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Abstract

The problem of inferring a grammar for a set of symbol strings
I's considered and a nunber of new decidability results obtained.
Several notions of grammatical conplexity and their properties are
studied. The question of learning the l|east conmplex grammar for a
set of strings is investigated leading to a variety of positive and
negative results. This work is part of a continuing effort to study
the problenms of representation and generalization through the gram
matical inference question. Appendices A and B and Section 2a.0
are primarily the work of Reder, Sections 2b and 3d of Horning,
Section 4 and Appendix C of Gps, and the remminder the responsibility

of Fel dman.
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1. Prelimnaries

la.  Introduction

The problem of generalization (induction, concept formation) has
interested workers froma wide range of fields. |n this paper, a particular
form of generalization grammatical inference, is discussed. The notion
of grammatical conplexity is introduced to help neasure which grammar is
the best one for a given set of strings.

The grammatical inference problemis easy to state; one is interested
in algorithms for choosing the best grammar from a given class for a
sequence of synbol strings. For exanple,- we would like to discover that

the sequence of strings
car, cdr, caar, cdadr, cddadadr, etc.

can be described by the rule: each string is a 'c' followed by any

sequence of 'a's and 'd's followed by 'r'. O in Backus-Naur Form
<string> ::=c <seg> r
<seg> ::= a l d I <seg> a I <seq> d

The question of how to infer a grammar and to measure how wel |l you've
done it will be the main topics of this paper.

The grammatical inference problem has received relatively little
attention. The main theoretical formulation to date has been that of
Gold [67] which will be discussed in Section 3. Solononoff [64] considers
the problem as a special case of sequence extrapol ation; we have argued
against this notion [Fel dman 67] but are indebted to Sol ononoff for sone
of the basic ideas on grammatical conplexity in Section 2. There has

al so been some related work in Conputer Science [Amarel 62,London 6k4]and



Psychol ogy [MIler 6, Suppes 56]. There is, of course, a vast literature
on pattern recognition [Unr 66], but it has been exclusively concerned
with pattern descriptions which are structurally sinpler than granmmars.

Early studies of grammatical inference referred to it as a form of
induction. The term "induction" has been used as a description of
general i zation processes. Unfortunately, it has also been used in dozens
of other ways and is threatening to becone neaningless. W favor
restricting the term "induction" to statistical nodes of inference such
as those of Sol omonoff [64] as is done currently in Philosophy. The
particul ar model which we found nost appropriate is the hypothetico-deductive-
enpirical (HDE) node of inference. An HDE inference consists of formng
hypot heses, deduci ng conclusions about the data and testing these concl usions
for validity. This characterizes the scientific method and is quite close
to the "scientific induction" of Lederberg and Fei genbaum [68]. In our
case a hypothesis is a granmar rule, a deduction is a derivation, and the
data are the sanple strings

The results of this paper are one part of a many-pronged attack on
the grammatical inference problem[Feldman 67]. The results here are largely
theoretical, but include a heuristic programto infer grammars. O her
efforts involve psychol ogi cal study of human grammatical inference. Ve
al so hope to be able to relate theoretical results with the heuristics
of the program and to consider how these relate to human |earning of
| anguage and other theories. To the extent that e.g. pictures [Mller
and shaw68] are well represented by grammars, the grammtical inference

work may be of some practical use in pattern recognition.



r— -

I

— r— r—

.

Ib. Definitions, Notation

This paper makes use of ideas from several research areas, and it is
inpossible to agree with all their notational conventions. W deviate from-
the usual fornulation of context free grammars in requiring all
vocabul aries to be subsets of a fixed collection of symbols. There is
no loss of generality in doing this, but many results in the literature

woul d require careful consideration of substitution rules [cf. Church 56].

The universal termnal al phabet T is the set of synbols {a,al,a&_. ol

The universal variable alphabet wis the set of synbols (X =22.,2, . ..}

1’72
VW will also uge the follow ng notational conventions. The string of

zero synbols is denoted by e , the enpty set by p. If Sis any set
of symbols, S* is the set of finite strings of synbols fromS and
st a5 e

A context free grammar (cfg) is a quadruple G = (V,T,X,P) where

V,T are finite sets, VcwUuUJT, T=TNV, XV-T, and Pis a

finite set of productions (rules) of the formZ =+ w, with ZeV-T |

weV* . In such a production, Z is called the Jeft side and w the
sightd e . W wll abbreviate a set of productions Z P WL Wy,
z +w_with the same left side as z 4wy fwy [

If Gis a cfg, and w,yev* we wite w3y if there exists

teV¥ , ZeV-T- and wy,w, in V¥ -such that w=wz7Zw,, v = w tw,

and the rule z+t isin P . The stringy is called an internediate
L . . * :

string. The transitive closure of 3 is witten 5 . In either case

the subscript "G" may be omtted if there is only one grammar under

consi der ation.



If w2y, yeT+, we also say there is a derivation of vy fromw
in G Inthis case, there is also a derivation of y fromw in which
each rule has as its left side, the leftnost zev-T of the preceding

intermediate string [Gnsburg 66, p. 30]. This leftnost derivation is

denoted d(y,w,G , and when w = X will be abbreviated to d(y,Q
W will be exclusively concerned with |eftnost derivations. I|f

d(y,w,G) = <PysPpsee s> Wi th pjeP we define the derivation |ength

£y =k. The length P(y) is the nunber of synbols iny .
The language L(G generated by a cfg G=(V, T,X,P) is defined
by
L(Q = {y|vyer* and X 3 5} .
W will sonetines omt nention of the grammar. The definition inplies that
we will be dealing with only e-free languages. Wth this restriction
and some well-known results on cfg we can significantly constrain the

formof cfg to be studied here.

Def 1bl A cfg, G= (V,T,X P) is said to be totally reduced and we

wite GerR i ff.

a) Pcontains no rule of the formZ - e

b) P contains no rule of the formZi —>ZJ.

c)- If sz, weV* , there is a y€T+ such t hat WS y

d) Each Zev-T , aeT , and peP is used in at |east one
d(y, G) , where y is in L(Q

It is well-known that any e-free |anguage derivable from

sone cfg can be derived froma cfgin®fR. W wll restrict

ourselves to GerR unl ess ot herw se nentioned.
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Lemma | b2  For any GeR and any yeL(G) the derivation length

24(y) <2 . £(y) .

Proof Consider any derivation of y , d(y,§ = <Py B> Each
1 nmust either (a) add to the length of the intermediate
string or (b) replace a variable by one or nore terninal synbols.
Since no peP can reduce the length of an internediate string,
there are at nost £(y) instances of (a). In addition, there
can be at most £ (y) variables in an internediate string and

thus £(y) instances of (b).

There is an extension of the notion of ordered sequence which will

be useful. A sequence Yy sVpseee> is said to be approxinmately ordered

by a function f(y) iff for each k > 1 there is an integer 1™ >k

such that t > v inplies
f(y,) > £(y) -

Lenma | b3 If ;> is a sequence which is approximtely ordered
by f and if <f(yi)> is positive and bounded then there is a
C such that
,il—iT flg) = C
Proof Ve know <f(y;)> has a finite limsup , call it C. If
there is aj such that f(yj) = C, then by approxi mate ordering

there is at suchthat t >+t inplies f(yt):Candthe

| enma is proved.



Suppose the limsup Cis not attained. Let ¢ >0
be given, then there is ay such that CEe> £(y,) because
Cis a cluster point. But then there nust be a T such t hat

t > L i mplies
C-e < f(y,) .

Further, there are at nost a finite nunber of i such that

f(yi) > C because Cis the limsup of a bounded sequence.

Let 1, be the maxi mumindex of these and let 7 = max(r

2] l) Tz)

then for all t >t we have
C-e < f(y,) <C,
and the lemma is proved. W will be especially interested 'in

cases where (k) is effectively conputable.

Finally, we nust introduce a number of definitions relating to enunerations

of languages. An infornmation sequence of a language L , 1(1) is a

sequence of synbols from the set

{+vy| yeL}u {-v| yeT+-L-}

A positive information sequence |+(L) is an information sequence

of L containing only strings of the form+y . |Notice that if we bound
the nunber of occarences of any string- y in I(L) then (L) is
approxinmately ordered by I(y) . The set of all {positive) information
sequences for L c T+ is denoted (J+)<9 - In CGold [67], d,. was called

the set of text presentations and § the set of informant presentations.

Let I(L) be a (positive) information sequence, we define a (positive)



§ sanple s,(I) to be the unordered set: 5, (1) {’Iyl,, .»-7}" . A bounded
sequence is one in which there is a bound on the maxi num nunber of

“ occurences Of a string. The set of (positive) bounded information

sequences is denoted (g)¢ . An information sequence is conplete if

- each string in T" occurs in the sequence.

A positive information sequence is conplete for a language if each

sentence of the |anguage occurs in the sequence. Unless explicitly

o stated, we restrict ourselves to conplete sequences. |nformation
, sequences and sanmples will occur in Section 2c and will play a central
— role in Section 3.,
o Each positive sanple can be associated with a frequency distribution

~.

over its elenents as follows:
L For each +y,es, (1), £(I,y;,0) =0

0 if y_ # vy
f(I,yi,T) = f (I) yl, T-l) + '
1 if v, =V
-
‘ £(I,y;»t)/t is the relative frequency of y. in the first t strings
- of I . An information sequence | is convergent iff
limf(I,y.,t)/t =P

— t <+ i 1

exists-and is non-zero for each y.eI . The set of positive convergent

i nformation sequences is denoted L
(-
-
-
-



Addi ti onal Notation

n(X): if Xis a finite set of objects (e.g. strings), then n(X)
i's the nunber of objects in X; n(X) is the cardinality measure

for finite sets.
r: r = n(T) = the nunber of termnal symbols in the al phabet T .

k
L(k =0,1,2,...): L, =L NT%5 1 isthe subset of the |anguage L

which contains only strings of length k .

Lﬁa): ngoz) =L NoT L @) is that subset of L, whichis

i K

prefixed by a € T* ; Lk(e)= Lk‘

™@): @) = ar*n *
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2. Gammatical Conplexity

2a.0 Introductory Measures

There are a nunber of ways in which one could nmeasure the conplexity

or information content of an abstract |anguage. One traditional way is to

consider the relative sizes of various subsets of the |anguage and devel op
size neasures for |anguages. Exanples of size measures will be considered
shortly. Qther types of conplexity measures can be devel oped in terns of
time and space bounds on the automata associated with a |anguage; studies
of this type are currently quite popular (e.g. Hartmanis [68]). Ot her
possi bl e conplexity measures could be based on the conplexity of algebraic
deconposition of the automata associated with a |anguage.

At this point a distinction should be made between conplexity neasures
of a language and conplexity neasures of a grammar. To be independent of
the various grammar(s) for L, a language nmeasure of L should be sensitive

only to the content of the subsets of L, not to the structural form of

the elenents of these subsets. Measures based on the grammars or automata

associated with a language often do not characterize the |anguage, since
the value of the neasure can vary anong weakly equivalent grammars (automata)

of the language. The class of size neasures of |anguages is one exanple

of |anguage measures which proves useful in studies of conplexity. W

consider briefly two particular size measures for arbitrary |anguages L < T*.

10



First-order (density) size neasure

d(k)>

Consi der the sequence < , Where d(k) is the proportion of strings

of length k which are in the |anguage L being neasured:

d(k) - n(Lk) _ n(Lk) . Suppose the sequence <d(k)> conver ges
n(Tk) rk
i n(L, )
toalimt d, sothat d = klimm kk ; then we would like to define
r

d as the density of the language L , which can assume values in the unit
interval 0 <d<1. The density is intuitively the limting proportion of
strings in the |anguage.

There are often, however, |anguages which seem to contain .a well-defined
limting proportion of strings, yet for which the sequence (gc) > does not
converge. As a trivial exanple, consider the |anguage which consists of
precisely those strings of even length; in sonme sense it seenms that half
of the strings are in the language, but the sequence <d(K)

does not converge to any linit, let alone the desired linit of §. The

k .
sequence <s(*5 - < %Z a2 does, however,
i=1 | .,
converge to the desired limt of % since s = [® |, keven
% +_l.§- > k odd

The sequence <d(k)> is said to be Cesaro-summsble t0 & (see, for exanple,

Keneny, Snell and Knapp [66]). Since s(k) is the arithmetic nean of the
first k proportions, it seens reasonable to interpret the (unique) value

(k)

to which the sequence <a I S summable as the density. This exanple

notivates the following definition of density:

11

> = <...,1,0,1,0,1,.

‘O>



If the sequence <d(k)> i S Cesaro-summable t o d, then d

is defined as the first-order (density) size measure

of the language. |f the sequence is not Cesiro-summeble,

then the neasure is undefined.
Cearly if <d(k)> converges to a linit d, then it nust also be Cesaro-
sumnable t0 d. Cesaro-summability i s well-known to be equivalent to
other types of sequence summability (e.g. Euler-summability) in the sense
that, if the sequence suns to a value by one nethod, then it nust also
sumto the sanme value by the other methods. Although occasionally useful,
we will not discuss other types of summability.

Suppose t hat <d(k)> is an ultimately periodic sequence with period p,

g’ &= 0,...,p-1. Then it can be shown

so that [im
k> o

P-|
. that <d(k)> i s Ceshro-swmable to d = = q}:—gd which again

P q’
illustrates the useful ness of allowng Cesaro-sunmebility as a more general
convergence criterion than the commonly used sinple "limt" . W shall

adopt the notation b = clim b(k) to indicate that the sequence <b(k)>

k - o

i S Cesdro-summable tO0 b.

It is difficult to devel op useful existence conditions for the density
neasure of an arbitrary language I<T*, since L clearly can be chosen in
such a way that the sequence <d(k)> fails to exhibit any stationary behavior.
Exi stence conditions become nore tractable when L is assumed to be associated
with-a certain class of grammars or automata. For exanple, it is shown in
Appendi x B that the density measure exists for all finite-state |anguages

(if Cesaro-summability is allowed to be a condition for convergence).

12



as @ neans of conparing the relative

The density neasure can be useful

size of languages. But relative size discrimnation by means of density

breaks down if the |anguages have either zero or unity density. Mst

| anguages we have occasion to investigate have zero density; accordingly,

a more sensitive size nmeasure is required for conparison of the relative sizes

of zero-density |anguages (which could be used to compare unity density

| anguages by conparing their zero density conplenents,)

Second-Order (logarithnmc density) size neasure

Wen the densities of two |anguages are zero, @ Nore sensitive neasure

is needed to conpare their relative sizes.  Consider transformng the

(k)> into a logxlog scal ed sequence

sequence <d n )

(k) () g () 1 e h

<h**%, vhere h**/ = E iy
log n (T)

(log n (Lk)-is taken as zero if Lk= @). W define the second-order

(logarithmc density) size measure h of L as

(k)

h= clim h

K s>

(h is undefined if <h(k)> i s not Ceshro-summable). The quantity C = (log r) h

/is the famliar neasure terned the channel (coding) capacity of L

(we have extended the standard definition of C by permtting Cesaro-summability

log n (Lk

of the sequence < —p—— (k) rather than just strict

>=1]o0g r <h

convergence). Wen it exists, logarithmc density satisfies 0 < h < 1

Furthernore, it can be shown that

(i) VicT , if dexists and d> 0, then h exists and h = 1

13
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(ii) if both d and h exist and h = 1, then d> 0
(iii) if both d and h exist and d = 0, then h <1
W thus see that logarithmc density is a useful size neasure anong
mniml (zero) density |anguages, while density is a useful size neasure

among maximal (unity) logarithm c density |anguages.

The logarithmc density (and thus the channel capacity) of a |anguage
s strictly a size measure, and is not essentially an information-theoretic
| anguage neasure as the nanme channel capacity seens to suggest. The
channel capacity is the maxinmum possible (limting) mean rate of infor-
mation transmtted/synbol across a discrete noiseless channel. Severa
authors have terned the quantity C (or h) the entropy (or relative
entropy) of the language, a sonewhat nisleading termnology; in terns
of classical information theory, Cis the maximumrate (per synbol)
of entropy for possible "stochastic grammars" of the |anguage. There
are, at least for some classes of |anguages, stochastic representations
of grammars for the |anguage which achieve this maxinum entropy rate
(channel capacity). In terns of "selective information theory" (Luce60,
Chonsky and MIler 63b), Cis indeed the entropy rate of the |anguage
V¢ enphasize that several stochastic granmmars (automata) for a given
| anguage may have different entropy rates, but Cis an upper bound

for them

b



QO her size measures

The first and second-order size neasures of a |anguage L can be

generalized as functions of a given string @ € T* :

n(Lk(O.’) ) n(Lk(Ol))
da = clim =———— = clinm
@ K - n(T(a)) koe HOT
log n(Lk(Ot)) 1 log n (Lk(a)

h(a) = clim

= clim
k - |o0g (@) 18Ty o k-1(a)

(Note: where Cesaro-summability is used, it is understood that summation
begins with k = £(a)+1L rather than with k=1).

Note that substituting a=e into d(+) and h(-) yields the size nmeasures
d and h, respectively. Discussion of d(x) and h(a) with respect to stochastic
grammars and selective information theory is an interesting topic, but un-
fortunately exceeds the scope of this presentation.
Remar ks:

Chonsky and MIler [58] claimed that the probability of a randony
chosen string of length k being in any given regular |anguage converges
to either zero or one as k increases w thout bound. This claimis equivalent
to stating that the density of any regular language is either zero or unity.
To our surprise we have encountered restatement of this claim by later
authors (e.g. Kuich and Walk 65) The claimis false, as is shown in
Appendix B. There appears to be two sources of error in Chonsky and Mller's
development. First, there seens to be sone confusion between first and
second order size neasure with respect to probability; Chonsky and

Mller's argument was based on channel capacity (second-order neasure)

15



rather than on first-order density; density is equivalent to the liniting
proportion of strings in the |language. Second, a matrix or "equational"
representation of finite-state granmars was used by Chonsky and Mller -

i ndeed, has been used extensively in the literature — which is inadequate
for the class of all finite-state granmars; there are regular |anguages
whi ch cannot be generated by any grammar associated with the matrix repre-
sentation. The interested reader is referred to Appendix A for exanples
of regular l|anguages for which the representation is not adequate, and
for a suggested matrix representation which is adequate for all finite-

state |anguages.
2a. Introductory Definitions and Exanples

The concern here is with a representational measure of conplexity.
W will be interested in the follow ng questions. How wel| does a given
grammar fit a sanple? How conplicated is a grammar? Wat is the nost
satisfactory grammar froma given class for somesanple set of strings?
The results of this section are of sone intrinsic interest and will be
very valuable in the grammatical inference problemconsidered in Section 3.
The techniques described here, although discussed in ternms of grammars,
seem applicable to a broad class of problems involving the fitting of a
model to data, [cf. Feldman 67]. The particular neasures studied here

are related to Bayes Theoremand to the measures of Sol ononoff [64].

16



Def 2al Let G= (V,T,XP) acfg, the alternative set A(p) of a

production peP of the formz =+ wis the set of productions

in Pwith the same left side, 2, i.e., A(Z +w ={(z - x)€ P}.

We will be interested in measures which depend on the alternative

set, and for most of the discussion will be concerned with a very restricted

class of such functions.

Def 2a2 A function p(p) is a density iff

1) pis defined for all peP for any GeR

2) 0<p<w

3)  For each peP , Z o=p(P') | g .

p'eA(p)

A density is intended to describe how precisely a grammar "fits" a
set of strings. The description of a set of strings in ternms of a grammar
will be nore conplex if the grammar generates many strings besides those
in the set. Each step in a derivation will be considered more conplex
in a grammar which allows many derivations. fromthat non-termnal (has a
large alternative set). It is also possible to consider p froman
information-theoretic point of view P(P) is a neasure of the information
required to select p fromthe set of productions with the same left side,
i.e., ZJD(P) Is the probability of a particular alternative.

It is this information theoretic approach which gives rise to the
specific density used here. |f we assume that all productionswith the

same |eft part are equally likely, we get a local neasure
o(p) = log,(b(p))
where Db(p) is the cardinality of A(p)

17



Anot her possibility is to assign some a priori |ikelihoods to each
— production p . This could be based on sonme conplexity measure on p
itself (such as its length). W will concentrate on proving properties of
the general density o, but will use o in the sanples. Before presenting
exanpl es, we nust extend the notion of density to a conplexity measure for
derivations.
- Let d(y,G) = <pys---,p> be a derivation O y and let p(p) be

a density, we define

= h
77((d;.Y:G) = Z;p(P.)v .
=1 Y
Ve can now define the conplexity of a string relative to a grammar.
= Def 2a5 Let yeT' . |f y£L(G) we define the conplexity u(y,g)
to be . If yeL(G) and the derivations of y gre
dl(y,G),...,dk(y,G) we define
- 1 K
H<Y;G) =% M(di,y,G)
i=1
Def 2ak Let S = {yl,...,yn} cr the conplexity of the set S
— relative to G, u(s,G) is defined by
n -
. 1(8,6) = 27 u(y,,G)
i=1
; ~ Thus the conplexity of a string is the average of the conplexity of
- its derivations; the conplexity of a set is the sumof the conplexities

of its nmenbers.

18




If Sis afinite subset of T, w(s,q) == iff SL(G £ 6.
The val ue of u(y,G) is a neasure of the conplexity of a derivation of y
from G and mght be usable as a nmeasure of grammatical conplexity. W

defer the discussion of the relative nerits of various conplexity measures

until Section 3a.

Exanple 2a5 Let G = ({X},{a,b},X,{X @ a | b | ax | vX})
This is the universal grammar over {a,b} . For this grammar,
any string of length n requires a sequence of n productions in
its unique derivation. |f we use the density o as p , each

production p has p(p) = 1og2(k) = 2 . Thus each ye{a,b}* has
p(y,a) =2 . £(y)

Let H = ({X,Zl},{a,b},x, {Xa b | azZ, | vX, Z, + a | ax | bZl})
This is the "even nunber of a's" granmar. Sinilar reasoning to the

above will show that for any string y with an even nunber of a's:

u(y,H) . log,(3) . £(y)

The exanple indicates that u corresponds to our intuition in
declaring the universal grammar to have nore conplex derivations of strings
having only an even nunber of ‘a's. There is, however, a potential problem
inthe fact that Hitself seens nore conplex than G. & have, so far,
considered only the conplexity of derivations. |f as in the grammtical
inference problem only a finite set of strings is available for testing
a very conplex granmar may yield the |owest value of u. For exanple,

the grammar which sinply lists the sanple set (ad hoc grammar) will have

19
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a very low neasure. In the next section we will expand the notion of
grammatical conplexity to include a measure of the conplexity of the

grammar itself.

2b. Ganmar-grammar, Conplexity of Gammars

Ve will define the conplexity of a grammar as the conplexity of its
derivation in some grammar-grammar, G . The choice of G will deternine
whi ch subclass of the context-free grammars is under consideration.
Typi cal subclasses include the linear grammars granmars in some standard

form and grammars restricted to a fixed nunber of variables.

Def 2bl A grammar-grammar G = (V,T,%,B) on the termnal al phabet T

IS defined to be a cfg such that

1) @-TH)nw=p
2) TcwurTu{?}luU{,}
where b is the universe of variable synbols and = ' js ysed

to separate the rules of P .

It would be possible to sharpen this definition, e.g. to allow only
Zew to appear to the left of "+ in a string. It is not possible,
however, to force G to produce only GeR , with a context-free G .
There is the additional problemthat ¥ nust be finite so a given G
will only generate a class of |anguages with a fixed nunber of variables.
The followi ng definitions nodify the granmar-gramar concept and nake it
nore suitable for our purposes. It is also convenient to have the

production arrow for grammar-gramars be "::=" .
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Def 2vb2 A sequence of grammar-granmars G = {Gl,f}e,...} isa

collection iff. There is a Z such that for each Gi

[NV

1) =2y |z | . 2, in G

i1l
2) Z appears in no other left sides.
3) No Zew appears in any other rule.

4) The ('}i are identical except for the rule described in 1).

The intent here is that Zis the variable in all c'}i whi ch

produces the i variables of the Gi .

Def 2b3 A representation class Cis defined as

c= (U L@)ne
GeC

where ¢ is a collection. Thus, Cis a set of gramars
defined by a collection C such that for any GeC , there is

a Ge€C such that GeL(G) N R .

This definition allows subfamlies of cfg with an unbounded nunber of
variables to constitute a representation class. For any GeR and any
class Cit is decidable whether GeC . Mre frequently we wll be
interested in studying all the grammars in some class C. W will
sonetines wite G k) for GeC such that GeL(c'}k) nNR.

The-intrinsic conplexity of a grammar G can now be defined as the

conplexity of its derivation from an appropriate grammar-grammr, p(G,G)
using p = o as density. The choice of the grammar-granmar G will
depend-on the set of grammars being conpared. W now derive expressions

for u(G,G) for a nunber of interesting subclasses ¢ of Ron a fixed

termnal al phabet T = {ao,...,am l} :
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For all the exanples we will have Gn = (V,T,%,B) with
V= (%,QR,N,T} UT

T . (Zg...2

n_l)aoy o . ')am_l)_)} U {’}
The general cfg with n variables can be derived fromthe collection

¢ = (cF,} . The productions P of CF, are

X = Ql%,q

Q ::= N SR
N:—zol Z,_,
R::=T|N|TR/| R
T::=a0 [ a |

For a granmar G in L(CFn) whi ch has k productions, whose right

si des have a total of kl vari abl es and ks termnals we have
u(G,CF ) =k . (logy(n) . logy(2)) . k; . (log,(4) = log,(n))
+ K, . (Logy (k) . log,(m)) .

For cfg in Geibach Standard 2-form (S2) and in nodified Cperator

2-form (02) the neasures have very similar expressions. The productions

al e.
52 02
'}_(::::QI}-(,Q X :::Q')-(,Q
Q . =N=-R Q ::=N-2R
Niw=2zglz, | .oz NI=zl.z
R:.:>T ] TN| TNN R e *=T | TN| NTN | NT
T‘;f‘oﬂao| S T::=aol A
22



and if a grammr G has k productions and kl’kE’k5 rul es whose right

sides are of length 1, 2, > respectively, then
1(G,82 ) = k(log,(n)+log,(3)+log, (m)+log,(2)) + (k, + 2k ) logy(n)

u(G,02 ) = k(log2(n)+log2(h)+log2(m)+log2(2)) + (ky + 2k,) logy(n) .

3

Sinilarly, the linear gramars (IN) and finite state grammars (FS)

have nearly identical G . The productions are:

= FS

X ::=ql %9 1= Ql %,q
‘Q::=N-+ R Q ::=N-2R

N ::= 2, ] = 2 | n

T ii=a | ... an T iria | ... |
R:v=T/|TNINT Ri::=T]| TN

and if a grammar G has k productions and X ,k, rul es whose right

sides are of length 1, 2 respectively, then

w(G,IN ) = k(los, (n)+1og, (3)+1log, (m)+log, (2)) + kylogy(n)

It

u(G,FSn) k(loge(n)+log2(2)+log2(m)+log2(2)) + kglogg(n)

Finally, the productions and measures for Chomsky normal form (C2) are:

gg
X o= QI}-(fQ
Q ::=N-R
s *7?
N &= Zo l' Zn—l
R ::=T | NN
T .= ao ...aml

p(G,CQH) = k(logg(n))+log2(2)+2k2(log2(n)+log2(2))+kl(log2(m)) .
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L Exanpl e 2bk  Returning to our exanple of the universal grammar On strings
(Exanple 2a5) with an even nunber of a's, we can now measure the
- conplexity of the grammars G, H. W nust first deternine the
appropriate class of granmars and parameters (n,n) to use in the
- conparison. W have assumed that the term nal al phabet (and thus m)
g \ is known. Since both grammars are finite-state, the C called FS
above is nost appropriate. Now H (the "even a's" grammar) has two
- non-termnals. We use n =2 for it and get the result:
m=2, n=2, k=6, k, =4
- -
u(H,Fsg) = 6(log2(2)+log2(2)+log2(2)+log2(2)) + 4 -1082(2)=28-
L For the universal grammar G which requires only one non-terninal
we could use n=1o0or n=2. The results are:
L u(G,FSl) = 12
u(a,Fs,) = 18 .
B Al though Gis sinpler than H by either measure, there is a question
L of which neasure to choose. W can see from the formulas derived
above for p(G,G) that choosing the smallest possible n produces
- a bias in favor of grammars with few non-termnals. This seens desirable
and has been adopted for use in this paper.
W will need the following | emma in Section 3 which deals with
- grammatical inference.
- Lemma 2b5 Let C < R be defined by a grammar-granmar & in Standard

2-form (S2) , then there is an enuneration 4 of C which is

approxi mately ordered by u(G,G) in an effective manner.

2L




Proof If Cis finite the problemis trivial. If cis infinite
u(@,&) is unbounded on C. Gven the grammar-grammar G , one
can define a generating algorithm which will approximtely order
L(G) by the length of its strings (grammars). Let & be the
restriction of this approximte order to GeR , & iS an enumeration
of ' ¢c. Nowif G, in is given we nust show there is an

effective way to find k such that j > k inplies
Let r= the mininum density of peP and let h be such that
h:r > u(Gi,G)

W can effectively find k such that j > k inplies Z(GJ.) > h,
because 4 is approximately ordered by £(G) . Also for S2 we

I3

have /&d(GJ.) = z(c;j) and t hus

H(Gj,f‘) >h.r > u(Gi,G) .

The two conplexity neasures developed here (the intrinsic conplexity
of a grammar and the conplexity of a set of strings relative to a granmmar)
can be conbined to form an overall neasure of how well sone grammar fits
a set of strings. The problem of what conbination of u(G,G) and u(s,G)
to use in an overall measure will be discussed in Section 3c. For the

present we will be content with an exanple.

Def 2b6 Let G be a grammar in a class C defined by ¢ . Let S
be a subset of T" | then we define the measure %(S,G) by

Mo (8,6) = u(8,6) + u(G,G) .
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W can now reconsi der Exanpl e 2v4 using T - The uni versal grammar
Gis sinmpler than H, but leads to nore conplex derivations. \W can
then investigate which sets S will cause one to prefer Hto G as a

grammar for S, i.e., nmake

Mg (S,H) < MFS(S,G) .
Using Def. 2b6 and the intrinsic conplexities conmputed for H G this is
equivalent to finding S such that

u(S,H) + 28 < u(s,q) + 12
or

w(S,a) - u(s,H) > 16 .

Now fromthe results of 2a5 this is satisfied by any set of strings S

Z L(y) >

yes

satisfying

Al'though it involves getting ahead of ourselves somewhat, we should
consider this exanple more closely. In general, mc(s,(;) will depend
on the nature of S rather than sone sinple property as in this case.
Here we have shown that any sanple including 39 or nore synbols zﬂ
having only strings with an even nunber of a's makes H preferable
to G. Notice-that a single string-with an odd nunber of a's will make
uw(S,H) = » . The result above says nothing about other granmars which
m ght be better than both G and H on some set S ; this is the
grammatical inference problemand is the subject of Section 3. W first
introduce a variation on conplexity measures which plays a mgjor role in

the discussion of grammatical inference.
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2c. Normalized Conplexity Measures

The conplexity neasures introduced in the last section increase without
bound with the length of strings. To overcone this difficulty we introduce
a normalized conplexity neasure; this measure is bounded so we may also

study its limting behavior as the sanple set of strings approaches the

| anguage.

Def 2¢1 The normalized conplexity n(y,G) of a string yeT+ rel ative

to a grammar G is defined by

1y, &) = u(y,G)/t (y)

where u(y,G) is defined in 2a3 and £(y) is the length of y .

The definition of nis extended to sets, S, of strings'by

n S,6) . u(s,6)/1 2(y)
yeS

Lemma 2c2 For any GeR , yeS C L(Q there are constants r,q > 0 such
t hat
(a) r < n(y,@) < q

(b) r SW(SJG) <aq

Proof (a) By | b2 the derivation |ength /zd(y) is not greater than 2 .f(y)
If B is the maximum p(p) in G then
q=2 "B
satisfies the right half of (a) because if there are k derivations

of a string y , we have:



- Let k(p) be the nunber of term nal synbols appearing in production p .
Let r be the mnimum over G of p(p)/k(p) , then r satisfies the
left side of (a). The proof of (b) follows by straightforward analysis

from(a) and the definitions.

The introduction of the normalized conplexity measure n(st,e)
enables us to study the behavior of 5 as the sets St approach L(G
When the limt exists we will wite

n(L,G) =1lim n(8,,6)
tPoo

The following exanple will show that the linmt my not exist.

Exanple 2c3 Let G = ([a,C‘;X,Zl},fX,Zl},X,P) where P contains

X - alaX|ch|c

Z, ez e

and let the density o = o . The language L(G is the set of all
strings containing a finite nunber of a's followed by a finite
number of c's . W wll show that there are information sequences

for which n(St,G) does not converge.
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Let a" be a string of a's of length n and <™ be a string

of ¢c's of length m. Then
n(a%,G) =n . log,(})
u(c",G) = log, (k) + (m-1)log,(2) .

On a sequence Of strings of the forma® , we have n(s,G) con-
verging to 2 and on a sequence of ci ,  n(8,G) converges to 1 . W
will now show how to choose an information sequence which includes every
string in L(G exactly once and for which n(St,G) fails to converge.
The first string is "a" and the subsequent strings are chosen as foll ows.

After choosing a string a® we choose all stri ngs of L(G of

length up to i and conpute n(st,G) on this set s, of strings. There

t
is a string C) which, if chosen as the (t+1)st elenment of | , will

cause n(st+l,G) to be less than 1.4 . For exanple, if 5, = (a} ,

then S, = {a,c} and j nust be such that

2
1og21+ + logeh + loggh + (j-1)

553 < 1.4

which is satisfied by j = 7 and 83 = {a,c,cccccce} . W then select
all new strings of length up toj and conpute n(St ,G) . There is an
2

i nt eger such that

Jp
U2
n(s, +{a “},6) > 1.6 .
2
By continuing this process one can produce an information sequence
on which n(s,a) fails to converge.

In the exanple above, the failure of n(S,G) to converge depended

on three factors: the density p, the derivation length L and the
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information sequence 1I(L) . By restricting these factors in various
ways, one can show that there are cases where 1q (5,6) is known to
converge. W first examne the case where p(p) is constant; this
amounts to using the length of a derivation as a conplexity neasure.

W will use the notation ?d(y) to denote the average derivation |ength

of a string vy .

Theorem 2ct  Let GeR be such that p(p) = r, a constant for all peP ,

then for any 1(G for which

. Zfd(yi)
lim ———— = C

the 212 (y;)
the limt of n(st,G) exi sts, and

[im n(St,G) = rC

tw 1

Proof By definition

k; 2y(yp)

p(D.y )
=1 j=1 ihj

1
k.
1
T
23 4y)

but with p(p...) = r this collapses to
P ihj

30



whi ch proves the theorem

Corollary 2c5. Let GerR be such that

1) p(P) =r a constant for all peP
2) zd(y) = a-£(y)+b ;: a,b positive constants.

Then for any 1(Q we have

lim n(St,G) = ra .
tde0

fhis shows that for a constant density p and grammars whose Ly
Is sinple, the normalized conplexity measure always converges. This is
i nteresting because many classes of grammars satisfy Condition 2 of
Corol lary 2c5.

For the Chonsky standard form C2 , we have zd(y) = 21(y)-1 . For
each of the representation classes FS, LN, 02, S2 we have /zd(y) = L(y) .
These relations are imediate consequences of the form of productions
for each class. W now consider the results of allowing p to be
non- const ant .

W present two versions of the conditions for the convergence of
n(S,G) wth non-constant p. The first, Theorem=2c7, is sinple to
prove and illustrates the nature of the problem The second, Theorem 2c8,

is more useful when it applies.

Def 2c6  Let u.i}{p.J) be the number of uses of production j in derivation
. A
h of the string Vi - Al so |et ui(pj) be the average of u.iﬁp.J)

over the derivations of v -
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Theorem2c¢7 Let GeR be such that P = {pl,...,psg , i.e., there are s
productions in the grammar. A sufficient condition for the linit as
t + o of n(st,G) to exist is that for j = 1,2,...,s the

following limt exists

(1) limt—]—m—

, Proof One can rewite the definition of n(st,G) as:

t ke
=5 22 uyy(py) p(2,)
n(s,,G) = =l 1 b=l jel
Z £(y.)

Reversing the sums over h,j and using the definition of Gi(pj)

gi ves

Now reversing the order to summation again and separating out the

contributions of each production p.J as nj(st,G) we have

L
plp,) 20 4, (py)
le(st)G) = 1 =1

2 1(y.)

i=1

from which the theoremis apparent. The condition of Theorem2c7 is

that some average nunber of uses of a production in deriving a set
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of strings should converge. The difficulty is that 112_.(3 yit is

hard to establish for a given grammar and information sequence.

A nore reasonable condition to establish is the ratio of the uses

of P, to the total number of steps in deriving the set St That is

Thus the frequency of a production p.J in deriving the set of
string S, is the total number of uses of p.J divided by the number of
production steps used for the set S, - W will use this definition to

establish a condition under which T](St,G) converges and then discuss

fj<st) further.

Theorem 2c8  Let GeR be unanbi guous and be such that P = {pll 0 ps3
and ld(y) = a .2(y)+b for all yerL(g) . Further, let 1(G be
a bounded information sequence such that

limf.(S

= C, for each production p.eP ,
teo J J

&)
t hen

lim n(S G)=C.
tdoo

Proof- Since G is unanbi guous, all k. =1 and
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Separating the contributions of each p. as in the proof of 2ck we
J

have
£
p(p;) gzg u, (p,)
T
gl £(y,)
p(p;) 2&: u; (py)

n.(s,,6) — =1
J C

T\J-(St:G) =

T
L(y.)
i=1 +

Al so
t
Eui(pj)

i
22 (a. t(y,)+)

i=1

fj(St) =

ui(pj)

}—J-
c+||‘\1<+
'—l

a Z(yi) + b .t

H
1l
=

The advantage of Theorem 2c¢8 is that the convergence of fj(st) may
be provable under fairly general conditions. ¢ are now attenpting to use
stochastic matrix results to establish such conditions. Thaorem 2¢8 does

not hold for anbiguous |anguages; this situation is synptomatic of a number
of problems arising fromanbiguity and will be discussed in sone detail.
Even very sinple granmmars may have anbiguity (ki) whi ch grows

exponentially with the length of Vi - An exanple is
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H = ({Z)a]; (a},2,{z ~ aIaZ|Za})

Since we defined nj(St,G) interms of the average nunber of uses of p. |,
E— J
the val ue of k. has essentially no effect on n. For f_(st) . however,
J
the total nunber of uses of a production is used. (onsider the gr anmar

of Exanple 2¢3 with one additional production rule:

X 4+ Xa
In this granmmar, each string k "a"'s has ok derivations. By methods
like those of 2c3 it is easy to showthere is an information sequence
for which fj(st) converges and nj(st,G) does not, which fact refutes
Theorem 2c8 for anbi guous granmars.

The choi ce of n(st,(}) as a function of the average conplexity of
the derivations of a string is open to question. (xher possi bl e choi ces
woul d be the sum maximum nininum and a weighted sum The choice of
definition of n has inportant inplications for the entire grammatical
conplexity problem This issue is touched on in Section 3¢ and will be

further discussed in Horning' s dissertation.
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3. G ammatical Inference

3a. Introduction, Basic Mdel and Term nol ogy

The problem of inferring a grammar for a set of strings is just
beginning to receive serious attention. Qur purpose here is to establish
a nunber of decidability results as a foundation for the heuristic nethods
of grammatical inference now being programmed. These results are extensions

of the work of [Gold 67] who describes his study as fol | ows:

Many definitions of learnability are possible, but
only the following is considered here: Tinme is quantized
and has a finite starting time. At each time the |earner
receives a unit of information and is to make a guess as to the
identity of the unknown |anguage on the basis of the information
received so far. This process continues forever. The class of
| anguages will be considered |earnable with respect to the
specified nmethod of information presentation if there is an
algorithm that the |earner can use to make his guesses, the
al gorithm having the follow ng property: Gven any |anguage
of the class, there is sone finite time after which the guesses
will all be the same and they will be correct.

Cold' s definition of learnability derives fromhis earlier work on
limting recursion [Cold 65]. W will present sone new results using this
definition and show that by relaxing some of its conditions, one can greatly
enlarge the class of solvable cases of the grammatical inference problem

In addition to the concepts previously defined, we will need a nunber
of new ones. W assume time is quantized and is expressed by

t =1, 2 3. ..
- A grammatical inference device D is a function from sanples S,

into the set of granmars (G} in some class C. The granmatical inference
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problemis modelled as follows: An information sequence is presented to

the device D at the rate of one element per tine step. At each tinge, t ,
we conpute

Ay . D(s,(1),0) .
Ve say that a class of languages, 1(c) , is identifiable in the linit, if

there is a function D such that for any GeC and any information
sequence I(L(G))ed there exists a t such that t > r inplies both

a) A, = A

b) L(AT) = L(Q .
This differs from the function D being recursive in the follow ng way.
A recursive function D would, at some ¢  be able to ignore all further
information, i.e., would be able to stop and denonstrate the right answer.
Since we have allowed an information sequence to contain repetitions of a
string, not even the class of finite |anguages is recursively identifiable.

Before considering the properties of inference devices, let us |ook

at the notion of information sequence. Gold [Gold 67] has shown that there
is no effect in the limt on learnability caused by the difference between
an ordered (e.g. by length) | and a randomone for 19 . He also shows
that in this case allowing the device D to select the next string y to
appear as J-ry in | does not change things. Wile these different methods
of informng (teaching) the device do not affect the learnability of |anguages
inthe limt, they do have powerful effects on the heuristics of efficient
learning.  Sol ononoff [64] considers the grammatical inference problem a
speci al case of sequence extrapolation and his methods rely heavily on the

order of presentation of exanples. Another crucial consideration is
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whet her the information sequence contains conplete information. The

effects of conplete sanples is the subject of the next section.

3b. New Results on Ganmatical Inference

The main results of [CGold 67] deal with the great difference in
learnability effected by allowing information sequences with negative
instances, Ied , (informant presentation) rather than just positive
instances, Ied+ , (text presentation). W wll informally outline certain
key proofs and then extend them in various ways.

Al of the methods are based on the denunerability of various classes
of grammars; the primtive recursive, context-sensitive, context-free, and
any other class we mght be concerned with here can be enumerated. |et

.&:{Gl, . ..> be an enuneration of such a class. Aso let & = (1} be

. the set of all conplete information sequences over sone al phabet T

(each yeT+ occurs as y in every | ). Aclass Cof granmars is
adm ssible iff Cis denumerable and for all GeC , y€T+ the relation
yeL(G) is effectively conputable. A grammar G is conpatible with a

set of strings S=S+uyuS iff S+ ¢ L(G and Scr - L(O

Theorem 3vl (Gold) For any admssible Cthere is a device D g,c)
such that for any GeC and any I(L(G))ed , L(Q is identifiable

inthe limt through I

Pro-of The device D sinply sequences through the enuneration & of C.
At each time, T, there is a first Ge& which is conpatible with

S.(x), it is the guess A, of Dat timet . At some tiner,

&
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AT will be such that L(AT) = L(G . Then AT will be conpatible
with the remainder of the information and will be the constant result

of D.

Thus with informant presentation, a very wide class of grammars can
be learned in the limt. By restricting the information to only Ied,
we give up learnability in the linit alnost entirely. et everything
be as before except that the set of information sequences $ = (1}

contains only sequences of the form HY ¥y e >

Theorem 3b2 (Gold) Under these conditions any class C generating all
finite languages and any one infinite language L s not |earnable

inthe limt.

Proof W show that for any D, there is a sequence | , which wll

make D change its value A, an infinite nunber of times for L .

t
Since D nust infer all finite |anguages there is a sanple which

causes it to yield sone G(Ll) such that L, < L . Now consider
an information sequence which then presents sone string xelL - |_1,
repeatedly. At sone tinet , D(St,C) nust yield a grammar of
Ll U {x} = L, because all finite |anguages are inferred. This
construction can be repeated indefinitely, yielding an information

sequence | which will change the value of D an infinite nunber

of tines.

This unlearnability result is so strong that we were led to try to
consider it further. The remainder of this section is devoted to the study

of conditions under which learnability from positive sequences only is
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attainable. Let us first consider the repeated occurrence of a stringy ,
in an information sequence | . The proof above is based on the possibility
of having some string occur indefinitely often; it does not seem unreasonabl e
to bound the nunmber of occurrences of any string in an information sequence
and thus restrict our attention to g .

By restricting consideration to bounded information sequences, we
have made the problem of identifying finite languages trivial. The
classes of grammars which are now identifiable in the limt can be

characterized by the following two |enmmas.

Lemma 3b3 Any class of cfg CcR which contains only a finite nunber

of grammars which generate infinite languages is identifiable in the

limt fromany I(L(G )eg

Proof  The device D(St,c) which will identify Cin the limt wll
be defined. Let % be an enuneration of the grammars of C which
generate infinite |anguages. At each tine t, the device D will

forma guess A as follows. A, is the first grammar in & which

t

is conpatible with S, and which generates the mininum nunber of

t
strings of length less than or equal to k , where k is the
length of the |ongest -string 8, - If the language L(Q is
finite then 1 (L(G) termnates at some t and a grammar
for L(GQ can be picked out of C-.%; we will now consider

~the case where L(GQ is infinite. |f Hec is any |anguage such
that L(G - L(H = (y} #f ., then after the first appearance of
a y in I(L(G)) , HwIll never be guessed by D. |f HeC

is such that L(G < L(H) there is a length k) such that for all
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k >k H generates nore strings of length less than or equal

l )
to k than G and thus Hw Il not be guessed by D. Thus D
will eventually guess only the first grammar Aecg& such that

L(G) = L(A and the lemma is proved.

Thus requiring an information sequence to be bounded has produced a
sonewhat |arger class of inferrable languages. Athough sone infinite
sets of infinite languages can be identified in the limt, the follow ng
| enma shows that there are sone very sinple classes which cannot be

identified in the limt fromIeg .

Lenmma 3blk The finite state | anguages are not identifiable in the limt,

fromIeg .

Proof The proof is an adaptation of Gold s proof of Lemma 3v2. W
forma subclass of the finite state |languages for which D will
change its value an infinite nunber of times. et this class
C = {H_.f be defined as follows.

L(HO) = a¥p¥ (any sequence of a's followed by any sequence of b's)
and
1.
for i >0, ©L(H,) = U a'b*
1 N
J=1
The | anguages H, i >0 all have finite state granmars. W will
show that for any D(S,FS) which will identify inthe limt all the H,
I >0 there is an I(HO) which will cause D to change its guess an

infinite number of tines. The sequence I(H.) starts with enough

o

yeL(Hl) to cause D to guess H the assunption that D infers |-|1

1
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guarantees the existence of such a sanple. Then I(HO) continues wth

enough yeL(H,) to cause D to guess H

> » etc. Any I(Hy) of this

nature would cause D to change its guess an infinite number of tines.

The class of l|anguages |earnable from positive information sequences
will now be extended by introducing a weaker notion of learnability. The
conparison of the two definitions of learnability will be deferred until
after the theorems. For the remainder of Section 3we will restrict
oursel ves to bounded information sequences and to the class g of conpletely
reduced context-free grammars. Several of the results could be nmade nore
general, but these are sufficient for our purposes and allow of sinpler

treatment.

Def 3b5 A language L(G in a class ¢ is approachabl e from above
by a device D iff for each Hec such that L(G ¢ L(H) and
each information sequence I(nL(G)) , there is a 7 such that
t >t inplies
D(8,(I),C) £ H |
Thus a language is approachable from above if every grammar
producing a larger |anguage is eventually rejected. W can define

approachable from below in a somewhat simlar manner;

Def 3v6 A language L(G in a class ¢ is approachable frombelow iff

for each Hec such that L(G - L(H) £ ¢ and each | (L(GQ) there

isa T such that t >t inplies

D(8,(1),C) £ H .
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That is, any grammar H, whose |anguage does not contain 1,(g)
is eventually rejected. This condition is trivially incorporated in any

reasonabl e device for positive information sequences. This is because

any yeL(G) - L(H) will eventually appear in every 1(L(a)) .

Def 3v7 A language L(G is approachable if it is approachable from above

and below. A class L(C) of languages is approachable iff there is

a device D(S,C) under which each L(G)eL(C) i s approachabl e

t hrough any I(L(G))eél+

Theorem 3b8 For any adm ssable class of grammars cc R there is a
device D(S,C such that for any Gec and I(L(G))€c9+ , L(G)

i's approachabl e through I

Proof For L(Q finite the problemis trivial. Assume L(GQ s infinite.
Let 1(L(Q) = <yp,¥ps..+>ed, . Let & be an enuneration of C and
for each Gin & define n (G) to be the nunber of strings of Iength
k generated by the grammar G and

k
Nk(G) = jz=:l n (9
The devi ce D(st,c) proceeds as follows. At each time, t ,
D will choose the next granmar dt from & and the next string
yteI(G) form ng the sanple
S =8, Uly) .

It will also conpute £, = max(Z(y)) over ves, The device will

t
also formthe set of possible guesses a,

a, = @eefc,.. . @) and s, < L(G}
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If at 1is enpty, the device will choose nore granmmars from %

unti | a, s non-enpty. Finally the device will conpute its guess
A, at time t bychoosing one of the grammars Gin a for

whi ch Nzt(G) is mninmal. The procedure for breaking ties is

i mmaterial.

The fact that D is effective follows easily from texthbook
results. W now show t hat A, approaches G from above. That is,
if Hec is such that L(QG 2L(H) there is a tine 1t gsych that

(1) t >rinplies A, £ H.

If L(G ;L(H) there is an integer h such that k > h
i mplies

N (G) > N (H) .

Let T be the first value of t for which £ = h and T,
be the first value of t for which G appears in % . Then
1 = max( Tl,TE) is afinite value of time for which (1) holds.

Since L(G is always approachable from below through any conplete

positive information sequence, the theoremis proved.

The procedure used by the device D in the proof above can be nade
nore-efficient in a number of ways. Since a finite |anguage necessarily
has a finite information sequence over ¢ , D could restrict its guesses
to granmars which produced infinite languages. |In practice, one would break
ties for Al by choosing the best grammar relative to sone conplexity neasure
such as those of Section 2. The question of inferring "good" grammars will

be discussed in Section 3c.
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There is a progressive weakening of the formal counterpart of the
intuitive concept of "learning a grammar" as one goes from recursive to
limting identifiable to approachable. An inference device which can
identify a class of languages in the limt will find a correct grammar,
but will not know that it has done so. |f the device can approach a class
of languages, it may not ever settle on a correct grammar, but wll get
progressively closer as the sanple size grows. Unfortunately, this is the
best kind of result possible in the absence of negative information.

The device D used in the proof of Theorem 3v5 coul d nake use of

negative strings to reduce the set @ considered acceptable to tine t

t
One nmight conjecture that there is a device that would use negative strings
in an information sequence without knowi ng whether or not it was conplete
(that is, whether all or only sonme of the negative strings occur) and

achi eve the behavior of Theorem 3vl for conplete sequences and of 3b8 for

inconplete ones. This conjecture is false; an argument similar to the proof

of Lenma 3b4 will show that

Corol lary 3b9 If Dis a device which will approach any finite state

| anguage L(G for any I(Lum)eJ+ then there is a finite state
grammar H and an information sequence IUDEJ+ which wll cause

D to change-its guess an-infinite nunber of tines.

Intuitively, the device of Theorem 3bl adopts a very conservative
strategy; it chooses the first grammar which is conpatible with the sanple
It succeeds because the negative strings in a conplete sanple guarantee
that any incorrect grammar will ultimtely be inconpatible. The device of

Theorem 3b8 does not have this guarantee, so it nust constantly look for
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"better" grammars and thus cannot be guaranteed to eventually remain at the

sane val ue

The question of |earning good grammars and making good guesses

is the subject of the next section

3c. Learning Good G anmars
The preceding discussion has established the solvability of the
grammatical inference problem under a variety of conditions. W now
extend these results by considering when a good grammar (in the sense of
, Section 2) can be |earned.
There are several properties which would be desirable in an overall
measure which was an increasing function of both intrinsic conplexity,
n(8,G) and derivational conplexity, u(G,G) .

For a fixed grammar, the
conplexity of a sanple should be bounded so that the convergence results

of Section 2c are applicable. Finally, the relative weight given to the
conponents of the measure should be able to be specified in advance.

Anot her inportant property of a neasure, effectiveness, is actually a
consequence of the other requirements and the general conditions of the

problem as the followi ng |enma and theorem will show.

Lemma 3cl Let % = {Gi}be any enuneration of a class ccg
which is approxinately ordered by Iength and | et S, be a
sanple of some I(L(G)) , Ge¥ . Then there is a conputable

index k such that j >k inplies there is an h < k such
t hat
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Proof The proof is based on the fact that if a grammar is too

large, there nust be sone redundant rules. |gt

t
u(sy) =3, 2 - 1(y;)
i=1

From Lemma | b2 we know that the total number of uses of productions
in deriving St is less than U(st) . Therefore, if one chooses an index
k such that j > k inplies the nunber of productions in G s greater
than U(s.) , the condition of the lemm is satisfied. SuchJ akis

conputable since & s effectively approximtely ordered by the length of

granmmars.

Theorem 3c2 Let Cc g and & = (6,} be an effective approximte
ordering of C by u(G,G) . Also let f(n(8,6),u(c,a)) be any
monotoni ¢ function of both its argunents. Then for any gec ,

SIS (G there is a conputable index k such that any grammar
|

such that
£(n(8,,G;),u(6,,8) is mininal

has an index i <k in .%.

Proof By |emma 3c1 above, there is a I_<_:L such that the G
I ) |

mini i zi ng n(St,G) occur before ky Let Mbe the |argest

val ue of u(Gi,('}) occurring before L i.e.,
MM (u(cy,8))
1<i<k

Now by |emma 2v5 there is an index k such that j > k inplies

u(Gj,f}) > M.
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The nini num val ue of f(n(St,Gi),u(Gi,G)) must occur with
index less than k , since for each j > k there is an h <k

such that both n(gfah)< 1 ( ,Gj)and (G ,G) < uﬂ%,@).

S h’

The requirenent that a goodness neasure be an increasing function
of both intrinsic conplexity u(G,G) and derivational conplexity 1(s,a)
seemto be a natural one. The particular choice of a goodness function is
less clear. Consider a device D which enunerates the class ¢ of
candi date grammars by generating themin order of length fromG . Al though
n(S,G) is a normalized conplexity nmeasure and is bounded for a fixed
grammar, the bound increases approximately as the length of grammars.
Al t hough p(G,G) also increases with length it does so in a different
manner. A conparison between the growth rates of u(G,G) and 7(s,G)
woul d be very helpful in choosing a goodness function. In the absence
of any know edge of growth rates, we will be content to use a particular

class of goodness functions which seems reasonabl e.

Def 3c3 A goodness neasure y(S,G) is defined as

7(s,6) = a .n(s,q) + b .u(G,G)

where 0 < a,b < 1.

It follows from previous results that goodness neasure y is an
increasing function of n, u and is bounded for fixed G. By Theorem
3c2, the mnimumy(s,G) for fixed Sand Gc ¢, a conplexity class,
is effectively conputable. Thus y is an adequate goodness neasure by the
criteria laid down above. W now study the conditions under which best

grammars, as neasured by y , can be learned by an effective device D(S,c) .
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Theorem 3ck  Under the conditions of Theorem 312 (GeC , I(L(G)) C g) .

If vy (St’ Gi) converges as t + = for every G, such that
L(Gi) = L(Q then there is a device D(st,c) which will identify

inthe limt the granmar Gj such t hat L(Gj) = L(G and

7(L,GJ.) is mniml over C.

Pr oof The device D will use G for the enuneration £ of C as

before and will at each tine t formsJc . There is a first G
q

which is conpatible wth St and by lemma 3c2 there is a kl(q)
such that i > k1 inplies 7(St,Gi) > 7(St’Gq) . The device D

then chooses the first grammar in {Gl,... G, } which has the
i

mninal value of y as its guess AJC .

Now there is a first Gq such t hat L(Gq) = L(G and
7(L(G),Gq) =c, exists. But there is also an index k(q) such
that i > k(q) inplies b . u(Gi,r'}) >_cq , l.e., intrinsic
conplexity alone exceeds Cq at some point.

Thus the device D will never consider nore than the grammars

Gyoe. . G as possible guesses. Any Gy such that L(Gi) £ L(G

l)
will eventually be elimnated by the conplete information sequence

I(G) .

There are then a finite nunber of G, . all of which generate

L(G) ; for each of these, y(s,,G.) converges to a linit c,

Let the first occurrence of the m ninmm (ci) =c. beaG . For

J

J

any G, such that ¢, = cj+e there is an index r(i) after which

7(Sr(i),Gi) > 7(Sr(i)’Gj) ~ Let whe the largest of the vy . then
for all t > w the guess A wll be precisely G and the theorem

J
I's proved.
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Corollary 3¢5 If the nmeasure 7(St’G) = u(e,G) , (only intrinsic

conplexity is considered) the device of Theorem 3ch will always
identify the best grammar in the limt, the grammar of |owest

intrinsic conplexity producing the correct |anguage.

Corollary 3c6  The device of Theorem 3ck will approach the best

grammar, even if the limt of 7(St. G does not exist.

The requirenent that the limt of 7(St,G) exi st seens to be necessary
_in general. If y does not converge, the device can be caused to oscillate
its guesses between a finite nunber of different grammars for the target
|l anguage. There is a possibility that for conplete information sequences,

Y (St,G) can always be made to converge. |t 'is based on the followi ng
conjecture: the neasure 7(St,G) wi Il always converge on an information
sequence which presents strings in strict order of length. |f the conjecture

Is true then the device of Theorem 3chk would be able to wait until all
positive and negative strings of length up to k were seen, then conpute
7(Stk,G) and be assured of convergence.

The final set of questions relate to the learning of best grammars
from positive information sequences. In the discussion of Theorem b5
we remarked that a goodness' measurelike y could be used to break
ties anong conpatible grammars producing the mnimum nunber of strings
of a fixed length, g . The device described there will approach the
correct grammar, but will not make the best guess at each tine, t
By making g a slowy increasing function of t one can produce a

device which will tend to produce better guesses at each time, t, at

the cost of rejecting overbroad granmars later in the sequence. (ne
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mght conjecture that the conplexity measure alone would eventually elimnate
overbroad grammars. W& now present an exanple to show that a device using
only the conplexity nmeasure y and a positive information sequence nay

fail to approach the correct grammar.

Exanpl e 3c7.

Let C be L(FS) Nf, the finite state granmmars in standard form
Let
¢ = ({x},{a,b},X,{X » a|bjax|vx}) .
The universal grammar of Exanpl es 2a5, 2bk has u(G,Fsl) =8 and the
upper bound on n(S,G) is 1og2(l+) =2 . In fact, for this sinple gramar
n(s,G) is exactly 2 . Thus for any set s, < L(Q
7(St,G) = 10 ,
W now show that by removing one string from L(G) we get a |language L'
such that for any H such that ' = L(H and any sanple s oL
7(8,,H) > 7(8,,G) .
That is, any device using y as a selection criterion will select the
universal grammar G over the correct granmar H . To prove this
rigorously we would have to account for all possible grammars of L'
(which the results of this section show to be possible) but we will be
content with the follow ng argument.
Consider L' = L(G -aaaaaaaa . Any grammar of L' that isinc
can have only one termnal symbol per production. It nust also have
enough states (non-termnals) to count to eight. This apparently requires

a grammar with y > 10 .
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In any event, there is a string of a's long enough so that its unique
non- menbership requires a gramar of intrinsic conplexity greater than 10
This exanple also indicates that the difference of two grammars might have
a |ower nmeasure than any single grammar of the class, even when such a
grammar exists. This question of conbinations of grammars deserves

consi derably nore attention.

3d. Using Frequency Information to Assist Inference

Previous sections have presented successively weaker definitions of
learnability: recursive, identifiable in the limt, approachable. Al
of these definitions are "strong", however, in that they require that the
device (eventually) satisfy the criterion for every information sequence
in some class, In fact, the non-learnability results of Theorem 3v2,
Lenma 3b4, and Corollary 3b9 depend upon the construction of particular
pat hol ogi cal information sequences.

In practice, however, a device whose performance is superior on "nost"
information sequences need not be rejected because it fails on a few
sequences, provided that they are "sufficiently inprobable". W are
generally nore interested in the "expected behavior" of a device than in
its worst case behavior. To study these properties of devices we nust
define more carefully our notions of "nost", "sufficiently inprobable", and
"expected behavior". In this section we start with a probabilistic notion
of information sequence, which leads naturally to a Bayesian inference
device using the frequency of occurrence of strings to assist in inference.
Ve also sketch a nunber of basic results which will be explored further in

[ Horni ng 69].

52



There are many other notivations for using the frequencies of the
strings in a positive information sequence (text presentation) to assist
in grammatical inference

(a) Since nore information fromthe sequence is used, grammars

may be discrimnated earlier.

(b) The significance of "mssing strings" can be eval uat ed.

(c) Inference can be conducted even in the presence of noise.

(d) Gammars for the sane | anguage may be discrimnated on

the basis of their agreement with observed frequencies.
(e) Conplexity can be related to efficient encoding, gand

various results from information theory applied.

W shal|l assune that the elements of an information sequence are
i ndependent and identically distributed random variables (iidrv

condi tion).

Lemma 3d1  The iidrv condition inplies convergence with probability

>1-¢ for any ¢ >0 .

Pr oof See sequel

Let = = {ﬂl,ﬁg,...} be a denunerable set of probability distributions
for strings in 7" such that the conditional probability of a string,
P(yilnj) , and the a priori probability of a distribution, p(ﬁj), are
both conputable. Under the iidrv condition, the partial information
sequence

Ik(t) = Q’kl)ykg) LA )ykt>
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has the conditional probability

t
P (8) Jny) = TR0 | )

= UP(yilﬁj)

As is well-known, the probability distribution for information
sequences under the distribution ' for strings corresponds to the
mul tinomial (P(y,|x') + Plyylx') + ...)°

to the binomal

1) (e + 2 g (fl i : [Z'llt'fi
wher e

P, = P(y;[|='), 2 = Zj:P(yjlyr‘) - P, .

- Taki ng a/OPi of both sides:

t- b\ Fi- i
)t (e, +z)¥h = Zfl(fi)P.ll. [z:l]t fi

fi *
Mul tiplying by P, .
t-1 PR AN i t-fi
I11) Pi .t .(Pi + z'i) = ;fl(fi)Pil . [Zi] *
Agai n-t aki ng a/api and multiplying by P,

L\ t-2
IV) P ,..(Pi + zi) )

i [(Pi + Z]'_) + Pi . (t-l)]

2,t ,_Tfi -1
= Zf.( Optt L syt
fi idrfifTd 1

Sk

or, distinguishing P(yi|ﬁ')



Si nce P, + 21 =1 we can sinplify Ill) and IV):

1) foi(;‘i) . Bt [zi]t'fizpi c
|
V) Zfz(t‘) : Pifi . [lelt'fi =P ot (1 + Pi -+ (t-1)) .

The left sides of these equations define expectation values under

' for fi and f? so we have

V) Ex'(£(Ly;,t)/t) = Plyy|x)

VD) Ex' ([£(T,y;,t)/t - By [x)1%)

I

Ex' ([£(1,y;,t)/]%) - 28, (£(L,y,,t)/¢)

* P(yy ') 4 P(yi-lﬂ')g

Plygle) % e % (1 POl ) (pogy) 42 -P(y, |x)?

i}

[P(yilﬂ‘)2 + Py, 7)1/t

Equation V1) defines the expected variance of r /t . Since
1

P(yiln") < 1 we can bound it by

V) B (8L, 0)/6- By, |n)1%) < 2 R(y, fne )/
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r'—‘*» r—_——- r_——\

W can use this to bound ei(S), the probability of an information
sequence with [£(L,y.,t)/t - P(y,[=')] > 8

VIT) e (3) 8 < B (I£(Ly, )/ - 2y, [« 112

<2 P(yi|n’)/t

and €(3) , the probability that any £/t is off by & 4 (pe

Vit e(s) < Xe,(8) < 2/ (5 - 62) .
[

) - D
Given any € >0, >0 if 1=2/e8" {pen t > ¢ assures that

the total probability of information sequences of length t in which the
relative frequency of any string deviates by & or nore fromits

probability in ' jis |ess than ¢, This conpletes the proof of Lemma 3d1:

"The iidrv condition inplies convergence with probability > 1 -¢ or

any €>0." It is in fact a slightly stronger result, because we have

al so showed the relative frequency distribution to which "practically all"

sequences converge is ', the distribution of the random variable.
feturning to the case of a fixed information sequence, . ote that

Bayes Theorem can be used to conpute the conditional probability of a

distribution

R ()mg) = PG () [xy) - P(ny) = Plrg |1, (8)) . B(T, (%))

or

56



P(x.)
P(n; |1, (£)) = P(L (%) |n3) * g Iﬂ% )

L (F
wher e

P (t)) = 2 B(x,) - P(T(8)|n,)
JTIGJT

and

- £(I,,y.,t)
P(Ik(t”“j) =np(yi|ﬂj) af

To use this formulation for grammatical inference we nust relate
the probability distributions g and the a priori probabilities P(ﬂj)
to grammatical conplexity.

At each step of a derivation a production -- one of the finite set
with the correct left part -- is selected. |f production p; is selected
from this set with probability P(pi) , the specification requires
p(p;) = - logy(P(p,)) bits of information. The probability of a derivation
I's the product of the probabilities of its individual steps, so if
d(y,6) = <p;,... p> then P(d(y,G)) = _ﬁ'P(pi) and -log,(P(a(y,&)) = m(d,y,G)

i=1
where (as before) m(d,y,q) = ﬁﬁpﬂ.) )

i=]1

Def 3d2 . Let yeT© | if yEL(G) we de-fine the conditional probability

P(YIG) to be zero; if yen(c) and has the derivations

dl(y,G) oo dk(y,G) we define

k
P(y|e) = ZIP(diw,G))
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Let {(y,G) = ~log,(P(y]|G)) . If y is unanbiguous with respect

to G then k = 1 and A(y,6) = u(y,G) [Def 2a3]; in the anbi guous case,
ﬁ provides at |east as plausible a definition of complexity as does u .

As we did in Section 2b, we define the intrinsic conplexity of a
grammar in terns of its derivation froma grammar-grammar. Note, however,
that for our purposes, grammars which differ only in the order of their
productions, or in the systematic renanming of their non-ternminals (except
the distinguished non-ternminal!) are conpletely equivalent. The equival ence

class of a grammar with k productions and n non-terminals contains
k!(n-1)! equi-probable grammars. & are always interested in
P(x.|G) = kI (n-1)! P(G,|G ). P(G
(r;18) = kI(n-1)1 P(64]8). »(5)
since all of these grammars yield the same distribution, For a
J .
fixed collection we nust specify the probability of G with n

non-ternmnals. A reasonable choice is P((':-n) =2

P(nj) = ki(n-1)1 - P(Gjlén)' P(Gn)

-1(G,,G )
k!(n-1)! + 2 S M
Defi ne
- - A -
H(GJ,GH) = p’(Gj)Gn) +n - loge(tz(n-l)z)
t hen
~u(G,,G )
P(x,)=2 9 B
J
A
‘H(y-yc‘- )

= i J
P(yi[nj) =2
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By our fornmula for conditional probability

- - A
Z'H(GJ,G) | 11‘[2-“(yi’Gj)]f<Ik’yi’t)

i
B(T, (%))

P(:rj |1, (t)) =
Taking |ogarithms

~logy (P(ny [T, (£))) = (6,,8) + log, (P(T, (1))

. LA

Except for a termindependent of the grammar (logg(P(;k(t)))), this

corresponds rather closely to our previous measure of fit [Def 2b5],

wei ghted by the frequency of occurrence of strings. Let

A A
B(L (8),6,) = ;f(zk,yi,t) - #1(y,6)  and # = -Log, (P(r [T, (+))) ,
t hen
Ay T (0) = B(6,,8) + AT (8),6,) + 1og, (BT (¥))) .
To conpute P(L, (t)) we nust enumerate the distributions . _
1’re’s

(L, (t)) = %‘:Puj) LRI (6 |x,) -

This is not generally practical. However, this term drops out when we

conpare the relative probabilities of grammars

AP S L CREROIE (CHENOD)
Pfﬂ2|Ith55
2‘[M(nj)Ik(t))‘M(ﬁl)Ik(t>)]

wher e
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As in Section 2c, the grammar with the smallest total conplexity Mis
= preferred.

W can conpute a | ower bound for d(x <t)’Gj) , independent of the

k
particular class of grammars involved, by the method of Ia G ange

L=h DR, [0) + Zily,0) « £(1,y,,t)
I I
=n - 2Ry, o) - Zlogg[P(yi-lGH . E(Tvgst)
i r
— 3L f(Ik:yi)t) _

=N = =0
5P3yi|G5 PZinGi

Py, |®) = £(T,,v,t)/>

But

- Zr:P(inG) =1
Zr:f(lk,yi,t)/x o1

A= iZf(Ik,yi,t) =t
P(y; &) = £ (T,¥,,t)/t .

Substituting, we have
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A / -
b (T (8) = - Ziilogg[fuk»,yi,w/tl CE(TLy,,t)

b . log,(t) - Zf(lk,yj_,t) * log, (£(I,7,,t))

AL (1), G) > t H(L(x))

wher e
(L, ,v,,t) £(I t
. k’ l, . ,y" )
H(Ik(t)) = - Z [_—T—'——] log, [__}Et_i__
1
is a local "entropy" measure. |t would seem that ﬁmin is a "natural"

normal i zation for conplexities.
. . . . A
W may, in the course of inference, require an estimte of M (as

wel | as the value of # ) without enumerating the . .
J

M(x T, (4)) = F(x, T, (8)) + Logy [P(T, ()]

AR ICERRECHONN

In general, we will know some {x } which have been rejected .. pecause
P(1, (t)fx,) = 0 --- and sone {r} which are under consideration
Let
P = Z P(nj) , P, = Z P(x.)
nje{nr} nje{nc} J
Py=1-P. -P. , P(I(t))= ) :L{-:: P(n) * (T, (t) lnj)
J c
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t hen

~t-H(L (t))

P (L (1)) < P () < B (T () + P+ 2
Thus, although our inference neasure can never be "sure", it can conpute

a confidence neasure for its best grammar.

Noi se

i If the distribution of noise (error) strings is known, i.e., «x

n

L and. P~ are given such that elenents of the information sequence are

L drawn with probability P fromthe distribution % and probability
(1 -2 ) fromthe "true” (istribution n, then ve have

|

L P(y; InsBpm) = (1 - POPG;[n) + B B(y, |y
Ve can substitute this for B(y;|x.) in all of our formlas and still
conduct inference.

u | f Pn is small, we will introduce very little error by the
approxi mation

| P(yilnj) if P(y. lfr-)a> 0

g P(yi Inj’Pn’nn) ~

P P(y_ilnn) ot her wi se

L

i.e., strings not generated by the grammar are given their "noise"

probabilities, otherwi se noise is ignored.
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4. Prograns for Ganmatical Inference

4a. Introduction and Definition of Pivot Gammars

The devel opnent of prograns for grammatical inference provided the
original notivation for the theoretical work presented above and is of
continuing interest. The progranms conpleted so far are quite primtive
and were witten to test some basic ideas. There are a number of obvious
extensions.  Gven a proper fornulation, the grammatical inference problem
can be characterized as a heuristic search problem and the various known
techni ques [Newel | 68] appli ed.

An early paper [Feldnman 67] described a nunber of strategies for
inferring finite state and linear grammars. They can be characterized as
constructive as opposed to the enunerative strategies stressed in this
paper. Thus they solve the problem"Build a reasonable grammar for ..."
rather than "Find the best grammar for . ..". The first program GRINL,
enbodi es these strategies in an inference program for finite state grammars
Rather than extend these sinple techniques to linear grammars we considered
the problem for a sonewhat nore general class: the pivot grammars. A pivot
grammar is an operator granmar in which a termnal synbol which separates

non-termnals in a production appears in no other way. More formally:

Def LYal A pivot grammar G = (V,T,X,P) is a grammar in operator 2-form
(cf. Section 2b) such that the set of terminal synbols, T g
partitioned into two sets Tﬁ’To such that

1) ael, implies a appears only in rules of the form
Zl-e 22 a Z3
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2) ael inmplies a appears only

Zl—aaZ2
or Zl_)ZBa
or Zl 3 a

The linear granmars are exactly the pivot granmmars for which T = § .
P
The pivot |anguages are nuch broader than the l|inear |anguages. For

exanple, the followi ng pivot granmar defines a |anguage which is not

generated by any |inear grammar.

Exanple 42 Let G = (V,T,X,P) where
V= {XJZ]_)ZQ) () ))';a]
T = {(; ))-)a}
and P contains the production rules
X>2Z -2
Z, - (2, |a

Z —9X)o

2
Sampl e strings from L(GQ include

a-a,(a-a)-a,(a- (a-a)) - (a-a)

The context-free grammars used to define programm ng |anguages are,
for the most part, expressible in pivot form The principal problens are

situations like the use of '-' as both a unary and infix binary operator.

Qur interest in pivot grammars arises fromthe relative ease with which
they are inferred. The second program described below, GRINZ, is an

inference device for pivot grammars.

The programs described below are inplementations of only our nost

basic ideas on grammatical inference. No use is made of ill-forned
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strings or frequency information. The entire programis situation-static

in three inportant ways.

1) Only one set of strings is presented, no new strings are added.
2) The program does not propose new strings for outside appraisal

3) The algorithns thenselves are deterministic, with no backtracking

The addition of these and various other features would be straightforward

but time-consuming. In the absence of a pressing need for grammtica
inference prograns, we will continue to concentrate on the theoretica
and progranm ng questions which seemto be nmost basic. A fornulation of
grammatical inference as a general heuristic search problem wll be

presented after the current programs are descri bed.

Yb. Program descriptions

GRINL infers an unambiguous finite state grammar for the set of
termnal symbol strings. The programis an inplenentation of the
al gorithm proposed in [Feldman 67). The algorithmis merely sketched

here; the reader is directed to the original source for a nore conplete

version and further exanples.
The input to the programis a |ist of symbol strings. The out put

of the programis a finite state granmar, the |anguage of which is a

"reasonabl e" generalization of these strings

Al of the productions of the final grammar are of the form

Zl—>aZ2

or
zZ, > a wher e Zs%, are non-termnal s
a is atermnal.
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The program tenporarily utilizes other productions ("Residues") of the

form

0‘\ .
R where a8, 0 G5W are terninals,
At all times during the inference process a non-termnal has either all
residue or all non-residue right sides (e.g. it wll not construct

producti ons Z, > a;Z, and Z,- aja, -where Z,,%2,Z, are non-termnal,

3 23 17273
81r8p85 ar€ termnals, Z, = Z5 ).
In the explanation of the algorithm the set of strings
{caaab, bbaab, caab, bbab, cab, bbb, cb) will be used as an exanple.
X will be the distinguished non-termnal in the grammar to be constructed.
The main strategy of the algorithmis to first construct a non-recursive
grammar that generates exactly the given strings, and then to nerge
non-termnals to get a sinpler, recursive grammar that generates an
infinite set of strings.
The al gorithm has been divided into three parts. Part 1 forns the

non-recursive grammar, Part 2 converts this to a recursive grammar which

is then sinplified by Part 3.

In Part 1, a non-recursive grammar that generates exactly the given
sanple is constructed. Sanple strings-are processed in order of decreasing
length. Rules are constructed and added to the grammar as they are needed
to generate each sanple string. The final rule used to generate the |ongest
sanple-strings is a residue rule with a right side of length 2.

In the exanple, the first (longest) string in the exanple is 'caaab' .

The following rules would be constructed to generate this string
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X—)CZl

Zl - a.Z2

Z2 - aZ5

Z5—9ab

Zy is aresidue rule. The second string is ‘vvaab' . The following rules

woul d be added to the grammar to generate this string;

X —>bZlL

Z)+ - bZ5

Z5 - aZ6
Zg = ab
Zg is aresidue rule. To generate the third string, rcaap' , the

followng rule nust be added to the grammar:"

Z3—>b .

Proceeding to consider each string in turn we see that the final grammar
that is constructed to generate exactly the sanple is:

X -z, | bz

Z, - b | ez,
zg—>b|az5
ZB->b|ab
Z), >0 2

Zs—ab]aZ6
Zo »b | ab .

The-residue rules are Z5 and Z6

In Part 2 a recursive finite state grammar is obtained by merging each

residue rule with a non-residue rule of the grammar. The gjgorithmis
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conservative in deciding which non-residue rule should be substituted for
a residue rule. The general principle is that after such a substitution
the resulting granmar nust generate all that the old grammar could plus as
few new (short) strings as possible. \Werever the residue non-terninal
occurs on the right side of a production, the non-residue non-ternminal
is substituted. The resulting grammar is recursive and generates an
infinite set of strings.

In the exanple, Z woul d be merged with 25 and Z5 woul d be

merged with Z, . The resulting gramar is:

X ¢z, | bz

Z, > | az,
Zy = b]a22
Z), = PZg

Zg b]a25

In Part 3 the granmar from Part 2 is sinplified. Equivalent
productions are recursively merged. Productions P and P with |eft
si des Zm and z_ are equivalent iff the substitution of Z for all
occurrences of nZ in Pn and P results in Pn being identical to B
By merging P and P we nean elininating production P, fromthe
grammar and substituting z, for all remaining occurrences of z,
Mergi ng equival ent productions results in no change in the |anguage
generatzd by the grammar.

In the exanple, the productions with left sides Z, and z, are

clearly equivalent. After merging Z, and Zy the new gramar is:
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In this grammar, the productions for Z and 25 are equivalent:

No change in the generated |anguage results from nerging Zl and Z5
The new grammar is:
X - cz; | 0Z),
Zl —-»b | aZ
Zu - bZ

1
1

No further merges are possible; this is the final granmmar. Note that
the seven shortest strings of its language (cb, bbb, cab, bbab, caab,
bbaab, caaab) are precisely the strings constituting the sanple set.

The programis usually able to infer a grammar which is subjectively
reasonable.  Several sanple runs are listed in Appendix C. The program
for pivot grammars, GRIN2, makes use of.many of the sanme techniques.

GRIN2 infers a pivot grammar for a set of termnal symbol strings.
In the explanation of the algorithm the set of strings [a-a, a-(a-a),
(a-a)-a, (a-a)-(a-a), a-(a-(a-a)), a-((a-a)-a), (a-(a-a))-a ((a-a)-a)-a]
will be used as an exanple. X will be taken as the distinguished non-
termnal in the granmar to be constructed. |t will be assuned that the
mnus sign is known to be the only pivot terminal synbol in the strings.
There are rules for determning which termnal symbols can be a pivot
termnal, e.g. (1) A pivot termnal cannot be the first or last synbol
of a string. (2) Cccurrences of pivot termnals nust be separated by
at least one non-pivot terminal in each string. These rules are not used

here.
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The algorithmhas two inputs: the list of known Strings and a list
of the pivots. The output of the algcrithm is @ pivot grammar.

The main strategy of the algorithmis to find th: self-emteddings
inthe strings. A non-terminal is set aside as the icop non-terminal
(LOOPNT).  The self-enbeddings in the strings will correspond to the
appearance of the loop non-termnal in recursive rules in the grammar.
Initiaily, the loop non-termnal is the distinguished non-termnal.

The, algorithm has been divided into three parts, Part 1 finds
sel f-embeddi ngs and creates a working set of strings, Part 2 makes sone
changes in the working set fromwhich it builds a pivet grsmmar which is
then simplified in Part 3.

In Part 1 a working set of strings is built. Each string is exam ned
to see if it has a proper substring which is also a nenber of the sanple
set (a valid substring). If it does not it is sinply copied into the working
set. If a string does have any valid substrings then the |ongest valid
substring is replaced by an instance of LOOPNT and the new string is placed
inthe working set. Table 1 gives the longest valid substring and the
resulting new string for each of the strings in the exanple set. X, the
di stinguished non-termnal, is the initial loop non-termnal. |f any
substitutions have been made, Part 2 of the algorithmis entered.

If no strings have valid substrings, it is determ ned whether all
the strings have an identical first or last synbol. |f there is a common
first or last synbol, say 'a', then a rule of the form LOOPNT - aZ
or LOOPNT — Za (and possibly LOOPNT - a ) is entered in the gramar;
LOOPNT is set to Z ; the first or last synbol is renmoved for each of the

strings and the substitution for longest valid substrings is begun again.
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given strings

a-(a-a)
(a-a)-a
(a-a)-(a-a)
(a-(a-a))-a
((a-a)-a)-a
a-(a-(a-a))

a-((a-a)-a)

TABLE 1

| ongest valid
substring new strings
none a-a
a-a a- (X)
a-a (X) -a
a-a (X)- (a-a)
a-(a-a) (X)-a
(a-a)-a (X)-a
a-(a-a) a- (X)
(a-a)-a a-(X)

Results of Part 1 of GRIN2

In Part 2 further substitutions are nade for valid substrings and

a sinple pivot grammar is constructed.

Each of the strings in the working set is exam ned independently.

If a string contains a pivot termnal,

the test and substitution process

Is repeated for the synbols on the side of the pivot not containing the

| oop non-term nal

In the exanple, this would result in a substitution

of 'X' for the valid substring 'a-a

inthe string '(X)-(a-a)' .

The working set of strings would now be {a-a,a-(X),(X)-a, (X)-(X)}

T1



A sinmple pivot grammar is consiructed for che work

ing set of strings.

The working strings are processed in sucregssion: productions are created

as they are needed to generate one of the new sirings.

Recall that pivot .

synbol s can only appear in pivot rules, =o0®w s used as the starting

point in the generation process.
In the exanple, the first new string,, ‘'a-a'
the productions:

X - Zl - Z2

To generate 'a-(X)' the productions

and
Z3 - X)
nust be added. The productions are now

X——;Zl- 22

Z - a
4

Z. - X) .

To generate '(X)-a' the productions
and
Z, - X)

must be a dded. The productions are now

a-a , wou 1d result in
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To generate '(X)-(X)'

X2, -2
Z, > al|(z
Z, - a | (z5
25_>x)
z, - X)

no further productions need be added.

These productions are added to any productions constructed in

Part 1.

In the exanple there were no productions constructed in Part 1;

the granmar outputted from Part 2 is:

X 3 Zy - 2y
Zl—aal(ZLL
.22—»a'|(z5
25-9)()
Z), - X)

In Part 3 the grammar from Part 2 is sinplified in the same way as

in Part 3 of GRIN1; equival ent productions are recursively merged.

| anguage generated by the grammar remains constant.

In the exanple, the productions 2

ZLL—)X

)is elimnated and 2

3

3
is substituted for all

in the-granmar. = The resulting grammar is

X—)Zl' 22
Z, —»a | (z5
Ze—ea | (Z5
Z3-—>X)

73

The

occurrences of

Z

- X) and z), - X) are equival ent.
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In the new granmmar z. - al (2, and Zy - a (2.3 have identical right sides.

1 25
Zy -—»aul(z3 is elininated and z, is substituted for Z, . The resulting
grammar is

X_’Zl-zl

zZ, -a I (z3
Zj-»X) .

None of these productions are equivalent; this is the final gramar.
Not e that the language generated by this grammar is identical to the

| anguage generated by the granmar of Exanple- ba2,

Le, Extensions to the prograns

The prograns described above could be extended in a nunber of different
ways . The most interesting of these depend on the use of the various
conpl exity measures discussed in Section 2. To the extent that we accept
these measures, they provide evaluation functions for the grammati cal
i nference device, The existing programs choose sinplification rules
simply anddetermnistically. By using a neasure like y(s,¢) for a
sample set, §, of strings and a grammar G, we could allow the program
to evaluate several sinplifications.

A nore difficult problem arises in attenpting to study large sanples
because the nunber of substitutions to be considered grows exponentially
with the number of variables. W suspect that the nunber of substitutions
whichare conpatible with the sample, while nmuch smaller, also grows

exponent ially.
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The difference in 7 caused by a substitution might be a good
heuristic for deciding whether or not it should be carried out. This
| eads naturally to a tree search for the best value of 7 over sequences
of substitutions, and the usual search heuristics can be applied.

Thus conplexity measures can be used in deciding between alternative
grammars for the same sanple and alternative sequences of substitutions of
variables. There is another possibility which is nmuch nore inportant to
investigate -- increnental change of grammar. The methods of this section
as well as those in [Feldman 67] deal only with a fixed sanple set. If
another string is added to the sanple, the current prograns nust start
again fromscratch. Intuitively, one can think of heuristics for changing
a grammar to accomodate the extra string. The problemis that the obvious
heuristics all lead to ever nmore conplex grammars. W mght be able to
use y(s,G) as an objective function and do hill-clinbing techniques to
search for grammars.

Anot her inportant class of problens involve the interaction between
the informant and learner. Horning will develop the theory of this further
in his dissertation. The interesting programmng problens include the
| earner asking about the well-formedness of strings and the design of
opti mal teaching sequences. In this, as in its other aspects, the grammtica

inference problemis the prototype of a very general situation.
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Appendix A Representations of Finite-State Gammars

In Appendix B we conpute the value of the size nmeasures for the
finite-state languages. W first need a matrix representation of the
| anguages which aids investigations of the measures. Al though one matrix
representation has been used extensively in the literature (e.g. Shannon,
and \Waver 49, Chonsky and M Iler 58, Kuich and Wl k 65), the representa-
tion will be shown to be inadequate for the finite-state |anguages. The
i nadequacy of the representation has |ed several authors to false con-
clusions about the finite-state |anguages.
The previous matrix representation for a determnistic finite-state
grammar, which we termthe "ol d" representation, is a square matrix of
the formé = [Gij]’ i,j=1,...,n. Each Gij is a subset of the al phabet
T, and contains those termnal synbols associated with a single-stage
transition fromstate i to state j. The grammar has n states, one of which
is the initial (starting) state (say state 1). The condition that the
grammar is deterministic inplies that % ﬂlGJ.., = ¢ for j #3'(i=1,...,n).
Let X, Y, Zc T*%, Define X+ Y = X UY and define xy =
{0445:_ @ € X and B € Y}. Thus X+Y = Y4X, X+ = ¢+X = X
(X+Y) + Z = XH(Y+Z), X § =9 X = ¢, x{e} = {e} X = X
(XY)Z = X(YZ), (X+Y)z = XZHYZ, and X(Y+Z) = XY+YZ

The-al gebraic properties of such systens has been partially investigated
using semgroups, and an interesting class of abstract algebras, terned
the sem-rings (which are built fromtwo free sem-groups), has been in- ~

vestigated by Reder [68]. The formal properties of such al gebras permt
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a meaningful definition of matrices over T* in such a way that the class

of all nth order matrices over T* is itself a sem-ring. 1In particular,

th

if @ = [Ai;j] and 8 = [Bij] are n order matrices over T*, @ B can be

defined as @ B = [Cij], wher e C.i ("g" denotes repeated

57y Pk B
1 1 n H ; 1 j{ k (\1{‘)

application of "+' described above). If we define =0 & = [Gij 1,

it can be shown that Gg};) CTk; Gg{) Is precisely the set of strings of

length k'associated with possible paths of k steps leading from state i

to state j. In particular, G](_I;) is the set of strings of length k |eading
n

fram the initial state to state j, and I Gg) = Ly, where L is the
J=1

| anguage generated by the finite-state grammar associated with & .

It is a well-known result that any |anguage L generated by some such
4 is a finite-state (regular) language over T*. However, contrary to what
seens to be commonly believed, the converse is false. There are regular
| anguages whi ch cannot be generated by sone such matrix & . Many of the
theorens which have been proved for the class of regular |anguages have
been denonstrated only for those |anguages capable of being generated by
such matrices. As we shall see, serious errors have resulted froma failure

to realize the limtations of this representation.

Exampl e of a Regul ar Language for which the O d Representation is Inadquate

Consider the following finite-state |anguage L over T = {a,b} :
L ={x €T : acontains an even (including zero) nunber of a's}. A finite-
state grammar for L is:
S - b|sSb|Xa

X - a|Xb|Sa
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If we try to construct a matrix & which generates L, we might try:

1] (s
& =

2 | {a} (b}

-

Experinentation with the first few powers & qui ckly convi nces one that

4 does not generate L, but rather the entire set T*. It al so becones
clear that no such matrix can, in fact, generate precisely L. L is but
one of an infinite nunber of regular |anguages for which the represen-
tation is inadequate

To see why the old representation fails we should investigate what
features of a matrix permts it to selectively generate certain strings
but not others. A string a € T is generated if and only if there is
some path of length k leading out of the initial state (into some ot her
state) with which a can be associated. Starting in the initial state

a € L_ sequentially determnes k transitions through the states of the

k
matrix; these transitions are determned by the sequence of termna
synbol s which constitute a. |f at any time there is no feasible transi-
tion possible, & is not in the |anguage generated by that matrix

Suppose Some matrix & generates a language L © T*.  Consider the
strings that are not in the language: T = T*-L. The precedi ng paragraph
illustrates that I consists of those strings for which there is no feasible

path of transitions within & Thus the only factor which can cause a

string not to be in a language is that it violates some sequential rule

(i.e., at some point in the string, there is no feasible transition to be
made in 4); there is no capability for strings to be "rejected" on the

basis of other types of "violations". Specifically, suppose the
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"grammatical ness" of a string does not depend on whsther there is a path
for the string, but rather on where (i.e., in which state) the given path
termnates. Such is the case in the "even a's" grammar; no string o € Tk
can violate a sequential rule since, for every string o , there is another
string B8: a 8 € L. Indeed, the "grammatical ness" of a string a depends
on whether its path termnates in state "s" (i.e., even nunber of "a"'s)
or in state "X" (odd nunber).

W thus see that in addition to sequential violations, a string can
be ungrammatical (in terms of a finite-state grammar) if its path through
the grammar matrix termnates in a "not in the |anguage" state. Referring
back to matrix &, if we designate state "s" (i.e., State 1) as "in the |anguage"
and state "x" (i.e. State 2) as "not in the language",matrix & hen generates
the desired L; all strings a ¢ T* have paths through &4 but only those

@€ L wll have paths termnating in "s".

A New Representation

The lack of generality of the existing matrix representation for

finite-state grammars pronpts us to develop a broader, fully adequate

representation. Specifically, we wish to develop a matrix representation

which allows regular |anguages (and their conplenments) to be defined with

respect to both sequential-type rules and rules pertaining to the par-

ticular state in which a string's path termnates. At first glance, it

m ght seem that the capacities needed to inplement both sequential and

termnal rules are inconpatible within a single matrix representation;

a sequential rule is presently inplemented by selective paths in the matrix
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(such that strings not in the language do not have paths in the matrix),
while a termnal rule requires that all strings have paths in the matrix.
Fortunately, however, these seemingly inconsistent demands can be satisfied
si mul t aneousl y.

Let & = [Gij] be an n" order matrix, where each Gl.J cT

It is assumed we are dealing with a determnistic grammar, so that

GijﬂGij/:¢,forj #j', 1=1, . . . . n. By a conplete finite-state
n i

grammar nmatrix, we nean that UG,.,=T, i=l,. . . . n. Thus if a matrix
j=1 ™

& is conplete, each of its rows is a partition of the alphabet T into the
n cells of the row Functionally, conpleteness of a grammar matrix inplies
that all strings a € T* have paths (derivations) in the matrix; from each
state (row) of 4 each termnal synbol of T is associated with a feasible
transition to another state.

Wth the n states of &we wish to associate a state classification.

A state classification is a single-valued mapping of' the n states into the

integers {1,...,k}. If c, is a state classification of 4 then

&
CJ: {1,...,n} - {1,...,k} n,k > 1,

is called a k-class state classification of 4.

The interpretation of Cj(i) =jis that all strings a € T* whose paths

S th

in&termnate in state i are classified into the j termnal class.

For conplete & we have the following:

(i) &: T 5 {1,...,n)
(ii) cﬁ: {1,...,n} » {1,...,k} .
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(i) means that & classifies all strings over T into onz of n states
(according to the state of & in which the string’s path terninates).
(i) says that the state classification is k-way, that each of the states
of & is associated with a unique termnal class. Taken together, & and
Cy define a conposite functimn(lgcj), whi ch maps each string of T*
into a unique ternminal class:

(.&,C}: T - {1,...,k}
defined by ‘(.&,cﬁ) (a) = Cj(.&(oz)). The pair (.9,(3'&) is defined as a

. *
k-class finite-state grammar over T (k- depends on Cj).
A k-class finite-state grammar partitions the set of all strings T
into k disjoint, exhaustive subsets. Each of these k subsets is called

a termnal class of strings generated by the granmar. It can be shown

that each such termnal class of strings is a regular set (finite-state

| anguage). These classes will be denoted as(igl (i=1,...,k) or sinply
by L(i) when the subscript & is understood;,ngi )vvi Il denote those strings
of length k in the th termnal class.

Wien k=2, we have a granmar generating strings into two terninal
classes, which are usually thought of as the language (L) and its com
plenent (T = T*-L). When k-1, all strings are generated into a single
termnal class. The languages generated by a single class conplete grammar
are thus either enpty or are the entire set of strings T*.

In the "o1d" representation, a sequence of synbols fromT failed to
be granmatical when it called for a transition to be made which was not
feasible;, if some nunber of symbols brought the string's path into state i,

and there was no transition out of state i associated with the next synbol
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of the string, the string was ungrammatical. |n our representation, all

sequences of symbols nust have paths through the matrix; the conpleteness
of the matrix requires that there be transitions associated with each synbol
of T, regardless of the state out of which the transition leads. g need
to inplenent "taboo" transitions into our new matrix representations which
correspond to the infeasible transitions of an "old" matrix.

Let & =[Gij] be an n® order grammar matrix of the "old" representation.
Define subsets T, of T (i=1,...,n) as T:_L= T - 8 6135 T, is thus the set
of synbols for which there is no transition outJ=olf state i. [t

*
A, T (i=1,...,n); A, is the set of all strings whose paths through &

end in state i. Then we may describe the conplement L of the |anguage
n

L generated by & as: L = y ALT.T .
i=]1 1 1

Let ¥ = [Hij] be an o or der conplete matrix which has the following
properties (the iXi stence of an¥ wth these properties is self-evident):
VORA ; ¥(at) = l_/ if and only if ter, (i=1,...,n); Hzf g for j # 2 and
Hy,=T. Let CA/ be a two-class state classification of ¥ such that
G (3) = G ii j f f . Then the terminal classes Ix(,l) and 11(/2) are pre-
cisely the sets L and I, respectively; our representation has the capacity
for sequential rules. State £ of# corresponds to an "absorbing" state,
such that paths entering state £ can never leave it, regardless of the
ensuing synbol sequence. Al strings whose paths enter state f are thus
| unped together into the same termnal class. Thus if the termnal class
G () corresponds to I, and transitions into state £ occur only when the

sequential rules inplicit in the grammar are violated, we indeed inplenent

the sequential rules into our representation of the grammar.

1/ vy ¥(s) we nean that state of ¥ in which the path of the string s
t erm nat es.
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Exanpl e of the Inplenentation of a Sequential Rui:

Suppose we have a finite-state language L over the alphabet
T = (a,b,c) which consists precisely of those scrings in which there
are no adjacent occurrences of the same symbol. Taus "abe" , "abab" ,
and "bacabacbc" are in L while "abb", "aaba", and "bacebbcbe" are not.

This language can be generated by a matrix of the "ol d" representation.

One "ol d" grammar matrix for L is:
1 2 3 b
r¢ {a} ()} fc}]
g ¢ (b} {c}

N PV R
g fa} ) P

N

This coul d be transfornmed into a conplete matrix¥ as follows:
1 2 3 L 5
(¢ (a} (v} fc} ¢
6 ¢ [} () fa)
g {a} ¢ {c} (b}
g fab {1 g {e]
¢ ¢ ¢ ¢ (bl ]

The two-class grammar (¥,C), where

1 if-i1i<5
c(2) ={3 it 1.5

-

2
1]
VIE W o

has Iél) = L, and Ii((g) = 1'3 .
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Functional Partitions and Standard Forms of Conplete Matrices

Let & = [Gij] be a conplete matrix over T . State j is said to
be accessible fromstate i , denoted i-» | , if and only if there is
some sequence of synbols in T*-(e) whose path, when starting in state i ,‘
leads to state j . States i and j are said to comunicate, denoted
iesj, if and only if both i | and | -1i.

The relation "—" can be seen at once to be both transitive and

- symmetric on the states of 4: iesj and | «~ k =i -k, and
iesj=>jesi. Since, however, i =i need not hold for all states i
of &, we cannot claim”—" to be reflexive. Thus "= is not an
equival ence relation on all of the states of arbitrary & .

Define E and F as the (unique) conplenentary subsets of the
states of & :

(a) VieF and VjeE , JA1i.

(b) VieF , HjeE : | - |

(C) VieE , i e i .

W% have the follow ng well-known results fromthe theory of finite Markov
chai ns:

(i) < is an equivalence relation on the states in E .

(ii) E may be partitioned by « into sone nunber f of equival ence
classes (of States) Eps ) E, such that (a) kink = E , (b) E N E£=¢
for kK #2, and (c) for all states i , jeE, | e | <> & : i,jeEk.
Thus the E_ are equivalence classes of comunicating states, e see
that if the path of some string enters an E it can never leave that class
of states. These classes are called ergodic sets of states.

An ergodic set of states E  may consist of only one state, in which
case that state once entered, can never be left; such a state is called an

absorbing state (state 5of the matrix ¥ of the preceding section is an

exanpl e of an absorbing S£ate).
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An ergodic set E is termed cyclical or periodic if there is sone integer

p> lwhich iS the greatest comon divisor (g.c.d.) of the lengths of al
closed paths in Ek (a closed path is a sequence of transitions froma given

state back into itself). The set E s then said to have period p.

(If p=1 then g is saidto be aperiodic.) It can be shown that if pis

k
the g.c.d. of the lengths of the closed paths of any one state in E,
then p is the g.c.d. for all closed paths in E, -
Now consi der the set F of states which are not in E This set has
the property that once a path leaves the set, it can never return to
the set. The states in F are called transient states and F is called a

transient set of states. (nce a path leaves the transient set, it enters

some ergodic set and remains there. (State 1 of the ¥ matrix of the
preceding section is transient.)
It is assuned that the initial state is always State 1 of the matrix.

W can make the'following accessibility assunptions in conplete generality

(1) all states of & are accessible fromthe initial state.
(i) if &has a transient set of states, the initial state
must be in the transient set; otherwise, the initial state would
be in some ergodic set and the transient states would be redundant.
(iii) if the initial state is in an ergodic set, then there is
only one ergodic set of states in & otherw se, the additional ergodic
sets (and any transient states) would be inaccessible and hence re-
dundant. (It should be clear that any conplete & can have at nost

one transient set of states and nust have at |east one ergodic set.)
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The states of any complete mMatri x & can be rearranged (i.e., re-
labelled) insuchaway that & is partitioned into one of the followng .

standard forms:

(i)
J«=[&l] Single ergodic set of states
with transition matrix & = e,
or
(11)
: h
P | Y L
I
Iell. ¢
l_.l_._......__r.__.___..._.
=17 ;__?J__f___
? |
I
— -
. t&f:_

where the ¢'s denote regions of null transitions (enpty sets), J«FF IS

the quadratic submatrix of transitions Wthin the set F of transient
states, .&FE is“4he transition Matrix from F into the ergodic states,
and each & IS a quadratic submatrix COrresponding to the ith ergodi c
set of states E,. Furthermore, it can be shown that each ergodic sub-
matrix €can have its states arranged in such a way that each sub-

matrix & (with period pi) has the follow ng form
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where the ¢'s are null submatrices (quadratic on the main diagonal)
and the ¢ are submatrices for transitions between the P cyclic
subcl asses of g | f & is aperiodic (i.e., p; = 1), then, of course,
the formis degenerate. \W also can make the following assunptions
about a grammar (J,cj) with no loss of generality:

(i) if an ergodic set E contains nore than one state, then
not all of the states in E, are of the same termnal class; otherw se,
an identical |anguage woul d be obtained by lunmping all the states of E,
into a single absorbing state. \

(i1) there need not be nore than one absorbing state for each of
the termnal classes of the grammar; otherwise an identical |anguage
woul d be obtained by lunping together all absorbing states corresponding
to a given termnal class.

The partitions of the states of & into various sets (ergodic and

s

re Of finite

¥

transient) is a standard form borrowed from the literats
Markov chains and their associated transition matrices. W will later
find such partitioning useful for several reasons. W wll assune that

all conplete grammar matrices are placed in one of these standard forns.
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Appendix B:  Size Measures of Regular Languages

Note: Developnents in this appendix make extensive use of the matrix

representation introduced in Appendix A

Connection WMatrices

th .
Let & = [Gij] be a conplete n™" order matrix over T. Define the o™

order matrix N by N = [n-l-J] = [n(Gl-J)]- Nj is the nunber of one-step

transitions fromstate i to state j of & ; nij is also the number of strings
of length 1 associated with this transition. Consider positive integral
power s I\Ik of N W = [ngl;)] has the follow ng well-known properties.

(i) g ng?) = i =1,...nand k =123, ..

j=1

(ii) ni(jk') = n(Ggg)) , thus nlgl.{) is the number of paths of length k
fromstate i to state j, also the nunber-of strings of length k associated
with a transition fromstate i to state j. |n particular, if state 1is
the initial state, ng;) is the number of strings of length k whose paths

termnate in state j.

N is called the connection matrix of 4 and NK is called the k-step

connection matrix i &,

Let (.&,cj) be an mclass conplete finite-state grammar over T.

(i) _ k ‘ -1,. . : -
Then L = _léc_l G£j> for all k > 1. (c.‘9 (i) = {5 : C,&(J) =1i))
ISV4(1)
Let d; be the density of the ith termnal class L(i), I =1,...,m

Provi ded these densities exist,
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m
it is clear that .z_ll’di: 1.

1

. (k)
Consi der (1) - 1]
(L, ™) jecy (1)
di = clim m = clim "
EK—os» r k> r
a(s)
= - clim —J-'L
jecy (1) ke o~

Thus the existence of the d,'s for arbitrary finite-state grammars can be

(k)
established by the existence of clim {nla' ) for all j (in our genera-
k> k
r

l'ized sense of limt).

Define the matrix P, associated with &, by P =

[

N ; the elenents P; 5

s

n..

of P are then related to the elenents n.. of N by Pyy iy

y

ij k k

Letting P* - [pgk.i)] we have P = & i , sothat pfi§)= L r}_(jl‘f) for all
r r

i,3, = 1,...,n (agld for all k> 1. Hence questions about the limting
k

behavi or of anij k - « can be answered in terns of the stationarity
m .

of p.g.f]{) as k -, The stationarity of increasing powers of P is easily
investigated, since P is a stochastic transition matrix and may be associated
with a finite Markov chain.

Ve may assunme that % is in a standard form (see Appendix A) so that its
ergodic sets are readily identifiable as submatrices of & The relation
between P and & is such that we can assume without |oss of generality that

P has the form of either
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(i) a single ergodic set of n states;

or (i) atransient set of N states, and f ergodic sets of states,

consisting-of n .. . .n states, respectively: n =

theory of finite Markov chains supplies the follow ngir:é’sults:

casegizz .
There is a unique matrix P*'=[p*¥ ] guch that elim plk) _
s s — - k— o 15 =pi‘j
for 1,5 =1,...,n. |f pis cyclical (Appendix A) wth period q , then

each of the q subsequences pka+f (as k 5= ) converges to a unique

limting matrix = [p¥ :
9 PX(1) [Pﬁj(l)l in the-sense that 1im pi(kq”) I

=p¥., , >0
L
(i,j = L,...,n ; £ = 0 ksw | 1j(2)
’ se+0,q-1) - Thus

luy
¥, == * C e o
"1 q/zgopij(f) (1,§ =1,...,n) . Thus for aperiodic P, |imp* = pr.

It is well-knownthat p¥ = p* k- @

i :i,j:pj >0 for i,i',5 = 1,...,n .
Thus the IO-J represent the liniting proportion of strings whose paths

begin in state i and termnate in state j, and is the sanme for

-

I =1,...,n . These IO-J are determned by the system of |inear equations

n
i§=:1 PiP;s = Py (3 =1,...,n)
)
P, =1
i=1 *
Since these stationary Py = clim péj‘) always exist, and are strictly

k>

positive, the densities d.of the termnal classes of the grammr

(%c,)
will therefore always be positive:
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The independence of piléj = p.J of i inplies that the liniting'

proportion of strings ap whose paths terminate in state | s always pj

i ndependent of & . The significance of this result will be seen shortly.

case (ii):
W first need to conpute the constants Upseeesle ) U is the [imting
proportion of strings whose paths enter the ith ergodic set E The

B
matrix & is assuned to be in the standard form (ii) (see Appendix A).
Defi ne a.l.‘_J as the limting proportion of paths |eading out of

state i- which lead into the ergodic state j after leaving the

transient set of states (i.e., state | is the first ergodic state of the

pat h); aij is defined for i = 1,...,no and j = n+l,...,n . Then the
system
n
]
aij = Pjj .+k§£ P33Pk (i = Lieeon, 3§ = no+l,...,n)
3
a,., =1 (i =1,.0.,n)
j=n_+1 J >0

(refer to Appendix A for notation)

will always yield a unique solution for the a.l.J. From t he ai,j t he u

can be conputed as u. = Y a.. (i= 1,...,f) 3 i u, =1 .
1 . 1 . 1
JeEi i=

The accessibility assunptions of Appendix A inply that u, > 0
(i =1,...,f) . Any string a whose path enters an ergodic set Ei nust
remain there. Earlier we saw that the limting proportion pJ of strings
af whose- paths enter Ei and termnate in state j of Ei I's independent

of a ; the P can be conputed fromthe ergodic submatrix e, of Ei

1
(see case (i)). Thus the overall proportion of strings whose paths term nate
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in state j of E i I = j i
] s pJ uipj for JeE, . Si nce the uy and pj
are positive, it follows that p3> 0 for jeE (and Pj =0 for jeF ).
For the i®® termnal class of strings L(i), the density d. s
|
s conputed as

i~ & Z -1 Z Plé

d, = uy P = 1
J:l keEiﬂC'& ( | lj kGEﬂC.& (1)

The density d, wll thus be zero if and only if all states of 4 in the

.th . )
i termnal class are transient. W thus have

Theorem B.  For an arbitrary mclass conplete finite-state grammar
(&, cﬁ) over a finite alphabet, the densities dl""’dm al vays exist;:
each d, is positive'unless all states in Cégl—(i) are transient, in
whi ch case di is. zero.

Wen m= 2 (i.e., L(l) is the |anguage generated by the grammar
and L(2) is its complement), we See that the density of the |anguage

always exists and is zero if and only if C;l(l) cF.

Randonmly GCenerated Strings

Chonsky and M Iler [58] considered randonmly generated strings of |ength
such a string is one drawn fromthe "urn" X guch that all strings of
length k have equal (i.e., r'k) probability of being drawn. Chonsky
and MIler clained that as k ==, the |inmiting probability of a randomy
generated string being in any'given regular |anguage is always zero or
unity. This claimis equivalent to claimng that the density of any regular
| anguage is either zero or unity, which has been shown to be false. Two

sinple counter exanples (each with density 1/2 ) of non-zero, non- uni ty
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density regular |anguages are

(i) S—b | Sb | Xa

gven "a"'s grammar
X=a |Xb| 8a

(ii) S —»a | Sa | sb } grammar for all strings over {a,b}

whi ch begin with "a" .

For a discussion of second-order (logarithmc density) size measure
of a regular language, the reader is referred to Shannon and Weaver [L49].
They conpute the value of channel (coding) capacity C, which we showed

to be proportionalto our second-order size neasure (Section 2a.0).
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Appendix C Sanple Conputer Runs

The foll owi ng exanples were run on the Stanford PDP-10 using LISP.
The program deals with two sets of strings, the sanple set and the set
of pivots (cf. Section k4a). The functions GRINIA , GRIN2A (of zero
argunents) apply the algorithms described in Section 4 to the current sets.
The functions GRINL , GRIN2 accept the sanple set to be used as an
argument. The function GRINA sinply calls both GRINIA and GRIN2A
in succession; GRIN calls GRINL and GRIN2 in succession. The
auxiliary function PIVOTS specifies the current set of pivot symbols
and ADDS causes new strings to be added to the sanple set. The synbols
aPPB9 , GPP1d , etc. are internally created (by GENSYM names within
WEP; these correspond to the non-termnal synbols Zl,z2 used in the

text.

(GRN(A)(A A)(A A W)
(THE FINITE STATE GRAMVAR GENERATED BY GRINL IS)
(afpp9 1S THE DI STI NGU SHED NONTERM NAL)

(GPPPS A GPpPS / A)

(THE PIVOT GRAMVAR GENERATED BY GRIN2 IS)
(Gpg12 1S THE DI STI NGUI SHED NONTERMINAL)
(Gpp12 A GPp12 / A)

NIL

f

oL



(GRIN (A)(A B (AA(AAB)(ABB)(AAA)

(THE FINITE STATE GRAMMAR GENERATED By GRIN1 IS)
(Gop1s 1S THE DI STINGUI SHED NONTERM NAL)

(GPPLh A / A GPPL5)

(Gpp15 <A/ B/ AA/ BB/ AB)

(THE PIVOT GRAMMAR GENERATED BY GRIN2 |S)
(Gpp17 1S THE DI STI NGUI SHED NONTERMINAL)
(Gpp17 <A Gpp17 / GHPLT B / A)

NI L

(GRIN (B B)(BA B)(BAAB)(BAAAB))

(THE FINITE STATE GRAMVAR GENERATED BY GRINL 1)
(6pf19 |'S THE DI STINGUI SHED NONTERM NAL)

(GAP19 « B Gppep)

(Gppep « A Gpgep /  B)

(THE Pl VOT GRAMVAR GENERATED BY GRIN2 | S)
(opgel 1S THE DI STINGUI SHED NONTERMINAL)
(Gpgek « B GpHpes)

(Gop25 « A Gfges / B)

NI L

(RIN(CB(BBB(CAB)(BBAB)(CAAB)(BBAAB)(CAAAB))
(THE FINITE STATE GRAMMAR GENERATED BY GRINL 1Y) |
(Gpp27 1'S THE DI STINGUI SHED NONTERM NAL)

(Gpp27 « C GPP29 / B GPp28)

(Gpp28 « B GpP29) -

(GOP29 « A Gfp29 / B)

(THe PI VOT GRAMVAR GENERATED BY GRIN2 | S)
(Gpp35 |'S THE DI STINGUI SHED NONTERM NAL)
(Gpp35 « Gpp36 B)

(GPP36 « Gpp36 A / B GpP37 / C)

(GOP37 « B)
NI L
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(RN (A ABB)(AB)(AAABBB))

(THE FINITE STATE GRAMMAR GENERATED BY GRINL |YS)
(GAgd9 1S THE DI STI NGUI SHED NONTERMINAL )

(GBPPo « A Gpp1p)

(Gop1p « B / A GPP11)

(GBBLL « B GppLL / A GppI2)

(6fp12 « B GPP11)

(GOp1h « B)

(THE PI VOT GRAMMAR GENERATED BY GRIN2 | 9)
(G¢¢l6 IS THE DI STI NGU SHED NONTERM NAL)
(GBP16 « A Gpp17)

(Gpp17 « GPP16 B / B)

NIL

(ADDS (C)(a ¢ B)Y(AACBB)(AAAC BBB))
(WAACBBB) (AAABBB) (AACBB)(AABB)(ACB)(AB)

(c))

(GRINZA)
(GPP19 ISTHE DI STI NGUI SHED NONTERMINAL)

(Gop19 « A Gpp2p / C)
(cfpep « Gpp19 B / B)
NIL

(PIVOTS M P)
(M )

(GRIN2 (A MY)(A) (A MA MA)(A MA NA MA))
(Gpgez 1S THE DI STINGU SHED NONTERMINAL)

(o2 « A / Gfe2 M Gfpe2)
NI L
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(AmS (ArPa)apap A(AMADP A(A PA M)
(AMAMAMA) APAPA) (AVAPA) (A PA M) (A M MA) (A
PA) (AMA) (1))

(GRIN2A)

(Gppel 1'S THE DI STI NGUI SHED NONTERMINAL)
(app2k « A/ Gfpel P Gppel / apel M Gpel)
NI L

(GRIN2 (B) (AMB)(AMA MBY(AMA MA mB))
(Gpge6 | S THE. DISTINGUISHED NONTERM NAL)
(G9pe6 « B/  opper M Gppes)

(appe7 «A)

NI L

(PIVOTS M P)
(M P)

(GRIN2 (A M)(L AMMRM)(AMLAMR)(LAMARMLAMA R)
(LAMLAMARRMA)(LLAMARMARMA) (AMLAMLAMARR
(AMLLAMARMAR))

(Gopo9 |'S THE DI STI NGUI SHED NONTERM NAL)

(GBPP9 « Gpp1p M GPPLA)

(GOP1P « L Gpp12 / A)

(12 — Ghppo ®)

NI L

(RN2 (CD(ABD)ACBD(AABBD(AACBBD(AAABBBD)

( AAACBBBD) )
(Gop15 1S THE DI STI NGUI SHED NON- TERM NAL)

(GoP15 « GPHP16 D)
(Gpp16 A Gpp17 / O
(GPP17 « GPp16 B / B)
NI L
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