV* we write w 3 y if there exists

wJ*-) ZeV-T- and w1,w2 _ in V* -such that w = w Zw1 2 1 Y = wp2

and the rule Z + t is in P . The string y is called an intermediate

string. The transitive closure of z is written $.

the subscript "G" may be omitted if there is only one

consideration.

In either case

grammar under

4

If WiY, YET+, we also say there is a derivation of y from w

in G. In this case, there is also a derivation of y from w in which

each rule has as its left side, the leftmost ZeV-T of the preceding

intermediate string [Ginsburg 66, p. 303. This leftmost derivation is

denoted d(y,w,G) , and when w = X will be abbreviated to d(y,G) .

We will be exclusively concerned with leftmost derivations. If

d(Y,W,G) = <P1'P*,... ,pk> with pjeP we define the derivation length

'd = k . The length P(y) is the number of symbols in y .

The language L(G) generated by a cfg G = (V,T,X,P) is defined

bY

L(G) = {y 1 yeT+ and X $ y} .

We will sometimes omit mention of the grammar. The definition implies that

/ we will be dealing with only e-free languages. With this restriction

and some well-known results on cfg we can significantly constrain the

form of cfg to be studied here.

l>ef lb1 A cfg, G = (V,T,X,P) is said to be totally reduced and we

write G& iff.

a> P contains no rule of the form Z + e

b) P contains no rule of the form Zi + Z.

c)- If X < w , weV* , there is a yeTf stch that w 2 y

d) Each ZeV-T , aeT , and peP is used in at least one

d(Y, G) , where y is in L(G) .

Lt is well-known that any e-free language derivable from

some cfg can be derived from a cfg in R . We will restrict

ourselves to G& unless otherwise mentioned.

i

I L

/
Lemma lb2 For any GE@ and any yeL(G) the derivation length

�d(Y) 2 2 l �b) l

Proof Consider any derivation of y , d(y,G) = <pl . . . pk> . Each

pi
must either (a) add to the length of the intermediate

string or 09 replace a variable by one or more terminal symbols.

Since no peP can reduce the length of an intermediate string,

there are at most 1(y) instances of (a). In addition, there

can be at most 1 (Y> variables in an intermediate string and

thus 1(y) instances of (b). -

There is an extension of the notion of ordered sequence which will

be useful. A sequence Ql,y2,... > is said to be approximately ordered

by a function f(y) iff for each k > 1 there is an~integer T>k

such that t > T implies

Lemma lb3 If Qi> is a sequence which is approximately ordered

by f and if <f(yi)> is positive and bounded then there is a

C such that

lim f(yi) = C .
.i -I 03

Proof We know <f(yi)> has a finite lim sup , call it C . If

there is a j such that f(yj) = C , then by approximate ordering

there is a 't such that t > z implies f(Yt > = C and the

lemma is proved.

6

,

Suppose the lim sup C is not attained. Let E > 0

be given, then there is a yk such that C-E > f(yk) because

C is a cluster point. But then there must be a ~1 such that

t > T1 implies

Further, there are at most a finite number of i such that

f(yi) > C because C is the lim sup of a bounded sequence.

Let 22 be the maximum index of these and let 't = m.ax(~~,~~)

then for all t > T we have

and the lemma is proved. We will be especially interested 'in

cases where T(k) is effectively computable.

Finally, we must introduce a number of definitions relating to enumerations

of languages. An information sequence of a language L , I(L) is a

sequence of symbols from the set

{+Y 1 Yd] U 1-Y 1 yeT+-Lj .

A positive information sequence I+(L) is an information sequence

of L containing only strings of the form +y . Notice that if we bound

the number of occarences of any string- y in I(L) then

approximately ordered by l(y) . The set of allbositive)

sequences for L c T+ is denoted @+bJ . In Gold [67],

the set of text presentations and 8 the set of informant

Let I(L) be a (positive) information sequence, we define

I(L) is

information

9+ was called

presentations.

a (positive)

7

I !I ’
c

i

i

sample St(I) to be the unordered set:
St(I) = (:Yl, l -☺�Yt+ 3. l A bounded

sequence is one in which there is a bound on the maximum number of

occurences of a string. The set of (positive) bounded information

sequences is denoted (B,)$. An information sequence is complete if

each string in

A positive

sentence of the

T+ occurs in the sequence.

information sequence is complete for a language if each- -

language occurs in the sequence. Unless explicitly

stated, we restrict ourselves to complete sequences. Information

, sequences and samples will occur in Section 2c and will play a central

role

over

in Section 3.

Each positive sample can be associated with a frequency distribution

its elements as follows:

For each +y&(I) , f(I,yi,O) = 0

if Y,+Y.1
f(ljYijT) = f (I> Yi9 '-'I +

if y, = yi .

f(I,y,t)/t is the relative frequency of yi in the first t strings

of I . An information sequence I is convergent iff

lim f(I,y+/t = P.
t+co 1

exists-and is non-zero for each yi~X . The set of positive convergent
L

information sequences is denoted K+ .

Additional Notation

unX: if X is a finite set of objects (e.g. strings), then n(X)

is the number of objects in X ; n(X) is the cardinality measure

for finite sets.

r: r= n(T) = the number of terminal symbols in the alphabet T .

Lk(k = 0,1,2,...): Lk = L n Tk; Lk -is the subset of the language L

which contains only strings of length k .

Lp): "l(t"> = Lk n cz T* , Lk(a) is that subset of L
k which is

prefixed by a E T* ; Lk(e) = L
k

.

Tk(a) : Tk(Cx) = m*n Tk

9

t

I
L 2. Grammatical Complexity

\
L

2a.o Introductory Measures

I

i

There are a number of ways in which one could measure the complexity

or information content of an abstract language. One traditional way is to

L
consider the relative sizes of various subsets of the language and develop

size measures for languages. Examples of size measures will be considered
i

I L shortly. Other types of complexity measures can be developed in terms of

I I time and space bounds on the automata associated with a language; studies

I L

!
i

of this type are currently quite popular(e.g. Hartmanis [68]). Other

possible complexity measures could be based on the complexity of algebraic

decomposition of the automata associated with a language.

i At this point a distinction should be made between complexity measures

i of a language and complexity measures of a grammar. To be independent of

L
the various grammar(s) for L, a language measure of L should be sensitive

!
I

i

i
i

only to the c.ontent of the subsets of L, not to the structural form of

the elements of these subsets. Measures based on the grammars or automata

associated with a language often do not characterize the language, since

\ the value of the measure can vary among weakly equivalent grammars (automata)

of the language. The class of size measures of languages is one example

i of language measures which proves useful in studies of complexity. We

consider briefly two particular size measures for arbitrary languages L C T*.

i

10

First-order (density) size measure

Consider the sequence <d04> , where d04 is the proportion of strings -

of length k which are in the language L being measured:

04d =
dLk> .-=

n(Tk) rk

Suppose the sequence <dod> converges

.
to a limit d , so that d = klTm

dLk)
- ; then we would like to define
rk

d as the density of the language L , which can assume values in the unit

interval 0 < d < 1 . The density is intuitively the limiting proportion of- -

strings in the language.

There are often, however, languages which seem to containa well-defined

04limiting proportion of strings, yet for which the sequence <d > does not

converge. As eL trivial example, consider the language which consists of

precisely those strings of even length; in some sense it seems that half

of the strings are in the language, but the sequence <d04 > = <...,l,O,l,O,l,..,>

does not converge to any limit, let alone the desired limit of& The

04 k .
sequence <s (>> = < ix d l> does, however,

i=l
converge to the desired limit of $, since s 04 = .

The sequence <d(k)_> is said to be Ces&o-summable to $ (see, for example,

Kemeny, Snell and Knapp [66]). Since As is the arithmetic mean of-the

first k proportions, it seems reasonable to interpret the (unique) value

to which the sequence <dw> is summable as the density. This example

motivates the following definition of density:

11

I
I

L

If the sequence <d(J-4> is Cesaro-s-able to d, then d

is defined as the first-order (density) size measure

of the language. If the sequence is not Cesaro-summable,

then the measure is undefined.

Clearly if <d04> converges to a limit d, then it must also be Ces\ro-

summable to d. Cesiro-summability is well-known to be equivalent to

other types of sequence summability (e.g. Euler-summability) in the sense

that, if the sequence sums to a value by one method, then it must also

sum to the same value by the other methods. Although occasionally useful,

we will not discuss other types of summability.

Suppose that <d04> is an ultimately periodic sequence with period p,

so that lim d(kp+q)= d 0
q > q= ,...,p-1. Then it can be shown

k+a

P-l

_ that <d 04> is Ces\aro-summable to d =L &
p q=o q’

which again

illustrates the usefulness of allowing Cesaro-summability as a more general

i

convergence criterion than the commonly used simple "limit" . We shall

adopt the notation b = clim b 04 to indicate that the sequence <b04>
k+a

is Cesaro-summable to b.

i-

I .
I

L

i

L-

It is difficult to develop useful existence conditions for the density

measure of an arbitrary language mje, since L clearly can be chosen in

such a way that the sequence <dw> fails to exhibit any stationary behavior.

Existence conditions become more tractable when L is assumed to be associated

with-a certain class of grammars or automata. For example, it is shown in

Appendix B that the density measure exists for all finite-state languages

(if Ceszro-summbility is allowed to be a condition for convergence).

L. 12

The density measure can be useful as a means of comparing the relative

size of languages. But relative size discrimination by means of density

breaks down if the languages have either zero or unity density. Most

languages we have occasion to investigate have zero density; accordingly,

a more sensitive size measure is required for comparison of the relative sizes

of zero-density languages (which could be used to compare unity density

languages by comparing their zero density complements,)

Second-Order (logarithmic density) size measure

When the densities of two languages are zero, a more sensitive measure

is needed to compare their relative sizes. Consider transforming the

sequence <d04> into a logxlog scaled sequence

(k) 04
log n ($1 1 log n <$>

<h >, where h .= - -

log n (Tk) - log r
k

(m3 n (Q .is taken as zero if Lk= pl). We define the second-order

(logarithmic density) size measure h of L as

h = clim h 04

k+a

(h is undefined if <h04> is not C&&o-swnmable). The quantity C = (log r) h

/is the familiar measure termed the channel (coding) capacity of L

(we have extended the standard definition of C by permitting Cesho-summability.
log n lLk)

of the sequence < k > = log r <h 04> rather than just strict

convergence). When it exists, logarithmic density satisfies 0 2 h 5 1.

Furthermore, it can be shown that

(i) VLa* , if d exists and d> 0, then h exists and h = 1

13

L
i
i

I
i

L

i

i

i-

c

i.

L-

i

c

L

\
i

\
L

(ii) if both d and h exist and h = 1, then d> 0

(iii) if both d and h exist and d = 0, then h < 1

We thus see that logarithmic density is a useful size measure among

minimal (zero) density languages, while density is a useful size measure
I

among maximal (unity) logarithmic density languages.

The logarithmic density (and thus the channel capacity) of a language

is strictly a size measure, and is not essentially an information-theoretic

language measure as the name channel capacity seems to suggest. The

channel capacity is the maximum possible (limiting) mean rate of infor-

mation transmitted/symbol across a discrete noiseless channel. Several

authors have termed the quantity C (or h) the entropy (or relative

entropy) of the language, a somewhat misleading terminology; in terms

of classical information theory, C is the maximum rate (per symbol)

of entropy for possible "stochastic grammars" of the language. There

are, at least for some classes of languages, stochastic representations

of grammars for the language which achieve this maximum entropy rate

(channel capacity). In terms of "selective information theory" (Lute 60,

Chomsky and Miller 63b), C is indeed the entropy rate of the language.

We emphasize that several stochastic grammars (automata) for a given

language may have different entropy rates, but C is an upper bound

for them.

14

Other size measures

The first and second-order size measures of a language L can be

generalized as functions of a given string QI E T* :

d(a) = clim
n(Lk(a) 1

k -+m n(Tk(@)
=

h(a) = clim
lo@; dLk@)) 1

- clim
log n (Lk(a)

k-03 log n(Tk(Q!)) = log r k + 03 k-l(a)

(N t0 e: where Ces&o-summability is used, it is understood that summation

begins with k = I(a)+1 rather than with k=l).

Note that substituting a=e into d(O) and h(*) yields the size measures

d and h, respectively. Discussion of d(a) and h(a) with respect to stochastic

grammars and selective information theory is an interesting topic, but un-

fortunately exceeds the scope of this presentation.

Remarks:

Chomsky and Miller [58] claimed that the probability of a randomly

chosen string of length k being in any given regular language converges

to either zero or one as k increases without bound. This claim is equivalent

to stating that the density of any regular language is either zero or unity.

To our surprise we have encountered restatement of this claim by later

authors (e.g. Kuich and Walk 65)

Appendix B. There appears to be

development. First, there seems

The claim is false, as is shown in

two sources of error in Chomsky and Miller's

to be some confusion between first and

second order size measure with respect to probability; Chomsky and

Miller's argument was based on channel capacity (second-order measure)

15

rather than on first-order density; density is equivalent to the limiting

.proportion of strings in the language. Second, a matrix or "equational"

representation of finite-state grammars was used by Chomsky and Miller -

indeed, has been used extensively in the literature - which is inadequate

for the class of all finite-state grammars; there are regular languages

which cannot be generated by any grammar associated with the matrix repre-

sentation. The interested reader is referred to Appendix A for examples

of regular languages for which the representation is not adequate, and

for a suggested matrix representation which is adequate for all finite-

state languages.

2a. Introductory Definitions and Examples

The concern here is with a representational measure of complexity.

We will be interested in the following questions. How well does a given

grammar fit a sample? How complicated is a grammar? What is the most

satisfactory grammar from a given class for somesample set of strings?

The results of this section are of some intrinsic interest and will be

very valuable in the grammatical inference problem considered in Section 3.

The techniques described here, although discussed in terms of grarrunars,

seem applicable to a broad class of problems involving the fitting of a

model to data, [cf. Feldman 671. The particular measures studied here

are related to Bayes Theorem and to the measures of Solomonoff [64].

16

Def 2al Let G = (V,T,X,P) a cfg; the alternative set A(p) of a

production PEP of the form 2 + w is the set of productions

in P with the same left side, 2 , i.e., A(2 + w) =[(Z -+ x)E P}.

We'will be interested in measures which depend on the alternative

set, and for most of the discussion will be concerned with a very restricted

class of such functions.

Def 2a2 A function p(p) is a density iff

?I b is defined for all pep for any G&

2) OLp<a

3) For each PEP , z ,-P(P') = 1 .

P'4P)

A density is intended to describe how precisely a grammar "fits" a

set of strings. The description of a set of strings in terms of a grammar

will be more complex if the grammar generates many strings besides those

in the set. Each step in a derivation will be considered more complex

in a grammar which allows many derivations. from that non-terminal (has a

large alternative set). It is also possible to consider p from an

information-theoretic point of view; P(P) is a measure of the information

required to select p from the set of productions with the same left side,

i.e., 2%(P) is the probability of a particular alternative.

It is this information theoretic approach which gives rise to the

specific density used here. If we assume that all productionswith the

same left part are equally likely, we get a local measure

O(P) = log2(b(p))

where b(p) is the cardinality of A(p) .

Another possibility is to assign some a priori likelihoods to each

production p . This could be based on some complexity measure on p

itself (such as its length). We will concentrate on proving properties of -

the general density p , but will use o in the samples. Before presenting

examples, we must extend the notion of density to a complexity measure for

derivations.

Let d(y,G) = <p,,... ,ph> be a derivation Of y and let p(p) be

a density, we define

Nd,Y,G) = &3(Pj)- .
j=l

We can now define the complexity of a string relative to a grammar.

Def 2a3 Let YET+ . If ykL(G) we define the complexity p(y,g)

to be ~0 . If yeL(G) and the derivations of y are

dl(y,G),.-,\(y,G) we define

v(Y,@ = $
k
L; n((di,Y>G) l

i=l

Def 2a4 Let S = {yl,...,yn] C T+ the complexity of the set S

relative to G , l-4w is defined by

I@,@ =

_ Thus the complexity of a string is the average of the complexity of

its derivations; the complexity of a set is the sum of the complexities

of its members.

18

If S is a finite subset of T+ , p(S,G) = 03 iff S-L(G) f fi .

The value of p(y,G) is a measure of the complexity of a derivation of y

from G and might be usable as a measure of grammatical complexity. We

defer the discussion of the relative merits of various complexity measures

until Section 3a.

Example 2a5 Let G = ((X},{a,b],X,(X + a 1 b 1 aX 1 bX]) .

This is the universal grammar over {a,b] . For this grammar,

any string of length n requires a sequence of n productions in

its unique derivation. If we use the density 0 as p , each

production p has p(p) = log2(4) = 2 . Thus each ye(a,b)* has

P(Y,@ = 2 l e(y) .

Let H = (CX,z&Ca,b1,x, Ix + b 1 aZl 1 bX, Zl+ a I aX I bZ1)) .

This is the "even number of a's" grammar. Similar reasoning to the

above will show that for any string y with an even number of a's:

P(Y,H) = log2(3) l QY) l

The example indicates that p corresponds to our intuition in

declaring the universal grammar to have more complex derivations of strings

having only an even number of 'a% There is, however, a potential problem

in the fact that H itself seems more complex than G . We have, so far,

considered only the complexity of derivations. If, as in the grammatical

inference problem, only a finite set of strings is available for testing,

a very complex grammar may yield the lowest value of p . For example,

the grammar which simply lists the sample set (ad hoc grammar) will have

19

a very low measure. In the next section we will expand the notion of

I
i grammatical complexity to include a measure of the complexity of the

grammar itself.

i
2b. Grammar-grammar, Complexity of Grammars

We will define the complexity of a grammar as the complexity of its

2, derivation in some grammar-grammar, E . The choice of $ will determine

'i
i

which subclass of the context-free grammars is under consideration.

, Typical subclasses include the linear grammars, grammars in some standard

i
form, and grammars restricted to a fixed number of variables.

I

i
L.

Def 2bl A grammar-grammar g = (?,!?,f,p) on the terminal alphabet T

is deflned to be a cfg such that

L- 1) (WF) n b = f5

where b is the universe of variable symbols and 11 11, is used
i/

L to separate the rules of P .

\

i
It would be possible to sharpen this definition, e.g. to allow only

i
i

Z& to appear to the left of "4 in a string. It is not possible,

however, to force c to produce only Geti% , with a context-free fi .

I
i.

There is the additional problem that 9 must be finite so a given 2;

will only generate a class of languages with a fixed number of variables.

f
L

The following definitions modify the grammar-grammar concept and make it

i
L

more suitable for our purposes. It is also convenient to have the

production arrow for grammar-grammars be "::=" .

a0

Def 2b2 A sequence of grammar-grammars e = ($G2,...) 'is a

collection iff. There is a z such that for each gi

1) 5 ::= Z. I Zl I . . . Zi 1 in E. l
1

2) ?! appears in no other left sides.

3) No Z& appears in any other rule.

4) The Gi are identical except for the rule described in 1).

The intent here is that 2 is the variable in all gi which

produces the i variables of the G
i'

Def 2b3 A representation class C is defined as

c= (u L(@)nn
GEE

where c is a collection. Thus, C is a set of grammars

defined by a collection @ such that for any GeC , there is

a GEE such that GEL(G) n R .

This definition allows subfamilies of cfg with an unbounded number of

variables to constitute a representation class. For any G& and any

class C it is decidable whether GeC . More frequently we will be

interested in studying all the grammars in some class C . We will

sometimes write G(k) for G&C such that GeL(Ek) n R .

The-intrinsic complexity of a grammar G can now be defined as the

complexity of its derivation from an appropriate grammar-grammar, L4m

using p = 0 as density. The choice of the grammar-grammar G will

depend-on the set of grammars being compared. We now derive expressions

for p(G,@ for a number of interesting subclasses C of R on a fixed

terminal alphabet T = (ao,...,am l] .

For all the examples we will have gn = (~,'I!!&~) with

ij = {Z,Q,R,N,T] u TI

is
= Go, l l l ,zn-l,ao� l l �,am~l�+~ u c, 1

The general cfg with n variables can be derived from the collection

e = {CF,] . The productions F of CF aren

ii: ::= Q 1 z,Q

Q . .-. .- N+R

N ::= z. 1 . . . znBl

R ::= T 1 N 1 TR 1 RR

T : := a 1 . . . a
0 m-l

For a grammar G in L(CF,) which has k productions, whose right

sides have a total of k, variables and k, terminals we have

dG’CFn) =

I L

k l bg2(d + log2(2)) + kl l bg=!(4) + log2(d)

For cfg in

2-form (02) the

are:

s2

- jt ::=

Q=

N : :=

- R . .-. .-

T . .
. l =

+ k2 l Oog2(4) + loggO) l

Greibach Standard 2-form (S2) and in modified Operator

measures have very similar expressions. The productions

02

.Q 1 g,Q - X ::= Q 1 jT,Q

N+R Q ::= N-, R

z. I z1 I 0.. znel N ::= z. 1 . . . znml
T 1 TN 1 TNN R l *=T 1 TN 1 NTN 1 NT. .

a I . . .
0

am-l T : := a
0 I . . . a

m-l

22

F

and if a grammar G has k productions and kl,k& rules whbse right

sides are of length 1, 2, 3 respectively, then

dG,S'?$ = k(log2(n)+log2(3)+logg(m)+log2(2)) + (k2 + 2k3) log2b)

1.r(G,02~) = k(log2(n)+log2(4)+log2(m)+log2(2)) + be + 2k3) log2(n) l

Similarly, the linear grammars (LN and finite state grammars (FS)

have nearly identical c . The productions are:

LN FS

x ::= Q 1 &Q z ::= Q 1

‘Q ;:= N+ R Q . .-. .- N-,

N : :zz
z. I l * l zn-l

N
. .=
. .

zO

T : := a 1 l . . a T . l =
. . a

0 m-l 0

R . .= T 1 TN) NT R . .=. .. . T I

and if a grarrxnar G has k productions and kl,k2

sides are of length 1, 2 respectively, then

dwq = k(log2 (n)+Ws2(3)+1x2 (m)+log2 (2) > + k210g2(n)

dG,FSn) = k(log2(n)+log2(2)+log2(m)+log2(2)) + k210g2b) .

&Q

R

. . l Z n-l

. . . am-l I

TN

) rules whose right

Finally, the productions and measures for Chomsky normal form (C2) are:

c2L
z r:= Q] &Q

Q ::= N+ R

N . .=. . z. I l *’ znBl
Et : := T 1 NN
T . .=. . a . . . a

0 m-l

P(G,C~~) = k(log2(n >)+log2(2)+kl(log2b) > l

L
L
L
L \

L
1
L

L
L
L
L
L
L
L

Example 2b4 Returning to our example of the universal grammar on strings

(Example 2a5) with an even number of a's, we can now measure the

complexity of the grammars G , H . We must first determine the

appropriate class of grammars and parameters (n,m) to use in the

comparison. We have assumed that the terminal alphabet (and thus m)

is known. Since both grammars are finite-state, the C called FS

above is most appropriate. Now H (the "even a's" grammar) has two

non-terminals. We use n = 2 for it and get the result:

m=2, n=2, k=6, k2 = 4

dH,FS2) = 6(log2(2)+log2(2)+lo~2(2)+log2(2)) + 4 l log2(2) = 28 .

For the universal grammar G which requires only one non-terminal

we could use n = 1 or n = 2 . The results are:

p(G,FSl) = 12

p(G,FS2) = 18 .

Although G is simpler than H by either measure, there is a question

of which measure to choose. We can see from the formulas derived

above for p(G,@ that choosing the smallest possible n produces

a bias in favor of grammars with few non-terminals. This seems desirable

and has been adopted for use in this paper.

We will need the following lemma in Section 3 which deals with

grammatical inference.

Lemma 2b5 Let C c R be defined by a grammar-grammar E in Standard

2iform (S2) , then there is an enumeration ,& of C which is

approximately ordered by p(G& in an effective manner.

LI
I
L

a4

Proof If C is finite the problem is trivial. If C is infinite

l-G,@ is unbounded on C . Given the grammar-grammar 6 , one

can define a generating algorithm which will approximately order

L(c) by the length of its strings (grammars). Let & be the

restriction of this approximate order to GER , & is an enumeration

of 'C . Now if Gi in & is given we must show there is an

effective way to find k such that j > k implies

Let r= the minimum density of peF_ and let h be such that

he
r L ~(Gi,~) l

We can effectively find k such that j > k implies l(Gj) > h ,

because & is approximately ordered by 1(G) . Also for S2 we
i

have fd(Gj) = i(Gj) and thus

IJ.(Gj,') L h l r ,> p(Gi,@ .

The two complexity measures developed here (the intrinsic complexity

of a grammar and the complexity of a set of strings relative to a grammar)

can be combined to form an overall measure of how well some grammar fits

a set of strings. The problem of what combination of y(G,E) and v(S,G)

to use in an overall measure will be discussed in Section 3c. For the

present we will be content with an example.

Def 2b6 Let G be a grammar in a class C defined by 6 . Let S

be a subset of Tf , then we define the measure m$%G) bY

%(S,G) = P&G) + I-@,@ .

25

L
'i

We can now reconsider Example 2b4 using T . The universal grammar

t G is simpler than H , but leads to more complex derivations. We can

L
i

then investigate which sets S will cause one to prefer H to G as a

grammar for S , i.e., make

m,,(S,H) < 8&,G) '

r

L Using Def. 2b6 and the intrinsic complexities computed for H,G this is

equivalent to finding S such that

i @,H) + 28 < p&G) + 12

I

i

or

ds,G) - &S,H) > 16 .

Now from the results of 2a5 this is satisfied by any set of strings S

satisfying

c i(Y) > 3 9 l

YES

Although it involves getting ahead of ourselves somewhat, we should

consider this example more closely. In general, n&G) will depend

on the nature of S rather than some simple property as in this case.

L Here we have shown that any sample including 39 or more symbols and

having only strings with an even number of a's makes H preferable

F
i

to G z Notice-that a single string-with an odd number of a's will make

I IJ(S,H) = a3 . The result above says nothing about other grammars which

L might be better than both G and H on some set S ; this is the

I

L

.

grammatical inference problem and is the subject of Section 3. We first

introduce a variation on complexity measures which plays a major role in

the discussion of grammatical inference.

iL 26

2c. Normalized Complexity Measures

The complexity measures introduced in the last section increase without

bound with the length of strings. To overcome this difficulty we introduce .

a normalized complexity measure; this measure is bounded so we may also

study its limiting behavior as the sample set of strings approaches the

language.

Def.2~1 The normalized complexity q(y,G) of a string yeTf relative

to a grammar G is defined by

‘1 (Y, a = dY,G>/~ (Y>

where p(y,G) is defined in 2a3 and 1(y) is the length of y .

The definition of q is extended to sets, S , of strings'by

‘I S,G) = ds,G>lC~(~) l

YES

Lemma 2~2 For any GEE , yes C L(G) there are constants r,q > 0 such

that

(4 r <, dY,G) <, ?I

w r<ll(S,G)<q l

Pro,of (a) By lb2 the derivation length id(y) is not greater than 2 l f(y) .

If B is the maximum p(p) in G then

q=2*B

satisfies the right half of (a) because if there are k derivations

of a string y , we have:

rl (Y,G)

= 2*B .

* Let k(p) be the number of terminal symbols appearing in production p .

Let r be the minimum over G of p(p)/k(p) , then r satisfies the

left side of (a). The proof of (b) follows by straightforward analysis

from (a) and the definitions.

The introduction of the normalized complexity measure &QG)

enables us to study the behavior of IJ as the sets S
t approach L(G) .

When the limit exists we will write

dL,G) = lim T@,G) .
t-b

The following example will show that the limit may not exist.

Example 2~3 Let G = ((a,c,X,Zl~,[X,Zl},X,P) where P contains

X + alaXlcZJc

z1 + CZJC

and let the density 0 = (r . The language L(G) is the set of all

strings containing a finite number of a's followed by a finite

number of c's . We will show that there are information sequences

for which T&!$,G) does not converge.

28

Let an be a string of a's of length n and cm be a string

of c's of length m . Then

danA = n l log2P+)

y(cm,G) = log2(4) + (m-l)log,(e> .

.

On a Sequence of strings of the form ai , we have q(S,G) con-

iverging to 2 and on a sequence of c , d%G) converges to 1 . We

will now show how to choose an information sequence which includes every

string in L(G) exactly once and for which 7(St,G) fails to converge.

The first string is "a" and the subsequent strings are chosen as follows.
.

After choosing a string a' we choose all strings of L(G) of

length up to i and compute q(St,G) on this set St of strings. There
.

is a string CJ which, if chosen as the (t+1)st element of I , will

cause dst+l,G) to be less than 1.4 . For example, if Sl = (a] ,

then S2 = {a,c> and j must be such that

log24 + log24 + log24 + (j-l)
< 1.4

which is satisfied by j = 7 and S
3
= (a,c,ccccccc) . We then select

all new strings of length up to j and compute q(St ,G) . There is an
2

integer j2 such that

q(St +(a
J2

>,G) > 1.6 .
2

By continuing this process one can produce an information sequence

on which q(S,G) fails to converge.

In the example above, the failure of $S,G) to converge depended --

on three factors: the density p , the derivation length ad and the

29

information sequence
I(L) l

By restricting these factors in various

ways, one can show that there are cases where ri Gv) is known to

converge. We first examine the case where p(p) is constant; this

amounts to using the length of a derivation as a complexity measure.

We will use the notation P,(y) to denote the average derivation length

of a string y .

Theorem 2~4 Let GER be such that p(p) = r , a constant for all pep ,

then for any I(G) for which _

lim
-t")m

C 'd(Yi)

~~ (Yi>
C

the limit of v(St,G) exists, and

lim -r&G) = rCl .
t+m

Proof By definition

rl(St,G) =

ki "d(Yih)
&$ ZZ P(Pihj)
i=l i h=l j=l

~ P(Yi)
i=l

but with p(pihj) = r this collapses to

2 aYJ.
i=l

~ p(yi)
i=l

30

which proves the theorem.

Corollary 2~5. Let GER be such that

1) p(P) = r a constant for all pep

2) p&) = a ’ ‘(d+b ; a,b positive constants.

Then for any I(G) we have

lim q(St,G) = ra .
t+aJ

This shows that for a constant density p and grammars whose Id

is simple, the normalized complexity measure always converges. This is

interesting because many classes of grammars satisfy Condition 2 of

Corollary 2~5.

For the Chomsky standard form C2 , we have Id(y) = 21(y)-1 . For

each of the representation classes FS, LN, 02, S2 we have Id(y) = I(y) .

These relations are immediate consequences of the form of productions

for each class. We now consider the results of allowing p to be

non-constant.

We present two versions of the conditions for the convergence of

7 W) with non-constant p . The first, Theorem 2~7, is simple to

prove and illustrates the nature of the problem. The second, Theorem 2~8,

is more useful when it applies.

Def 2~6 Let u. (p.) be the number of uses of production j
lh 3

in derivation

h of the string yi . Also let &(pj) be the average of u. (p.)
lh 3

over the derivations of yi .

31

/
I

L
L
I
L
I
L
L
L
I
L
L
I
L

Theorem 2~7 Let GER. be such that P = (pl, . ..,p, 3 , i.e., there are s

productions in the grammar. A sufficient condition for the limit as

t-bm of q(St'
G) to exist is that for

following limit exists

~ pi

(1)
i=l

limit L

t ~ a, ~ ‘(Yi)
i=l

j = 1,2,...,s the

, Proof One can rewrite the definition of v(St,G) as:

~~ ~ ~ uih(Pj) ' p(pj)
q(st,G) = id i h=l j=l .

Reversing the sums over h,j and using the definition of &(pj)

gives

~ S= pi
$,G) = i=l j=lt

' P(pj)

C l(Yi) l

i=l

Now reversing the order to summation again and separating out the

contributions of each production p.
J

as vj(St,G) we have

p(Pj) ~ pi

~j(St’G) =
i=l

& f(Yl).
i=l

from which the theorem is apparent. The condition of Theorem 2~7 is

that some average number of uses of a production in deriving a set

32

of strings should converge. The difficulty is that :.(p) it is
1 j

hard to establish for a given grammar and information sequence.

A more reasonable condition to establish is the ratio of the uses

of pj to the total number of steps in deriving the set S
t l

That is

fj(st) =

.

e 2 uih(Pj)
i=l h=l

.

gl h$ Rd(Yih)

.

Thus the frequency of a production p.
J

in deriving the set of

string St is the total number of uses of p.
J

divided by the number of

production steps used for the set St . We will use this definition to

establish a condition under which v(St,G) converges and then discuss

-fj(St) further.

Theorem 2~8 Let GER be unambiguous and be such that P = {p
1' l **tPs 3

and Id(y) = a l a(y)+b for all yeL(G) . Further, let I(G) be

a bounded information sequence such that

lim fj(St) = Cj
tJ-+~

for each production pjeP ,

then

lim q(St,G) = C .
-tAm

Proof- Since G is unambiguous, all ki = 1 and

' ui(Pj)
fj(S$ = i;l .

33

._.. 8I
I
i.
L
L
I
I
L
L
L
L
L
L
L
r
L

L
L
L
L

Separating the contributions of each p. as in the proof of 2~4 we
J

have:

rijCStJG) =

P(Pj) ~ ui(Pj). =

gt 1
i=l

a Yi

P(Pj)

&S,,G) = i=l
ui~Pj)

J b

~ '(Yi)
i=l

Also:

fj(st) =

c"i(Pj)
i=l

t

):(a l

i=l
� (Yi)+b)

2
i=l

ui(Pj) '
= +

a 2 .l(yi) + b l t
i=l

The advantage of Theorem 2~8 is that the convergence of fj(St)
may

be provable under fairly general conditions. We are now attempting to use

stochastic matrix results to establish such conditions. Theorem 2~8 does

not hold for ambiguous languages; this situation is symptomatic of a number

of problems arising from ambiguity and will be discussed in some detail.

Even very simple grammars may have ambiguity (ki) which grows

exponentially with the length of yi . An example is

34

H = (C&d, Cal,Z,lz + +ZIZa)) .

Since we defined vj(St,G) in terms of the average number of uses of p. ,
3

the value of ki has essentially no effect on 7 . For fj(St) , however,

the total number of uses of a production is used. Consider the grammar

of Example 2~3 with one additional production rule:

X -b Xa

In this grammar, each string k rlarrts has 2k derivations. By methods

like those of 2~3 it is easy to show there is an information sequence

for which fj(St) converges and qj(St,G) does not, which fact refutes

Theorem 2~8 for ambiguous grammars.

The choice of q(St,G) as a function of the average complexity of

the derivations of a string is open to question. Other possible choices

would be the sum, maximum, minimum and a weighted sum. The choice of

definition of 7 has important implications for the entire grammatical

complexity problem. This issue is touched on in Section 3d and will be

further discussed in Horning's dissertation.

5

35

1

i

i
L

i
I

i

i

L

i

l-

i

L
L
L
L
i-
L
1
t
L

3. Grammatical Inference

3a. Introduction, Basic Model and Terminology

The problem of inferring a grammar for a set of strings is just

beginning to receive serious attention. Our purpose here is to establish

a number of decidability results as a foundation for the heuristic methods

of grammatical inference now being programmed. These results are extensions

of the work of [Gold 671 who describes his study as follows:

Many definitions of learnability are possible, but
only the following is considered here: Time is quantized
and has a finite starting time. At each time the learner
receives a unit of information and is to make a guess as to the
identity of the unknown language on the basis of the information
received so far. This process continues forever. The class of
languages will be considered learnable with respect to the
specified method of information presentation if there is an
algorithm that the learner can use to make his guesses, the
algorithm having the following property: Given any language
of the class, there is some finite time after which the guesses
will all be the same and they will be correct.

Gold's definition of learnability derives from his earlier work on

limiting recursion [Gold 653. We will present some new results using this

definition and show that by relaxing some of its conditions, one can greatly

enlarge the class of solvable cases of the grammatical inference problem.

in addition to the concepts previously defined, we will need a number

of new ones. We assume time is quantized and is expressed by

t = 1, 2, 3 . . .

- A grammatical inference device D is a function from samples St

into the set of grammars (G) in some class C . The grammatical inference

36

problem is modelled as follows: An information sequence is presented to

the device D at the rate of one element per time step. At each time, t ,

we compute

At = D(St(I),C) l

We say that a class of languages, L(C) , is identifiable in the limit, if-w-

there is a function D such that for any GEC and any information

sequence I(L(G))e& there exists a T such that t > z implies both

4 At = A
T

L(BJ = L(G) .

This differs from the function D being recursive in the following way.

A recursive function D would, at some z , be able to ignore all further

information, i.e., would be able to stop and demonstrate the right answer.

Since we have allowed an information sequence to contain repetitions of a

string, not even the class of finite languages is recursively identifiable.

Before considering the properties of inference devices, let us look

at the notion of information sequence. Gold [Gold 671 has shown that there

is no effect in the limit on learnability caused by the difference between

an ordered (e.g. by length) I and a random one for IEc!J . He also shows

that in this case allowing the device D to select the next string y to

+
appear as - y in I does not change things. While these different methods

of informing (teaching) the device do not affect the learnability of languages

in the limit, they do have powerful effects on the heuristics of efficient

learning. Solomonoff [64] considers the grammatical inference problem a

special case of sequence extrapolation and his methods rely heavily on the

order of presentation of examples. Another crucial consideration is

37

whether the information sequence contains complete information. The

effects of complete samples is the subject of the next section.

3b. New Results on Grammatical Inference

The main results of [Gold 671 deal with the great difference in

learnability effected by allowing information sequences with negative

instances, 1ea , (informant presentation) rather than just positive

instances, I&t , (text presentation). We will informally outline certain

key proofs and then extend them in various ways.

All of the methods are based on the denumerability of various classes

of grammars; the primitive recursive, context-sensitive, context-free, and

any other class we might be concerned with here can be enumerated. Let

a = wl, . ..> be an enumeration of such a class. Also let 8 = (I} be

_ the set of all complete information sequences over some alphabet T

(each yeT+ occurs as 2 y in every I). A class C of grammars is

admissible iff C is denumerable and for all GeC , yeT+ the relation

YEL(G) is effectively computable. A grammar G is compatible

set of strings S = S+ U S iff S+ C L(G) and S C T+ - L(G)

Theorem 3bl (Gold) For any admissible C there is a device D

with a

.

I

s,c)

such that for any GEC and any I(L(G))eS , L(G) is identifiable

in the limit through I .

Pro-of The device D simply sequences through the enumeration & of C .

At each time, T , there is a first G& which is compatible with

s,(I) 9 it is the guess A
t of D at time t . At some time z ,

38

AT will be such that L(AT) = L(G) . Then A
T will be compatible

with the remainder of the information and will be the constant result

of D .

Thus with informant presentation, a very wide class of grammars can

be learned in the limit. By restricting the information to only IEQ+

we give up learnability in the limit almost entirely. Let everything

be as before except that the set of information sequences 9+ = (I}

contains only sequences of the form <+yl,+y2,...> .

Theorem 3b2 (Gold) Under these conditions any class C generating all

finite languages and any one infinite language L is not learnableco

in the limit.

Proof We show that for any D , there is a sequence I , which will

make D change its value At an infinite number of times for L .
co

Since D must infer all finite languages there is a sample which

causes it to yield some ml) such that Llc L . Now considerco

an information sequence which then presents some string XEL - Lco 1'

repeatedly. At some time t , D(St,C) must yield a grammar of

Ll u b) = 5 because all finite languages are inferred. This

construction can be repeated indefinitely, yielding an information

sequence I which will change the value of D an infinite number

of times.

This unlearnability result is so strong that we were led to try to

consider it further. The remainder of this section is devoted to the study

of conditions under which learnability from positive sequences only is

39

attainable. Let us first consider the repeated occurrence of a string y ,

in an information sequence I . The proof above is based on the possibility

of having some string occur indefinitely often; it does not seem unreasonable

to bound the number of occurrences of any string in an information sequence

and thus restrict our attention to 8, .

By restricting consideration to bounded information sequences, we

L
. have made the problem of identifying finite languages trivial. The

classes of grammars which are now identifiable in the limit can be

L characterized by the following two lemmas.

Lemma 3b3 Any class of cfg CC R which contains only a finite number

of grammars which generate infinite languages is identifiable in the

limit from any I(L(G) 18E
+ l

Proof The device D(St,C) which will identify C in the limit will

be defined. Let & be an enumeration of the grammars of C which

generate infinite languages. At each time t , the device D will

form a guess At as follows. At is the first grammar in & which

is compatible with
St and which generates the minimum number of

strings of length less than or equal to k , where k is the

length of the longest -string St . If the language L(G) is

finite then I(L(G)) terminates at some t and a grammar

for L(G) can be picked out of C - ,& ; we will now consider

_ the case where L(G) is infinite. If HeC is any language such

that L(G) - L(H) = [y) f# , t'rLen after the first appearance of

a Y in I@(G))) H will never be guessed by D . If HeC

is such that L(G) c L(H) there is a length kl such that for all

40

‘1

. _’

k-1 9 H generates more strings of length less than or equal

to k than G and thus H will not be guessed by D . Thus D

will eventually guess only the first grammar A& such that

L(G) = L(A) and the lemma is proved.

Thus requiring an information sequence to be bounded has produced a

somewhat larger class of inferrable languages. Although some infinite

sets of infinite languages can be identified in the limit, the following

lemma shows that there are some very simple classes which cannot be

identified in the limit from I'$+ . -

Lemma 3b4 The finite state languages are not identifiable in the limit,

from IE#+ .

Proof The proof is an adaptation of Gold's proof of Lemma 3b2. We

form a subclass of the finite state languages for which D will

change its value an infinite number of times. Let this class

C = {H.) be defined as follows.
1

L(H& E a*b* (any sequence of a's followed by any sequence of b's)

and
.

for i > 0 , L(Hi) = G ajb*
j=l

The languages Hi , i > 0 all have finite state grammars. We will

show that for any D(S,FS) which will identify in the limit all the Hi ,

i > O_ there is an I(HO) which will cause D to change its guess an

infinite number of times. The sequence I(HO) starts with enough

yeL(Hl) to cause D to guess Hl ; the assumption that D infers H
1

41

guarantees the existence of s,uch a sample. Then I(HO) continues with

enough yeL(H2) to cause D to guess H2 , etc. Any I(HO) of this

nature would cause D to change its guess an infinite number of times. .

The class of languages learnable from positive information sequences

will now be extended by introducing a weaker notion of learnability. The

comparison of the two definitions of learnability will be deferred until

after the theorems. For the remainder of Section 3 we will restrict

ourselves to bounded information sequences and to the class 6% of completely

, reduced context-free grammars. SeveraE of the results could be made more

general, but these are sufficient for our purposes and allow of simpler

treatment.

Def 3b5 A language L(G) in a class C is approachable from above- -

by a device D iff for each HEC such that L(G) c L(H) and

each information sequence mm > , there is a T such that

t > z implies

D(St(I),C) + H l

Thus a language is approachable from above if every grammar

producing a larger language is eventually rejected. We can define

approachable from below in a somewhat similar manner;

Def 3b6 A language L(G) in a class C is approachable from below iffPP

(L(G)) there)fpl and each Ifor each HEC such that L(G) - L(H

isa z such that t > T implies

D(S&)☺) f H l

42

That is, any grammar H , whose language does not contain L(G)

is eventually rejected. This condition is

reasonable device for positive information

any Y~G) - M-0 will eventually appear

Def' 3b7 A language L(G) is approachable

trivially incorporated in any

sequences. This is because

in every
I(m) l

if it is approachable from above

and below. A class L(C) of languages is approachable iff there is

a device D(S,C) under which each L(G)eL(C) is approachable

through any I(L(G))ed+ .

Theorem 3b8 For any admissable class of grammars CC R there is a

device D(S,C) such that for any GeC and I(L(G))eS
+ ' L(G)

is approachable through I .

Proof For L(G) finite the problem is trivial. Assume L(G) is infinite.

Let I(L(G)) = Ql,y2,...>E9+ . Let .& be an enumeration of C and

for each G in & define
%()G to be the number of strings of length

k generated by the grammar G and

Nk(G) = c" n.(G)
j=l J

The device D(S+,,C) proceeds as follows. At each time, t ,

D will choose the next grammar from & and the next string

yteI(G) forming the sample

St = St,l u IYtl l

It will also compute It = max(i(y)) over yes
t l

The device will

also form the set of possible guesses
%

a, = (GIGc(Gl,. . . Gz) and St c L(G)} .

43

L

L

L

If at is empty, the device will choose more grammars from &

until cZt is non-empty. Finally the device will compute its guess

At at time t bychoosing one of the grammars G in cEt for

which NQ (G) is minimal. The procedure for breaking ties is
t

immaterial.

The fact that D is effective follows easily from textbook

results. We now show that At approaches G from above. That is,

if HeC is such that L(G) c L(H) there is a time T
+

such that

(1) t > 't implies At + H .

If L(G) =
#

L(H) there is an integer h such that k > h

implies

Nk(G) > Nk(H) l

Let ~1 be the first value of t for which R
t

= h and z
2

be the first value of t for which G appears in & . Then

T= mad zl, T2 > is a finite value of time for which (1) holds.

Since L(G) is always approachable from below through any complete

positive information sequence, the theorem is proved.

The procedure used by the device D in the proof above can be made

more-efficient in a number -of ways. Since a finite language necessarily

has a finite information sequence over $+ , D could restrict its guesses

to grammars which produced infinite languages. In practice, one would break

ties for At by choosing the best grammar relative to some complexity measure

such as those of Section 2. The question of inferring "good" grammars will

be discussed in Section 3c.

44

There is a progressive weakening of the formal counterpart of the

intuitive concept of "learning a grammar" as one goes from recursive to

limiting identifiable to approachable. An inference device which can

identify a class of languages in the limit will find a correct grammar,

but will not know that it has done so. If the device can approach a class

of languages, it may not ever settle on a correct grammar, but will get

progressively closer as the sample size grows. Unfortunately, this is the

best kind of result possible in the absence of negative information.

The device D used in the proof of Theorem 3b5 could make use of

negative strings to reduce the set at considered acceptable to time t .

One might conjecture that there is a device that would use negative strings

in an information sequence without knowing whether or not it was complete

(that is, whether all or only some of the negative strings occur) and

achieve the behavior of Theorem 3bl for complete sequences and of 3b8 for

incomplete ones. This conjecture is false; an argument similar to the proof

of Lemma 3b4 will show that:

Corollary 3b9 %If D is a device which will approach any finite state

language L(G) for any I(L(G))eS+ then there is a finite state

grammar H and an information sequence I(H)e&+ which will cause

D to change-its guess an-infinite number of times.

Intuitively, the device of Theorem 3bl adopts a very conservative

strategy; it chooses the first grammar which is compatible with the sample.

It succeeds because the negative strings in a complete sample guarantee

that any incorrect grammar will ultimately be incompatible. The device of

Theorem 3b8 does not have this guarantee, so it must constantly look for

. .a

45

"better" grammars and thus cannot be guaranteed to eventually remain at the

same value. The question of learning good grammars and making good guesses

is the subject of the next section.

3c. Learning Good Grammars

The preceding discussion has established the solvability of the

grammatical inference problem under a variety of conditions. We now

extend these results by considering when a good grammar (in the sense of

, Section 2) can be learned.

There are several properties which would be desirable in an overall

measure which was an increasing function of both intrinsic complexity,

dS,G) and derivational complexity, v(G,@ . For a fixed grammar, the

complexity of a sample should be bounded so that the convergence results

of Section 2c are applicable. Finally, the relative weight given to the

components of the measure should be able to be specified in advance.

Another important property of a measure, effectiveness, is actually a '

consequence of the other requirements and the general conditions of the

problem as the following lemma and theorem will show.

Lemma 3cl Let & = {Gil be any enumeration of a class ccn

which is approximately ordered by length and let St be a

sample of some
I(L(G)) f GE& l Then there is a computable

index k such that j > k implies there is an h < k such

that

rl(St,Gh) F q(st,Gj) l

46

Proof The proof is based on the fact that if a grammar is too

large, there must be some redundant rules. Let

u(s+) = i 2
b

i=l
� �(Yi) l

From Lemma lb2 we know that the total number of uses of productions

(s 1t l

Therefore, if one chooses an index

number of productions in G
j

is greater

than U(St) , the condition of the lemma is satisfied. Such a k is

in deriving S
t is less than U

k such that j > k implies the

computable since & is effectively approximately ordered by the length of

grammars.

Theorem 3~2 Let Cc R and & = {Gil be an effective approximate

ordering of C by p(G,@ . Also let f(v(S,G),p(G$)) be any

monotonic function of both its arguments. Then for any GeC ,

Stc I(G) there is a computable index k such that any grammar G
i

such that

~(~-@,G~),P(G~,Q) is minimal

has an index i < k in ,& .

,Proof By lemma 3~1 above, there is a k
-1

such that the G
i

minimizing v(S
t' G) occur before

kl l

Let M be the largest

value of p(Gi,6) occurring before kl , i.e.,

I M= MAX
l<i<kl

(C1(Gi,~)) .

NOW, by lemma 2b5 there is an index k such that j > k implies

p(Gj,@ > M .

47

The minimum value of f(q

index less than k , since for each j > k there is an h < k

(St,~i),p(~i,G)) must occur with

such that both q(St,Gh) < q(St,Gj) and p(Gh,@ < &Gj,g) .

The requirement that a goodness measure be an increasing function

of both intrinsic complexity p(G,@ and derivational complexity q(S,G)

seem to be a natural one. The particular choice of a goodness function is

less clear. Consider a device D which enumerates the class C of

candidate grammars by generating them in order of length from E . Although

rlL%G) is a normalized complexity measure and is bounded for a fixed

grammar, the bound increases approximately as the length of grammars.

Although p(G,@ also increases with length it does so in a different

manner. A comparison between the growth rates of p(G,g) and v(S,G)

would be very helpful in choosing a goodness function. In the absence

of any knowledge of growth rates, we will be content to use a particular

class of goodness functions which seems reasonable.

Def 3~3 A goodness measure y(S,G) is defined as

y(S,G) = a l q(S,G) + b l p(G,@

where 0 2 a,b <, 1 .

It follows from previous results that goodness measure y is an

increasing function of q , v and is bounded for fixed G . By Theorem

3~2, the minimum y(S,G) for fixed S and G c @ , a complexity class,

is effectively computable. Thus y is an adequate goodness measure by the

criteria laid down above. We now study the conditions under which best

grammars, as measured by y , can be learned by an effective device
DW) l

48

Theorem 3~4 Under the conditions of Theorem 3b2 (GeC , I(L(G)) c 4) .

If Y lSt.' Gi> converges as t + a for every Gi such that

L(Gi > = L(G) then there is a device D(St,C) which will identify

in the limit the grammar Gj such that L(Gj) = L(G) and

Y(L,Gj) is minimal over C .

Proof The device D will use c for the enumeration & of C as

before and will at each time t form St . There is a first G
q

tihich is compatible with S
t and by lemma 3~2 there is a k&d

such that i > k
1 implies y(St,Gi) > y(St,Gq) . The device D

then chooses the first grammar in {Gl,... Gk] which has the
1
L

minimal value of y as its guess A
t'

Now there is a first Gq such that L(Gq) = L(G) and

y(L(G),Gq) = cq exists. But there is also an index k(q) such I

that i > k(q) implies b . p(Gi,@ > c
l_ q > 1*ev intrinsic

complexity alone exceeds c
q

at some point.

Thus the device D will never consider more than the grammars

Gl,. . . Gk as possible guesses. Any Gi such that L(Gi) k L(G)

will eventually be eliminated by the complete information sequence

I(G) l There are then a finite number of Gi , all of which generate

L(G) ; for each of these, YCStJGi) converges to a limit c
i .

Let the first occurrence of the minimum (ci) = c. be a G. . For
J J

any G. such that1 c
i
= c.+e

J
there is an index r(i) after which

Y@r(-j)JGi) > Y@r(i)jGj) l

Let w be the largest of the r
(>i , then

for all t > w the guess At will be precisely G. and the theorem
J

is proved.

49

t
i

b-

Corollary 3~5 If the measure y(St,G) = p(G,@ , (only intrinsic

complexity is considered) the device of Theorem 3~4 will always

identify the best grammar in the limit, the grammar of lowest

L
intrinsic complexity producing the correct language.

,

Corollary 3~6 The device of Theorem 3~4 will approach the best

grammar, even if the limit of y(S
t' G) does not exist.

The requirement that the limit of y(St,G) exist seems to be necessary

L
_, in general. If y does not converge , the device can be caused to oscillate

!

i

,,
i-

its guesses between a finite number of different grammars for the target

language. There is a possibility that for complete information sequences,

Y (St'G) can always be made to converge. It 'is based on the following

conjecture: the measure y(St,G) will always converges on an information

sequence which presents strings in strict order of length. If the conjecture

is true then the device of Theorem 3~4 would be able to wait until all

positive and negative strings of length up to ,k were seen, then compute
i

L Y@
tk'

G) and be assured of convergence.

The final set of questions relate to the learning of best grammars

L

from positive information sequences. In the discussion of Theorem 3b5

we remarked that a goodness'measurelike y could be used to break

ties among compatible grammars producing the minimum number of strings

L of a fixed length, q . The device described there will approach the

! correct grammar, but will not make the best guess at each time, t .
1
L By making q a slowly increasing function of t one can produce a

i
L

device which will tend to produce better guesses at each time, t , at

the cost of rejecting overbroad grammars later in the sequence. One

L

50

i

might conjecture that the complexity measure alone would eventually eliminate

overbroad grammars. We now present an example to show that a device using

only the complexity measure y and a positive information sequence may

fail to approach the correct grammar.

Example 3~7.

Let C be L(FS) n fit , the finite state grammars in standard form.

Let

The universal grammar of Examples 2a5, 2b4 has p(G,FSl) = 8 and the

upper bound on 7(S,G) is log2(4) = 2 . In fact, for this simple grammar

dS,G) is exactly 2 . Thus for any set St c L(G)

y(QG) = 10 .

We now show that by removing one string from L(G) we get a language L'

such that for any H such that L' = L(H) and any sample Sp L'

Y(S& > Y@& l

That is, any device using y as a selection criterion will select the

universal grammar G over the correct grammar H . To prove this

rigorously we would have to account for all possible grammars of L'

(which the results of this section show to be possible) but we will be

content with the following argument.

Consider L' = L(G)-aaaaaaaa . Any grammar of L' that is in C

can have only one terminal symbol per production. It must also have

enough states (non-terminals) to count to eight. This apparently requires

a grammar with y > 10 .

51

L

L

In any event, there is a string of a's long enough so that its unique

non-membership requires a grammar of intrinsic complexity greater than 10. _

This example also indicates that the difference of two grammars might have

a lower measure than any single grammar of the class, even when such a

grammar exists. This question of combinations of grammars deserves

-considerably more attention.

c

3d. Using Frequency Information to Assist Inference

i

L

c

k-

Previous sections have presented successively weaker definitions of

learnability: recursive, identifiable in the. limit, approachable. All

of these definitions are "strong", however, in that they require that the

device (eventually) satisfy the criterion for every information sequence

in some class, In fact, the non-learnability results of Theorem 3b2,

Lemma 3b$ and Corollary 3b9 depend upon the construction of particular

pathological information sequences.

In practice, however, a device whose performance is superior on "most"

information sequences need not be rejected because it fails on a few

sequences, provided that they are "sufficiently improbable". We are

generally more interested in the "expected behavior" of a device than in

its worst case behavior. To study these properties of devices we must

define more carefully our notions of "most", "sufficiently improbable", and

"expected behavior". In this section we start with a probabilistic notion

of information sequence, which leads naturally to a Bayesian inference

device using the frequency of occurrence of strings to assist in inference.

We also sketch a number of basic results which will be explored further in

[Horning 691.

52

There are many other motivations for using the frequencies of the

strings in a positive information sequence (text presentation) to assist

in grammatical inference:

(a) Since more information from the sequence is used, grammars

may be discriminated earlier.

(b) The significance of "missing strings" can be evaluated.

(c) Inference can be conducted even in the presence of noise.

(d) Grammars for the same language may be discriminated on

the basis of their agreement with observed frequencies.

(e) Complexity can be related to efficient encoding, and

various results from information theory applied.

We shall assume that the elements of an information sequence are

independent and identically distributed random variables (iidrv

condition).

Lemma 3dl The iidrv condition implies convergence with probability

>l-E for any e > 0 .

Proof See sequel.

Let 71 = (nl,7c2,J be a denumerable set of probability

for strings in T+ such that the conditional probability of a

distributions

string,

‘(Yi l”j)) and the a priori probability of a distribution, P(fij) , are

both computable. Under the iidrv condition, the partial information

sequence

I#) = ~&$Q,'.',Ykt>

53

has the conditional probability

L

P(lk(t) l”j) = iip(‘k71 “j)
T=l

= ~P(yij*j)f(lkJyi,t)
i

As is well-known, the probability distribution for information

sequences under the distribution JC' for strings corresponds to the

multinomial (P(y,lfi?) + P(yJn') + ...)t or, distinguishing P(yil~') ,
I

to the binomial

0 (Pi + C!1

where

It =c
fi

i
L

'i = '(Yil"l)) c; = EP(Yjlfl') - Pi .
j

c

t

i

fi(&jpl. . . [c!lt-fi
1

- Taking b/oPi of both sides:

II) t l (Pi + .x$-1 = c fi(fL)Pfi-l l L-q t-fi

fi

Multiplying by Pi :

III) P
i l t l (Pi + zj)t-1 = c

fi
fi(ft)Pfi l [Z!Jt-fi

Again-taking &/aPi and muitiplying by Pi

IV) p

i
. t l (Pi + ,;)t-2 . [(Pi + c;> + P

i l (t-l>1

= cfi ff(&)pfi l ☯,i]t-fi l

i

54

Since Pi + C; = 1 we can simplify III) and IV):

III)' c
fi

fi(f?;i) . P4' l [cl1 t-fi = p
i

. t

IV)' c
fi

fF(,ti, l Py l P! 1 t-fi
1 = Pi t (1 +

'i
. (t-1) > .

The left sides of these equations define expectation values under

7T' for fi and f!
1

so we have

V> En'(f(l,Yi't)/t) = '(Y. 1~')1

W Ed’ ([f(r,Yi,t)/t - '(y. In')12)1

= E"([f(I,Yi,t)/t12) - 2'3-r' (f(I,Y.,t)/t)1

* p(yil") + P(yi-lfl')2

= p(y- I+) * t * (1 + P(YiJ"') * (t-1))/t2 _ p(yi1311 >21

= [p(yi~")2 + P(yiln')]/t

Equation VI) defines the expected variance

P(yJ3-r') 5 1 we can bound it by

VI)' En' ([f (I,Yi, t '/t- '(Yil~~)12) ~ 2 P(yi I I/3-c’ t .

of fi/t . Since

- .,

55

,
L
i
L
L

We can use this to bound e;(E) , the probability of an information

sequence with If(19Yi,t)/t

VW ‘j-C81
l ~* L Eel (�f(I,Yi,t)/t - P(YilR1

2
>I >

and e(8) , the probability that any fi/t is off by 6 or more.

VIII) _46) < c
i

Ei(B) L 2/(t ' s2) .

Givenany e>O, 6>0 if ~=2/~62 then t > 't assures that

the total probability of information sequences of length t in which the

relative frequency of any string deviates by 6 or more from its

probability in g' is less than E f This completes the proof of Lemma 3dl:

"The iidrv condition implies convergence with probability > 1 - E
for

any E > 0 ." It is in fact a slightly stronger result, because we have

also showed the relative frequency distribution to which "practically all"

sequences converge is II' , the distribution of the random variable.

feturning to the case of a fixed information sequence, we note that

Bayes Theorem can be used to compute the conditional probability of a

distribution

- pC1k(t),nj) = P(1k(t)17('
J

or

>*p (‘j) = ‘(n.
J >) l P(�#))

56

where

P(+$t)) = c ‘(de) ’ P(lk(t)Jne)

and

.

To use this formulation for grammatical inference we must relate

the probability distributions
'3

and the a priori probabilities '(nj >

to grammatical complexity.

At each step of a derivation a production -- one of the finite set

with the correct left part -- is selected. If production pi is selected

f'ram this set with probability P(pi) , the specification requires

P(P,> ;= - log&P(pi)) bits of information. The probability of a derivation

is the product of the probabilities of its individual steps, so if
k

d(Y,G) = <P,,... pk' then P(d(Y,G)) = 77-P(pi) and -los(P(d(y,G))= r/l(d,y,G)

E
i=l

where (as before) R(d,y,G) = P(P,) l

Def 3d2 - Let yeT+ , if $L(G) we de-fine the conditional probability

p(y/~) to be zero; if yeL(G) and has the derivations

d&Y& . . . %(y,G) we define

k
P(YIG) = P(di(Y,G)) l

57

L
Let G(Y,G) = -lws*(P(YlG)) . If y is unambiguous with respect

to G then k = 1 and b(y,G) = p(y,G) [Def 2a3]; in the ambiguous case,

i provides at least as plausible a definition of complexity as does p .

As we did in Section 2b, we define the intrinsic complexity of a

- grmr in terms of its derivation from a grammar-grammar. Note, however,

i

I

that for our purposes, grammars which differ only in the order of their

productions, or in the systematic renaming of their non-terminals (except

L- the distinguished non-terminal!) are completely equivalent. The equivalence

L

L

class of a grammar with k productions and n non-terminals contains

k!(n-1): equi-probable grammars. We are always interested in

p(*jla) = k!(n-l)! P(GjIfin) l P(o)n

L
L

since all of these grammars yield the same distribution,
*☺ l

For a

with nfixed collection we must specify the probability of Gn

non-terminals. A reasonable choice is P(cn) = 20n .

P(xj) = k!(n-l)! ' P(Gjlgn) ' P(6)
n

Define _

i(Gj,cn) = &Gj,gn) + n - log2(t!(n-l)!)

then

P(ng) = 2
-I?(Gj,‘n)

'(yilxj) = 2
o'(Yi,Gj >

.

58

By our formula for conditional probability

2
-~(Gj,‘)

. TIT
e-~(Y;rG’) f(lk,Yi,t)

J 1
‘(‘j llkCt)) =

.

Taking logarithms

+
i

1k,3ii,t) ' ~(Yi,Gj)

Except for a term independent of the grammar (log2(P(I#)))) ,
this

corresponds rather closely to our previous measure of fit [Def 2b5],

weighted by the frequency of occurrence of strings.
Let

Q(�k(t),Gj) = Cf(Ik,Yi�t) l IcI(yi�Gj) and I$
1

= ologg(P(nj JIk(t))))

then

rrjP1k(t)) = ~(cj,a) ' ~(Ik(t),Gj) ' log2(P(Ik(t))) .

To compute P(Ik(t)) we must enumerate the distributions 7~py**

P(lk(t)) = C�(~j) l �(Ik(�c)Inj) �

3

This is not generally practical.. However, this term drops out when we

compare the relative probabilities of grammars

where

59

As in Section 2c, the grammar with the smallest total complexity fi is

preferred.

We can compute a lower bound for i(Ik(t),Gj) , independent of the

particular class of grammars involved, by the method of La Grange

L=h* C p(yi I
i

G, + Z:CYi,C) ’ f(lk,Yi’t)
i

G) - &r$�(yjlG)l l

i
f(Ik,yi,t)

~P(YiIG) = 1
i

Cf(Ik,Yi,t)/h = 1
i

i
lk,Yi,t) = t

'(yilG) = f (lk,Yi,t)/t l

Substituting, we have

60

~min(Ik(t)) = - C10g2[f(1k,Yi,,t)/tI ’
i

= t l
�g&) - Cf(lk,y.j,t) �

i
L�g2(f(1k�Yi,t))

/hk (t),G.) > t l H(Ikjt))
J -

where
)

'H(Ik(t)) = - f: [f(lkiYi't)] . log2 [f(lkLyi,ty

is a local "entropy" measure. It would seem that imin is a "natural"

normalization for complexities.

We may, in the course of inference, require an estimate of I$ (as

well as the value of fi) without enumerating the x
2 '

‘Cnj>l,(t)) = ~(~j,lk(t)) + 1og2[p(1k(t))l

= c
j

�(�j) l P(Ik(t) l”j)

In general, we will know some (R$ which have been rejected -- because

t)tR,) = 0 --- and some '{a
C

} which are under consideration" .

Let

3 .L

Pu=l-Pr-P
c ' pc(lk ‘(‘j) ’ P(1k(t) (*j)

61

then

Pc(1k(t)) 5 '('#)) 5 Pc(I,(t)) + P ' 2
't'H(l$))

U

Thus, although our inference measure can never be "sure", it can compute
-

a confidence measure for its best grammar.

Noise l

L

L
c
i
L

L
L
L
r

I

i
I

If the distribution of noise (error) strings is known, i.e., ti
n

and. Pn are given such that elements of the information sequence are

drawn with probability Pn from the distribution SIn and probability

(1 - Pn) from the "true" distribution nT then we have

'(Yi 1' j9'np'nJ = Cl " pn'P(yilnj) + Pn l P(y.(n) .
1 n

We can substitute this for P(yilnj) in all of our formulas and still

conduct inference.

If Pn is small, we will introduce very little error by the

approximation

P(yilnj) if P(y. II-C.) > 0
13

'(Yi 1' jt'n,"n) e

I -
P, l P(Yil�n) otherwise

_

i.e., strings not generated by the grammar are given their "noise"

probabilities, otherwise noise is ignored.

62

i

I
L

L

L

L

L

i
L

i

i

i

TL

f
I.-

ic

i

4. Programs for Grammatical Inference

4a. Introduction and Definition of Pivot Grammars

The development of programs for grammatical inference provided the

original motivation for the theoretical work presented above and is of

continuing interest. The programs completed so far are quite primitive

and were written to test some basic ideas. There are a number of obvious

extensions. Given a proper formulation, the grammatical inference problem

can be characterized as a heuristic search problem and the various known

techniques [Newell 681 applied.

An early paper [Feldman 671 described a number of strategies for

inferring finite state and linear grammars. They can be characterized as

constructive as opposed to the enumerative strategies stressed in this

paper. Thus they solve the problem "Build a reasonable grammar for ..Jt

rather than "Find the best grammar for . ..I'. The first program, GRINl,

embodies these strategies in an inference program for finite state grammars.

Rather than extend these simple techniques to linear grammars we considered

the problem for a somewhat more general class: the pivot grammars. A pivot

grammar is an operator grammar in which a terminal symbol which separates

non-terminals in a production appears in no other way. More formally:

Def 4al A pivot grammar G = (V,T,X,P) is a grammar in operator 2-form

(cf. Section 2b) such that the set of terminal symbols, T , is

partitioned into two sets T ,T such that
PO

1) aeT
P

implies a appears only in rules of the form

Zl -+ Z2 a Z
3

63
IL

2) aeTo implies a appears only

Zl -+ a Z2

or
z1+z3 a

or Zl 3 a .

The linear grammars are exactly the pivot grammars for which T = fi .
P

The pivot languages are much broader than the linear languages. For

example, the following pivot grammar defines a language which is not

generated by any linear grammar.

Example 4a2 Let G = (V,T,X,P) where

v = CX,z~‘Z2’ L),-,a1

T = i()., >-,a3

and P contains the production rules

x + z1 - z1

z1 + (z2 Ia

z2 +x) .

Sample strings from L(G) include

a-a,(a-a)-a,(a- (a-a)) - (a-a)

The context-free grammars used to define programming languages are,

for the most part, expressible in pivot form. The principal problems are

situations like the use of '-I as both a unary and infix binary operator.

Our interest in pivot grammars arises from the relative ease with which

they are inferred. The second program described below, GRIN2, is an . . .

inference device for pivot grammars.

The programs described below are implementations of only our most

basic ideas on grammatical inference. No use is made of ill-formed

64

strings or frequency information. The entire program is situation-static

L, in three important ways.

1) Only one set of strings is presented, no new strings are added. .

2) The program does not propose new strings for outside appraisal.

3) The algorithms themselves are deterministic, with no backtracking.

The addition of these and various other features would be straightforward

but time-consuming. In the absence of a pressing need for grammatical

L

i

inference programs, we will continue to concentrate on the theoretical

and programming questions which seem to be most basic. A formulation of

1 grammatical inference as a general heuristic search problem will be

presented after the current programs are described.

L-
4b. Program descriptions

GRIN1 infers an unambiguous finite state grammar for the set of

L- terminal symbol strings. The program is an implementation of the

algorithm proposed in [Feldman 671.
\ The algorithm is merely sketched

here; the reader is directed to the original source for a more complete

/

L-

I

L

version and further examples.

The input to the program is a list of symbol strings. The output

of the program is a finite state grammar, the language of which is a

"reasonable" generalization of these strings.

All of the productions of the final grammar are of the form:

i
L

fI
or

Zp a Z2

i

i

Zp a where Zl,Z2 are non-terminals

a is a terminal.

It

L
65

The program temporarily utilizes other productions ("Residues") of the

form:

Zl + a1 a2 a3 . . . an where a,l>“2Y’ l l Yan are terminals, /
1

At all times during the inference process a non-terminal has either all

residue or all non-residue right sides (e.g. it will not construct

productions Zl+ alZ2
and z3 + a2a3

.where Z 2 Z
1’ 2’ 3 are non-terminal,

al' 9 a3 are terminals,
zl = z3).

In the explanation of the algorithm, the set of strings

{caaab, bbaab, caab, bbab, cab, bbb, cb) will be used as an example.

X will be the distinguished non-terminal in the grammar to be constructed.

The main strategy of the algorithm is to first construct a non-recursive

grammar that generates exactly the given strings, and then to merge

non-terminals to get a simpler, recursive grammar that generates an

infinite set of strings.

The algorithm has been divided into three parts. Part 1 forms the

non-recursive grammar, Part 2 converts this to a recursive grammar which

is then simplified by Part 3.

In Part 1, a non-recursive grammar that generates exactly the given

sample is constructed. Sample strings-are processed in order of decreasing

length. Rules are constructed and added to the grammar as they are needed

to generate each sample string. The final rule used to generate the longest

sample-strings is a residue rule with a right side of length 2.
-.

In the example, the first (longest) string in the example is 'caaab' .

The following rules would be constructed to generate this string:

66

x + cz
1

Zl + aZ2

Z2 -9 aZ
3

5 --j ab
5

is a residue rule. The second string is 'bbaab' . The following rules

would be added to the grammar to generate this string;

X +bZ4

Z4 +bZ
5

z5 + az6

z6 + ab

‘6 is a residue rule. To generate the third string, 'caab' , the

following rule must be added to the grammar:‘

Proceeding to consider each string in turn we see that the final grammar

that is constructed to generate exactly the sample is:

X +cZl 1 bZ4

Zl+ b I aZ2

Z2 --+ b I aZ
3

Z3 -+ b I ab

Z4+bZ I
5

z5 -3 b 1 aZ6

z6 +b I ab .

The-residue rules are Z
3

and Z
6 l

In Part 2 a recursive finite state grammar is obtained by merging each

residue rule with a non-residue rule of the grammar. The algorithm is

67

conservative in deciding which non-residue rule shcxld be substituted for

a residue rule. The general principle is that dter such a substitution

the resulting grammar must generate all that t'he cold grammar could plus as

few new (short) strings as possible. Wherever the residue non-terminal

occurs on the right side of a production, the non-residue non-terminal

is substituted. The resulting grammar is recursive and generates an

infinite set of strings.

In the example, Z6 would be merged with Z
5

and Z
3

would be

merged with Z2 . The resulting grammar is:

x 4 cz
1 I bZ4

Zl-+b I aZ2

Z2 + b 1 aZ2

Z4 +bZ
5

Z5 + b 1 aZ5 .

In Part 3 the grammar from Part 2 is simplified. Equivalent

productions are recursively merged. Productions Pm and Pn with left

sides Z
m and Zn are equivalent iff the substitution of Zm for all

occurrences of Z in P
n n and Pm results in Pn being identical to Pm .

By merging Pm and Pn w,e mean eliminating production P from then

grammar and substituting Zm for all remaining occurrences of Zn .

Merging equivalent productions results in no change in the language

genera-t& by the grammar.

In the example, the productions with left sides Zl and Z2 are

clearly equivalent. After merging Zl and Z2 the new grammar is:

X+ cZ1 1 bZ4

Zl + b 1 aZ1

Z4 + bZ
5

In this grammar, the productions for Zl and Z
5

are equivalent:

No change in the generated language results from merging Zl and Z
5

.

The new grammar is:

X + cZl 1 bZ4

Zl+b aZ1I

Z4 + bZ1

No further merges are possible; this is the final grammar. Note that

the seven shortest strings of its language (cb, bbb, cab, bbab, caab,

bbaab, caaab) are precisely the strings constituting the sample set.

The program is usually able to infer a grammar which is subjectively

reasonable. Several sample runs are listed in Appendix G. The program

for pivot grammars, GRIN2, makes use of.many of the same techniques.

GRIN2 infers a pivot grammar for a set of terminal symbol strings.

In the explanation of the algorithm, the set of strings [a-a, a-(a-a),

(a-a)-a, (a-a)-(a-a), a-(a-(a-a)), a-((a-a)-a), (a-(a-a))-a, ((a-a)-a)-a]

will be used as an example. X will be taken as the distinguished non-

terminal in the grammar to be constructed. It will be assumed that the

minus sign is known to be the only pivot terminal symbol in the strings.

There are rules for determining which terminal symbols can be a pivot

terminal, e.g. (1) A pivot terminal cannot be the first or last symbol

of a string. (2) Occurrences of pivot terminals must be separated by

at least one non-pivot terminal in each string. These rules are not used

here.

69

, I

I
. .

!

The algorithm has two inputs: the list of Bnz~,~n strings and a list

of the pivots. The output of the a@,orithm is a pj.vot; grammar.

The main strategy of the algorithm is tu find t:~.c self-embeddings

in the strings. A non-terminal is se"i aside as the i.,:c;p non,*Sermina.l

(LOOPNT). The self-embeddings in the strings will correspond to the

appearance of the loop non-terminal in recursive rules 5.~ the grammar.

Initiaily, the loop non-terminal is the distinguished non-terminal.

The, algorithm has been divided into three parts, Part 1 finds

self-embeddings and creates a working set of strings, Part 2 makes some

changes in the working set from which it builds a pivct srarnmar which is

then simplified in Part 3.

In Part 1 a working set of strings is built. Each string is examined

to see if it has a proper sub string which is also a member of the sample

set (a valid substring). If it does not it is simply copied into the working

set. If a string does have any valid substrings then the longest valid

substring is replaced by an instance of LOOPNT and the new string is placed

in the working set. Table 1 gives the longest valid substring and the

resulting new string for each of the strings in the example set. X , the

distinguished non-terminal, is the initial loop non-terminal. If any

substitutions have been made, Part 2 of the algorithm is entered.

If no strings have valid substrings, it is determined whether all

the strings have an identical first or last symbol. If there is a common

first or last symbol, say 'al , then a rule of the form LOOPNT + aZ

or LOOPNT -3 Za (and possibly LOOPKC -+a) is entered in the grammar;

LOOPNT is set to Z ; the first or last symbol is removed for each of the

strings and the substitution for longest valid substrings is begun again.

given strings

L-

L

a-a

a-(a-a)

(a-a)-a

(a-a)-(a-a)

(a-(a-a))-a

((a-a)-a)-a

a-(a-(a-a))

a-((a-a)-a)

TABLE 1

longest valid
substring

none

a-a

a-a

a-a

a-(a-a)

(a-a)-a

a-(a-a)

(a-a)-a

new strings

a-a

a- 00

(x> -a
w (a-4

00-a
(x> -a

a- co

a-w

Results of Part 1 of GRIN2

In Part 2 further substitutions are made for valid substrings and

a simple pivot grammar is constructed.

Each of the strings in the working set is examined independently.

If a string contains a pivot terminal, the test and substitution process

is repeated for the symbols on the side of the pivot not containing the

t

'L.

loop non-terminal. In the example, this would result in a substitution

of 'X' for the valid substring 'a-a' in the string l(X)-(a-a)' .

The working set of strings would now be {a-a,a-(X),(X)-a,(X)-(X)} .

L

71

A simple pivot grammar is c:xWzxted for t,he wor'::ing set of stri.~@;i;.

The working strings are processed in ~z;u::*:~-~n~~cx-t: prodL.ztions are <:reated

as they are needed to generate one of the nxr si;riEgs. iiecall that pivot _

symbols can only appear in pivot rules, '.‘,[)(""?~f,s j t'e.> -Lise,J as the starting

point in the generation process.

In the example, the first new string,, 'a-a' 9 we2 "Ld result Ln

the productions:

x -+ z1 - z2

Zl --$ a

Z2--+a .

To generate 'a-(X)' the productions

z2 + (z
3

and

5 -4

must be added. The productions are now:

x-+z - z
1 2

Z -+a
1

5 --) a 1 ‘z3

z3-
-4 l .

To generate '(X)-a' the productions

and

must be ir dJx~-l- A A. The productions are now:

72

i

L

1

x+z - z1 2

z1 + a I ‘5

i-

x-+z
.1

-z
2

z1 --j a 1 (z4

5 + a 1 e3

z3 -4

24 -+x) .

To generate '(X)-(X)' no further productions need be added.

These productions are added to any productions constructed in

Part 1. In the example there were no productions constructed in Part 1;

the grammar outputted from Part 2 is: _
. 5 '

x 3 z1 - z2

z1 --) a 1 (z4

5 -+ a I ‘5

z3 -4
I 8

24 -+ x>

In Part 3 the grammar from Part 2 is simplified in the same way as

in Part 3 of GRINl; equivalent productions are recursively merged. The

language generated by the grammar remains constant.

In the example, the productions Z3 -+X) and Z4 -+X) are equivalent.

Z4 3X) is eliminated and
5

is substituted for all occurrences of Z
4

in the-grammar. - The resulting grammar is

Z2 + a I G3

L
I
L

5 -4

73

.

!.

In the new grammar 21 -+ al (Z3 and Z2 + al (5 have identical right sides.

++a c‘5 is eliminated and Zl is substituted for Z2 ’ The resulting

grmr is

2$-+x) .

None of these productions are equivalent; this is the final grammar.

Note that the l,anguage generated by this grammar is identical to the

language generated by the grammar of Example- 4a2.

4% Extensions to the programs

The programs described above could be extended in a number of different

ways a The most interesting of these depend on the use of the various

complexity measures discussed in Section 2. To the extent that we accept

these measures) they provide evaluation functions for the grammatical

, inference device, The existing programs choose simplification rules

simpl,y and deterministically. By using a measure like r(S,G) for a

sample set, S , of strings and a grammar G , we could allow the program

to evaluate several simplifications.

A more difficult problem arises in attempting to study large samples

because the number of substitutions to be considered grows exponentially

with the number of variables. We suspect that the number of substitutions

which ar$ compatible with the saqle, while much smaller, also grows

exponent ially.

74

The difference in 7 caused by a substitution might be a good

heuristic for deciding whether or not it should be carried out. This

leads naturally to a tree search for the best value of 7 over sequences _

of substitutions, and the usual search heuristics can be applied.

Thus complexity measures can be used in deciding between alternative

grammars for the same sample and alternative sequences of substitutions of

variables. There is another possibility which is much more important to

investigate -- incremental change of grammar. The methods of this section,

as well as those in [Feldman 671 deal only with a fixed sample set. If

another string is added to the sample, the current programs must start

again from scratch. Intuitively, one can think of heuristics for changing

a grammar to accomodate the extra string. The problem is that the obvious

heuristics all lead to ever more complex grammars. We might be able to

use y(S,G) as an objective function and do hill-climbing techniques to

search for grammars.

Another important class of problems involve the interaction between

the informant and learner. Horning will develop the theory of this further

in his dissertation. The interesting programming problems include the

learner asking about the well-formedness of strings and the design of

optimal teaching sequences. In this, as in its other aspects, the grammatical

inference problem is the prototype of a very general situation.

75

I :

‘-

i

C

i

Appendix A: Representations of Finite-State Grammars

In Appendix B we compute the value of the size measures for the

finite-state languages. We first need a matrix representation of the

languages which aids investigations of the measures. Although one matrix

representation has been used extensively in the literature (e.g. Shannon,

and Weaver 49, Chomsky and Miller 58, Kuich and Walk 65), the representa-

tion will be shown to be inadequate for the finite-state languages. The

inadequacy of the representation has led several authors to false con-

clusions about the finite-state languages.

The previous matrix representation for a deterministic finite-state

w=f=, which we term the "old" representation, is a square matrix of

the form & = [Gij], i,j=l,...,n. Each Gij is a subset of the alphabet

T, and contains those terminal symbols associated with a single-stage

transition from state i to state j. The grammar has n states, one of which

is the initial (starting) state (say St-ate 1). The condition that the

grammar is deterministic implies that G.. fI G..I = 9 for j # j'(i=l,...,n).
1J 1J

Let X, Y, Z c T*. Define X + Y = X U Y and define my =

: Q E X and B E Y). ?--US X+Y = Y+X, X+@ = g-+X = X,

(X+Y) + Z = X+(Y+Z), X # = # X = $8, Xfe] = {e) X = X,

(XY)Z = X(YZ), (X-tY)Z = XZ+YZ, and X(Y+Z) = XY+YZ
.

The-algebraic properties of such systems has been partially investigated

using semigroups, and an interesting class of abstract algebras, termed

the semi-rings (which are built from two free semi-groups), has been in- /

vestigated by Reder [68]. The formal properties of such algebras permit

76

a meaningful definition of matrices over T* in such a way that the class

of all nth order matrices over T* is itself a semi-ring. In particular,

if C8 = [Aijl and @ = [Bij] are nth order matrices over T*, a B can be

defined as CZ R = [Cij], where C.
1J

= ; A B .
ik kJ

("Z" denotes repeated
k=l

application of "+I described above).
k

If we define 4‘ (k)25 Mel ' ~ [Gii I,I
04it can be shown that G.. k 04
iJ

CT ; G..
1J

is precisely the set of strings of

length k'associated with possible paths of k steps leading from state i

to state j. In particular, 04
Glj

is the set of strings of length k leading

from the initial state to state j, and ; G04j=l lj = Lk, where L is the

language generated by the finite-state grammar associated with .% .

It is a well-known result that any language L generated by some such

& is a finite-state (regular) language over T*. However, contrary to what

seems to be commonly believed, the converse is false. There are regular

languages which cannot be generated by some such matrix .# . Many of the '

theorems which have been proved for the class of regular languages have

been demonstrated only for those languages capable of being generated by

such matrices. As we shall see, serious errors have resulted from a failure

to realize the limitations of this representation.

Example of a Regular Language for which the Old Representation is Inadguate

Consider the following finite-state language L over T = {a,b] :

L = {a E T* : cxl contains an even (including zero) number of a's]. A finite-

state grammar for L is:

S +blSblXa

X + alXb)Sa

77

L-

L

i

If we try to construct a matrix &which generates L, we might try:

1

&=

2
L

Experimentation with the first few powers ak quickly convinces one that

& does not generate L, but rather the entire set T*. It also becomes

clear that no such matrix can, in fact, generate precisely L. L is but

one of an infinite number of regular languages for which the represen-

tation is inadequate.

To see why the old representation fails we should investigate what

features of a matrix permits it to selectively generate certain strings

but not others. A string a! E Tk is generated if and only if there is

some path of length k leading out of the initial state (into some other

state) with which a can be associated. Starting in the initial state,

a E Lk sequentially determines k transitions through the states of the

matrix; these transitions are determined by the sequence of terminal

symbols which constitute a. If at any time there is no feasible transi-

tion possible, CX is not in the language generated by that matrix.

Suppose some matrix &generates a language L C T*. Consider the

strings that are not in the language: F = T*-L. The preceding paragraph

illustrates that f; consists of those strings for which there is no feasible

path of transitions within 3. Thus the only factor which can cause a

string not to be in a language is that it violates some sequential rule

(i.e., at some point in the string, there is no feasible transition to be

made in %); there is no capability for strings to be "rejected" on the

basis of other types of "violations". Specifically, suppose the

78

"grammaticalness" of a string does not depend on whether there is a path

for the string, but rather on where (i.e., in which state) the given path _

terminates. Such is the case in the "even a's" grammar; no string a E Tk

can violate a sequential rule since, for every string OJ , there is another

string & Q B E L. Indeed, the "grammaticalness" of a string a depends

on whether its path terminates in state "S" (i.e., even number of "a"'~)

or in state "X" (odd number).

We thus see that in addition to sequential violations, a string can

be ungrammatical (in terms of a finite-state grammar) if its path through

the grammar matrix terminates in a "not in the language" state. Referring

back to matrix I, if we designate state "S" (i.e., State 1) as "in the language"

and state "X" (i.e. State 2) as "not in the language",matrix &then generates

the desired L; all strings OJ E T* have paths through &, but only those

cz E L will have paths terminating in "S".

A New Representation

The lack of generality of the existing matrix representation for

finite-state gramnzars prompts us to develop a broader, fully adequate

representation. Specifically, we wish to develop a matrix representation

which allows regular languages (and their complements) to be defined with

respect to both sequential-type rules and rules pertaining to the par-

ticular state in which a string's path terminates. At first glance, it

might -seem that the capacities needed to implement both sequential and

terminal rules are incompatible within a single matrix representation;

a sequential rule is presently implemented by selective paths in the matrix

79

I -

(such that strings not in the language do not have paths in the matrix),

while a terminal rule requires that all strings have paths in the matrix.

Fortunately, however, these seemingly inconsistent demands can be satisfied

simultaneously.

Let 8(= [Gij] be an nth order matrix, where each G.. C T.
13

It is assumed we are dealing with a deterministic grammar, so that

G /. n Gijl = (d, for j # j', i=l, n.
13

By a complete finite-state

grammar matrix, we mean that t; Gii 1 T, i=l, n. Thus if a matrix

8(is complete, each of its rows is a partition of the alphabet T into the

n cells of the row. l?unctionally, completeness of a grammar matrix implies

that all strings O! E T* have paths (derivations) in the matrix; from each

state (row) of & each terminal symbol of T is associated with a feasible

transition to another state.

With the n states of &we wish to associate a state classification.

.
A state classification is a single-valued mapping of' the n states into the

integers (l,...,k). If Ca is a state classification of %, then

Cg {lJe-,n] --) fl,...,k] n,k> 1,_

is called a k-class state classification of b.

L

in 8,
L

The interpretation of C&(i) =-j is that all strings a F T* whose

terminate in state i are classified into the j
th

terminal class.

For complete &we have the Sollowing:

(i) & : T*+ Cl,...+)

paths

(ii) C&: {l,...,n) + {l,...,k) .

80

--

(i) means that & classifies all strings over T 4nC:o on? of n states

(according to the state of & in which the string3 p&h terminates).

(ii) says that the state classification is k-way, that each of the states

of .& is associated with a unique terminal class. T&en together, & and

C& define a composite Action (&,Cd, which maps each string of T*

into a unique terminal class:

(&,C& T* + {l,.o.,k]

defined by (&CJ) (a) = C&(&(a)). The pair (&,C&) is defined as a

k-class finite-state grammar over T* (k- depends on C&).

A k-class finite-state grammar partitions the set of all strings T

into k disjoint, exhaustive subsets. Each of these k subsets is called

a terminal class of strings generated by the grammar. It can be shown

that each such terminal class of strings is a regular set (finite-state
.

language). ()These classes will be denoted as La1 (i=l,...,k) or simply

by L i(1
.

(>when the subscript & is understood;-Lkl will denote those strings

of length k in the ith terminal class.

When k=2, we have a grammar generating strings into two terminal

classes, which are usually thought of as the language (L) and its com-

plement ('z = T*-L). When k-l, all strings are generated into a single

terminal class. The languages generated by a single class complete grammar
*

are thus either empty or are the entire set of strings T .

In the "oldl' representation, a sequence of symbols from T failed to

be grammatical when it called for a transition to be made which was not

feasible; if some number of symbols brought the string's path into state i,

and there was no transition out of state i associated with the next symbol

81

of the string, the string was ungrammatical. In our representation, all

sequences of symbols must have paths through the matrix; the completeness -

of the m.atrix requires that there be transitions associated with each symbol

of T, regardless of the state out of which the transition leads. We need

to implement "taboo" transitions into our new matrix representations which

correspond to the infeasible transitions of an "old" matrix.

,L.

i
i

1

Let & =[Gij] be an nth order grammar matrix of the "old" representation.

Define subsets Ti of T (i=l,...,n) as Ti= T - : G..; Ti is thus the set
j=l lJ

of symbols for which there is no transition out of state i. Let

AiC T* (i=l,... ,n); Ai is the set of all strings whose paths through &

L
I

r
L

c,

t

end in state i. Then we may describe the complement x of the language
n

L generated by & as: 'z = iU1 ‘iTiT* *

Let%! = [Hij] be an nth= order complete matrix which has the following

properties (the existence of an% with these properties is self-evident):

J
vwAi, BL(at) = L1 if and only if tETi (irl,...,n); Hdj= $ for j # L and

HLL= T. Let ca(be a two-class state classification of&! such that

G(j) =cT$i f: l (1)Then the terminal classes J$ and (2)
IQ are pre-

cisely the sets L and 'i;, respectively; our representation has the capacity

I for sequential rules. State 1 ofX corresponds to an "absorbing" state,

such that paths entering state 1 can never leave it, regardless of the

ensuing symbol sequence. Al.1 strings whose paths enter state I are thus
I

lumped together into the same terminal class. Thus if the terminal class

sac()
I corresponds to z, and transitions into state 1 occur only when the

sequential rules implicit in the grammar are violated, we indeed implement

the sequential rules into our representation of the grammar.

L/ byK(s) we mean that state ofw in which the path of the string s
terminates.

82

Example of the Implementation of a Sequential N~:J.c----_I_- .-

Suppose we have a finite-state Ianguage L o-,;er the alpkbet

T = (a,b,c) which consists precisely of those fringe in which there

are no adjacent occurrences of the same symbol. Tnw "abc" I "abab" ,

and "bacabacbc" are in L while "abb", "aaba", and "bacabbcbc" are not.

This language can be generated by a matrix of the "old" representation.

One "old" grammar matrix for L is:

U%=

1 2 3 4 -

1 f

2

3

4 i

jd bj 04 Cc3

9 PI 04 Ccl

9 Cal % cc3

% Cal Cb3 % 1

This could be transformed into a complete matrixq as follows:

K=

The two-class grammar (W,C), where

C(i)- =(
1 if,i<5 -
2 if i=5

(>7
has -

54
= Lb and (2)

34
= z& .

Functional Partitions and Standard Forms of Complete Matrices

Let 3 = [G .]
Ql

be a complete matrix over T . State j is said to

be accessible from state i , denoted i+ j , if and only if there is
.

some sequence of symbols in T*-(e) whose path, when starting in state i ,

leads to state j . States i and j are said to communicate, denoted

i-3 $ if and only if

The relation %-P

L e symmetric on the states

both I+ j and j +i .

can be seen at once to be both transitive and

of & : i-j and j t--) k => i -k , and

ioj*j++i. Since, however, i +i need not hold for all states i
L

of '& , we cannot claim 54 to be reflexive. Thus "+4* is not an
/

i

i

equivalence relation on all of the states of arbitrary & .

Define E and F as the (unique) complementary subsets of the

states of & :

t-

(a) VisF and VjeE , jS;i.

(b) Vi@ , 3jeE : i a j .

L (c) VieE , i-i. .

t

We have the following well-known results from the theory of f&nite Markov

chains:

r (1i f---) is an equivalence relation on the states in E .

L (ii) E may be partitioned by ++ into some number f of equivalence
r

(’

!i

;

Cusses (6f states) El, . ..) Ef such tkit (a> kils = E , (b) Ek n El E p. =
for k f! I , and (c) for all states i , jeE ,' i +=+ j <+ 3k : i,je

?k
.

Thus the % are equivalence classes of communicating states, We see

that if the path of some string enters an Ek it can never leave that class

of states. These classes are called ergodic s@ts of states.

An ergodic set of states Ek may consist of only one state, in which

case that state once entered, can never be left; such a state is called an

absorbing state (state 5 of the matrix w of the preceding section is an

example of an absorbing siate).

84

An ergodic set Ek is termed cyclical or periodic if there is some integer

p> lwhich is the greatest common divisor (g.c.d.) of the lengths of all

closed paths in Ek (a closed path is a sequence of transitions from a given

state back into itself). The set Ek is then said to have period p.

(If p = 1, then Ek is said to be aperiodic.) It can be shown that if p is

the g.c.d. of the lengths of the closed paths of any one state in Ek,

then p is the g.c.d. for all closed paths in Ek.

Now consider the set F of states which are not in E. This set has

the property that once a path leaves the set, it can never return to

the set. The states in F are called transient states and F is called a

transient set of states. Once a path leaves the transient set, it enters

scme ergodic set and remains there. (State 1 of the % matrix of the

preceding section is transient.)

It is assumed that the initial state is always State 1 of the matrix.

We can make the'following accessibility assumptions in complete generality:

(i) all states of 8(are accessible from the initial state.

(ii) if &has a transient set of states, the initial state

must be in th_e transient set; othe-raise, the initial state would

be in some ergodic set and the transient states would be redundant.

(iii) if the initial state is in an ergodic set, then there is I

only one ergodic set of states in 4; otherwise, the additional ergodic

sets (and any transient states) would be inaccessible and hence re-

dundant. (It should be clear that any complete & can have at most

one transient set of states and must have at least one ergodic set.)

85

!l%e states of any complete matrix & can be rearranged (i.e., re-

labelled) in such a way that & is partitioned into one of the following -

standard forms:

L

(>i

& =. e,
cl

Single ergodic set of states

with transition matrix & = 45,

or

iL

i
L Ilk=

‘p.FiT I
.

5!E----I r--------re 1 %
B I LL,-7w---.

I cz;--+-----B
19 I
1 �I 9

I� l

I

. I I
�-ii* -

.l i-P ---

where the g's denote regions of null transitions (empty sets), aFF is

the quadratic submatrix of trtisitions within the set F of transient

states, &+ is"the transition matrix from F into the ergodic states,

thand each Ci is a quadraticsubmatrix corresponding to the i ergodic

set of states Ei. Furthermore, it can be shownthat each ergodic sub-

matrix gi can have its states arranged in such a way that each sub-

matrix gi (with period pi) has the following form:

86

,

‘.

t

-i

ei =
.

e.
iP* B . . . %

1

where the $9 are null submatrices (quadratic on the main diagonal)

and the &i are submatrices for transitions between the pi cyclic

subclasses of ei. If ei is aperiodic (i.e., pi = 1), then, of course,
\

the form is degenerate. We also can make the following assumptions

about a grammar (&Cd with no loss of generality:

(i) if an ergodic set Ei contains more than one state, then

not all of the states in Ei are of the same terminal class; otherwise,

an identical language would be obtained by lumping all the states of Ei

into a single absorbing state. \

(ii) there need not be more than one absorbing state for each of

the terminal classes of the grammar; otherwise an identical language

would be obtained by lumping together all absorbing states corresponding

to a given terminal class.

The partitions of the states of & into various sets (ergodic and

transient) is a standard form borrowed from the literat@& of finite

Markov chains and their associated transition matrices. We will later

find such partitioning useful for several reasons. We will assume that

all complete grammar matrices are placed in one of these standard forms.

Appendix B: Size Measures of Regular Languages

-

i

Note: Developments in this appendix make

representation introduced in Appendix A.

i
Connection Matrices

extensive use of the matrix

thLet & = [Gij] be a complete nth order matrix over T. Define the n"'"

order matrix N by N = [n..] = [n(G..)]. - n
1J LJ ij is the number of one-step

transitions from state i to state j of & ; n
ij is also the number of strings

of length 1 associated with this transition. Consider positive integral

powers Nk of N: Nk = [n[J)] has the following well-known properties :

(i) i n(k) = rk , i = l,...,n and k = 1 2 3
j=l ij

f>☺.�. l

(>ii n04
ij

= n(G[?) ; thus n(k) *
ij is the number of paths of length k

from state i to state j, also the number-of strings of length k associated

with a transition from state i to state j. In particular, if state 1 is

the initial state, w
nlj is the number of strings of length k whose paths

terminate in state j.

I

i

i

I

L

N is called the connection matrix pf & and Nk is called the k-step

connection matrix of &.

Let (&,C,> be an m-class complete finite-state grarmnar over T.

f >Then Lki = u (k)
,

-lGlj for all k > 1.

j?&(i)

(C;'(i) = (j : C&(j) = i)) .

Let di be the density of the th .
i terminal class L i , i(> =l 9*.*>m.

Provided these densities exist,

88

m

it is clear that XIi 1 di = 1.=

Consider

di
= clim
k+a

FL
04

nlj
jCCi (i)

rk

Thus the existence of the di's for

established by the existence of

grammars can be

for all j (in our genera-

lized sense of limit).

Define the matrix P , associated with 3, by P = 1rN; the elements pij

of P are then related to the elements nij of N by p.. = $ n.. .
1J 1J

Letting P we have Pk A--$,
rk

SO that pck)= -?L rick)
ij rk ij

for all

i,j, = l,...,n and for all k> 1.
04

Hence questions about the limiting

behavior of a s k + 03nij can be answered in terms of the stationarity

rk -
04of p.. as k+a.
1J

The stationarity of increasing powers of P is easily

investigated, since P is a stochastic transition matrix and may be associated

with a finite Markov chain.

We may assume that & is in a standard form (see Appendix A) so that its

ergodic sets are readily identifiable as submatrices of &. The relation

between P and & is such that we can assume without loss of generality that

P has the form of either

89

c-

L

i

L
L
L
t

iL

(>i a single ergodic set of n states;

or ii(> a transient set of n
0

states, and f ergodic sets of states,
c

consisting-of n I

1' f. . ..n states, respectively: n =
z n
i=o i . The well-known

theory of finite Markov chains supplies the following results:

case (i): .

There is a unique matrix F'= [p*]
ij . such that clim p.,w

for i,j = l,..., n . k+a lJ = 'G
If P is cyclical (Appendix A) with period q , then

each of the q subsequences pkq+l
(as k -303) converges to a unique

limiting matrix F(R) = [p*

(i,j = l,...,n ; I = 0
ij(.!)] in

pt+.

1 q - 1

,...,q-1) l

=-

13 q lGo PTj(f) 0-☺ = l,...,n) l

the-sense

Thus

Thus for

that lim
k--+a

aperiodic

p (kq+a 1
ij '= PTj(a) ' O

p, lim Pk = ptc .

It is well-knownthat p* ='p* k+ Q)
ij i'j = pj > 0 for i,i',j = l,...,n .

Thus the p.
, J

represent the limiting proportion of strings whose paths

begin in state i and terminate in state j , and is the same for

i = l,...,n . These p.
J

are determined by the system of linear equations

n

c
i=l

PiPij = P.
J (2 = l,...,n)

nc
i=l

Pi=' .

-
Since these stationary

1. t
p ='clim p"' alwz

positive, the densities
j k-,- ij ays exist, and are strictly

d
i of the terminal classes of the grammar

will therefore always be positive:

di = c '3
i =l

jeCi'(i)
tee*,, m .

90

I The independence of p+. = p.
1J J

of i implies that the limiting'

proportion of strings a6 whose paths terminate in state j is always pj ,

independent of cx . The significance of this result .wil.l be seen shortly.

case (ii):

We first need to compute the constants ul,...,uf ; ui is the limiting

proportion of strings whose paths enter the ith ergodic set E. . The
1

matrix & is assumed to be in the standard form (ii) (see Appendix A).

Define a..
. 1J

as the limiting proportion of paths leading out of

state ie which lead into the ergodic state j after leaving the

transient set of states (i.e., state j is the first ergodic state of the

path); aij is defined for i = l,...,n
0

and j = no+l,...,n . Then the

system

n
0

a
ij = Pij + x

k=l
'ikakj (i = l,...,no ; j = no+l,...,n)

(i = l,...,no)

(refer to Appendix A for notation)

will always yield a unique solution for the a.. . From the a.. the u
13 i

can be computed as u. =
1 c alj (i=l,..., f> ;

jdZi,

The accessibility assumptions of Appendix A imply that ui > 0

(i = l,...,f) . Any string a whose path enters an ergodic set E
i

must

remain there. Earlier we saw that the limiting proportion p. of strings
J

af3 whose-paths enter E
i and terminate in state j of Ei

is independent

of a ; the p.
J

can be computed from the ergodic submatrix C. of E
1 i

(see case (i)). Thus the overall proportion of strings whose paths terminate

91

L

-

in state j of E
i

is p! = u.p
J 0

for jeEi . Since the ui and p.
J

are positive, it follows that pi > 0 for jeE Cand Pj =0 for jeF).

For the ith
.

terminal class of strings L ' , the density(> d
i

is

is computed as

f
di=~U.

j=l
C1, Pk= ~

J keEinCJ (i) keEnc.l(i)

-

The density di will thus be zero if and only if all states of & in the

ith terminal class are transient. We thus have

L
Theorem B: For an arbitrary m-class complete finite-state grammar

(4 C&l over a finite alphabet, the densities d ,...,d
1 m always exist;

L each di is positiverunless all states in C-'(i)
a&

are transient, in

which case d
i

is. zero.

L
When m = 2 (i.e., L '(> is the language generated by the grammar

L
and L(2) is its complement),we see that the density of the language

always exists and is zero if and only if Cil(l) C F .

L

4-

i

i

L

Randomly Generated Strings

Chomsky and Miller [58] considered randomly generated strings of length

such a string is-one drawn from the "urn" Tk such that all strings of

length k have equal (i.e., rBk) probability of being drawn. Chomsky

and Miller claimed that as k -) 03 , the limiting probability of a randomly

generated string being in any'given regular language is always zero or

unity. This claim is equivalent to claiming that the density of any regular

language is either zero or unity, which has been shown to be false. Two

simple counter examples (each with density l/2) of non-zero, non-unity

k ;

L

92
L

density regular languages are

(1i S+bISbIXa

even
X-,aIXbISa

"art's grammar

(>ii S+aISaISb grammar for all strings over (a,b]

which begin with "a" .

For a discussion of second-order (logarithmic density) size measure

of a regular language, the reader is referred to Shannon and Weaver [kgf.

They compute the value of channel (coding) capacity C , which we showed

to be proportionalto our second-order size measure (Section 2a.O).

93

k- Appendix C: Sample Computer Runs

-
The following examples were run on the Stanford PDP-10 using LlSP.

The program deals with two sets of strings, the sample set and the set

of pivots (cf. Section ka). The functions GRINlA , GRIN2A (of zero

L arguments) apply the algorithms described in Section 4 to the current sets.

L.
The functions GRIN1 , GRIN2 accept the sample set to be used as an

argument. The function GRINA simply calls both GR1Nl.A and GRIN2A

L in succession; GRIN calls GRIN1 and GRIN2 in succession. The

auxiliary function PIVOTS specifies the current set of pivot symbols

and ADDS causes new strings to be added to the sample set. The symbols

&M9 t ~~lrd t e&. are internally created (by GENSYM) names within

WSP; these correspond to the non-terminal symbols Z1,Z2 used in the

text.

- (GRIN (A)(A A)(A A A))

i (THE FINITE STATE GRAMMAR GENERATED BY GRIN1 IS)
!i (C$@@ IS THE DISTINGUISHED NONTERMINAL)

w!w9 +-A YYYQ / A)

i
I
L

(THE PIvoT GRAMMAR GENERATED BY GRINS IS)

(G/$312 IS THE DISTINGUISHED NONTERMINAL)

L

i

94

(GRIN (A)(A B)(A A)(A A B)(A B B)(A A A))

(THE FmTE STATE GRAMMpJ GENERATED By GRm Is)

(@j?h4 IS THJ3 DISTINGUISHED NONTERMINAL)

(G@l4 +A / A G@15)

(9$915+A/ B/ AA/ BB/ AB)

(THE PIVOT GRAMMAR GENERATED BY GRIN2 IS)

(G#$l7 IS THE DISTINGUISHED NONTERMINAL)

Kqp7 +A qwl7 / G%yl7 B I A)

NIL

(GRIN (B B)(B'A B)(B A A B)(B A A A B))

(THE FINITE STATE GRAMMAR GENERATED BY GRIN1 IS)

(G@lg IS TTHE DISTINGUISHED NONTERMINAL)

(qyl9 + B q@qu

(THE PIVOT GRAMMAR GENERATED BY GRIN2 IS)

(~$024 IS THE DISTINGUISHED NONTERMINAL)

(G$@4 + B G&95)

(G,@25 +A G@25 / B)

NIL

(GRIN (C B)(B B B)(C A B > (B B A B) (CAAB)(B B A A B)

(THE FINITE STATE GRAMMAR GENERATED BY GRIN1 IS)

(G,f$2'7 IS THE DISTINGUISHED NONTERMINAL)

(Gf997 +-C G@j29 / B Gf$j=) _
(~@28 +B G$$29) -

(G,@29 +A G@29 / B)

(THE PIVOT GRAMMAR GENERATED BY GRIN2 IS)

(G$$35 IS THE: DISTINGUISHED NONTERMINAL)

(G@35 +G@35 B)

(qy36 +Glba36 A / B G/y37 / a

(Gf$37 +B)
NIL

(CAAAB

95

f. ,
i :
-

(GRIN (A A B B)(A B)(A A A B B B))

(THE FINITE STATE GRA&MAR GENERATED BY GRIN1 IS)
- (@$$g IS THE DISTINGUISHED NONTERMIIW,)

@PPPg + A @PlP)
- (GPPlP + B / A GPPll>

K$Pll + B qy14 / A GPPW

wpp= c- B GPPW

(qyl4 c- B)

(THE PIVOT G3UMMA.R GENERATED BY GRIN2 IS)

I

I
(@@16 IS THE DISTINGUISHED NONTERMINAL)

(GPPl6 + A q&3l7 >

i

L
(qQ517 + qy16 B / B)
NIL

L (ADDS (C)(A c B)(A A C'B B)(A A A c B B B))

L
((A A A C B B B) (A A A B B B) (A A C B B) (A A B B) (A C B) (A B)

(c>)
L
i

6

(GIUN~A)

(C@lg IS THE DISTINGUISHED NONTERMINAL)

hpP19 + A GPP2P / c>
(Gislb2$ +- @P19 B / 3)
NIL

t

(PIVOTS M P)

(W -

(GRIN2 (A MA)(A)(A MA MA)(A MA MA MA))

(93fj22 IS THE DISTINGUISHED NONTEWNAL)

(@322 +A-/ G/5$22 M @@22)

NIL

96

(ADDS (A P A)(A p A p A)(A M A p A)(

((AMAMAMA) (APAPA) (AM A

PA) (AMA) (A))

(GRIN~A)

A PA MA))

PA) (A PA MA) (A MA M$A) (A

(q!$24 IS THE DISTINGUISHED NONTERMINAL)

(~#24 t- A / G#24 I’ G@24 / q/324 M G@24)

NIL

(GRIN-~ (B) (A M B)(A M A M B)(A M A M A M B))

(@$26 IS T~;DISTINGUISHED NONTERMINAL)

'lqw + 23 / qy27 M Gfyw

(qw27 +A)

NIL

(PIVOTS M P)

/M P)

)(LAMARMLAMAR)

M A) (A M L A M L A M A R R

(GRIN2 (A MA)(L A MA R MA)(A M LA MA R

(LAMLAMARRMA)(LLAMARMAR

(AMLLAMARMAR))

(Gf$$& IS THE DISTINGUISHED NONTERMINAL)

@ivP9 + 9wlP M UP@)
!qp@ + L $p= / A)

wp + Gppp9 RI
NIL

(GRIN2 (C D)(A B D)(A C B D)(A A B B D)(A A C B B D)(A A A B B B D)

(A A A C B B B D))

(G~j315 IS T,HEZ DISTINGUISHED NON-TERMINAL)

w/315 + Gf?)l~ D>

(Gpfh6 +---A Gf$kjj / C)

(G&317 + @$16 B / B)

NIL

97

References

-
[l] Aizerman, M. et. al., " Theoretical Foundations of the potential

-
function method in pattern recognition", Automation and

Remote Control 25, 821-837 and 1175-1190 (1964).

[21 Amarel, S., " On the Automatic,Formation of a Computer Program that

Represents a Theory", in Self Organizing Systems, Yovits,

Jacobi, and Goldstein, edrWashington, Spartan, 1962.
L-

,/L.

c31 Chomsky, N., and G. Miller Y "Formal Analysis of Natural Languages",

PO 269-493 in Handbook of Math. Psych. II, Lute, Bush, Galantier,

eds., New York, Wiley, 19631

L 141 "Some Finitary Models of Language Users", in Lute et.al.

(abovi), 1963b.

L

L
r

r51

161

2 "Finite-State Languages" Information and Control 1,

91-U-2 (1958).

, Pattern

7 , 1 9 5 7 .

Conception, Report No. AFCRC-TN-57-57, August

[7l Church, A., Introduction to Mathematical Logic, Princeton University

Press, Princeton, New Jersey,-1956.

[8] Feldman, J. A., 'First thoughts on grammatical inference", Stanford

A.I. Memo No. 55, August, 1967.

[9l Ginsburg, S., The Mathematical Theory of Context-free Languages,

-McGraw Hill, New York, 1966.

[lOI Gold, M., "Language Identification in the Limit', Information

and Control, 10, 447-474 (1967).

1111 -> "Limiting Recursion" , J. Symb. Logic 30, 28-48 (1965).

[121 Gorn, S ., "Specification Languages for Mechanical Languages",

Commun. ACM 4, Dec. 1961, p. 532-542.

cl31 Greibach, S., "A New Normal-form Theorem for Context-free Phrase-

Structure Grammars", J. ACM 12, 1 Jan. 65, p, 42-53.

[lb] Harrison, M., Introduction to Switching and Automata Theory,

New York, McGraw Hill, 1965.

98

[151 Hartmanis, J., 'Computational Complexity of one-tape Turing

Machine Computations", II* ACM 15 (April 1968), pp. 325-339.

[lb3 Hunt, E., Marin, P. Stone, Experiments in Induction, New York,

Academic Press, 1966. .

[171 Kemeny, J., J. L. Snell, and A. Knapp, Denumerable Markov Chains,

D. Van Nostrand Co., Princeton, N, J., 1966.

[181 Knopp, K., Theory and
New York 1948.

Application of Infinite Series, Hafner,

[191 Kuich, M. and K. Walk, Block Stochastic Matrices and Associated

Finite-State

[20] Lederberg, J. and

Inference in

Languages, IBM TR 25.055 (July 1965).

E. Feigenbaum, "Mechanization of Inductive

Organic Chemistry", in Formal Representation of

Human Judgement, Kleinmutz, ed., John Wilely, New York, 1968.

[21] London, R., "A Computer Program for Discovering and Proving

Sequential Recognition Rules for BNF Grammars', Carnegie

Tech., May 1964.

[22] Lute, R. D., "Selective Information Theory', in Developments in

Mathematical Psychology, Lute (ed.), The Free Press, Glencoe,

Illinois (1960).

[23I Miller, G., and M. Stein, "Grammarama Memos", Unpublished Internal

Memos, Harvard Center for Cognitive Studies, Dec. 1963 and

August 1966.

[24] Miller, W., and A. Shaw, "Linguistic Methods in Picture Processing,

a Survey", Pr,oc. AFIPS FJCC, 1968, p. 279-291.- -

[-251 Moore, E., "Gedanken Experiments on Sequential Machines", in

Automata Studies, Shannon and McCarthy, Princeton, 1956.

[26l Newell, A., "Heuristic Search: Ill-Structured Problems", Progress

in O.R. (Vol. 3).

[Q'] Perrson, S., "Some Sequence Extrapolating Programs", Stanford

A.I. Memo No. 46, September 1966.

[281 Reder, S., "Introduction to Semi-rings", Unpublished research,

Dept. of Mathematics, Stanford University, 1968.

99

-
1291 Reynolds, J., "Grammatical Covering", ~~-96, Argonne National

Lqab., June 1968.

[301 Shamir, E., "A Remark on Discovery Algorithms for Grammars",

Information and Control 5, 246-251 (1962).

L
[311 Shannon, G. and W. Weaver, The Mathematical Theory of Communication,

University of IllinoisPress, Urbana (1949).

[321 Solomonoff, R., "Some Recent Work in Artifi'cial Intelligence",

Proc. IEEE V 54, No. 12, December 1966.

r33 I 2 "A Formal Theory of Inductive Inference",

Information and Control, 1964, pp. l-22, 224-254.

1343 9 "A New Method for Discovering the Grammars of Phrase

L
Structure Languages", Information Processing, June 1959,
pp. 285-290.

!

1351 Suppes, P., "Concept Formation and Bayesian Decisions", in Aspects

of Inductive Logic, Hintikka and Suppes, eds., 1956,
Amsterdam, North Holland.

[%I Uhr, L., ed ., Pattern Recognition, Wiley, New York, 1966.
4

100

