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Abstract: An elementary outline of the theorem-proving approach to

automatic program synthesis is given, without dwelling on technical

details. The method is illustrated by the automatic construction of

both recursive and iterative programs operating on natural numbers,

lists, and trees.

In order to construct a program satisfying certain specifications,

a theorem induced by those specifications is proved, and the desired

program is extracted from the proof. The same technique is applied

to transform recursively defined functions into iterative programs,

frequently with a major gain in efficiency.

It is emphasized that in order to construct a program with loops

or with recursion, the principle of mathematical induction must be

applied. The relation between the version of the induction rule used

and the form of the program constructed is explored in some detail.
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1. INTRODUCTION

It is often easier to describe what a computation does than it is to

define it explicitly. That is, we may be able to write down the relation

between the input and the output variables easily, even when it is difficult

to construct a program to satisfy that relation. A program synthesizer is a

system that takes such a relational description and tries to produce a

program that is guaranteed to satisfy the relationship, and therefore does

not require debugging or verification.

On a more limited scale we can envision an automatic debugging system

that corrects programs written by humans instead of merely verifying them.

We can further imagine clever compilers and optimizers that understand the

operation of the programs they manipulate and that can transform them

intelligently.

Some program synthesizers have already been written, including the

Heuristic Compiler (Simon [1963]), DEDUCOM (Slagle [l-965]), Q,A3 (Green

D9694, D969bl), and FROW (Waldinger and Lee [1969] and Waldinger [1969]).

The last three of these systems use a theorem-proving approach: in order

to construct a program satisfying a certain input-output relation, the

system proves a theorem induced by this relation and extracts the program

directly from the proof. All three used the resolution principle of

Robinson [ 19651. However, these systems have been fairly limited; for

example, they either have been completely unable to produce programs with

loops, or they introduced loops by underhanded methods.

When a theorem-proving approach is used in program synthesis, the

introduction of loops into the extracted program is closely related to the

use of the principle of mathematical induction in the corresponding proof.

The induction principle presented special problems to the earlier program-
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synthesis systems, problems which limited their ability to produce

loop programs. These problems are discussed in this paper. We propose

to use a variety of different versions of the induction rule, each of

which applies to a particular data structure, and each of which induces

a different form in the extracted program. The data structures treated

are the natural numbers, lists, and trees.

We do not rely on any specific mechanical theorem-proving techniques

here, both because we do not wish to restrict our class of readers to

those familiar with, say, the resolution principle, and because we believe

the approach to be more general and not dependent on one particular

theorem-proving method. We give a large number of examples of programs,

with the corresponding theorems and proofs used in their synthesis. The

proofs we give are informal and in the style of a mathematics textbook.

Some of them have been achieved by such systems as PROW and Q,fi3; others

we believe to be beyond the powers of existing automatic theorem provers,

but none are unreasonably difficult, and we hope that the designers of

theorem-proving systems will accept them as a challenge.

Section 2 gives the flavor of the approach illustrated by three

examples. In that section we do not prove the induced theorems, and we

present the constructed programs without describing the

In Section 3 we demonstrate the extraction process with

extraction process.

complete examples

of the synthesis of two programs without loops. We choose loop-free programs

for these examples so as to postpone discussion of the principle of

mathematical induction.

The heart of the paper is contained in Section 4, with the presentation

of the induction principles and their corresponding iterative or recursive



program forms. One of the examples in this section gives details of the

proof and program extraction process. Section 5 demonstrates a more

general rule, the complete induction principle. Section 6 suggests

applying program-synthesis techniques to translate recursive programs

into iterative programs, and presents two examples, in which a striking

gain in efficiency was achieved. Finally, in Section 7 we suggest

further research in this field.
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2. GENERAL DISCUSSION

We define the problem of automatic program synthesis as follows:

given an input predicate cp(%) and an output predicate $(z,i) ,

construct a program camputing a partial function z = f(G) such that

if 2 is an input vector satisfying ~(2) , then f(z) is defined and

$(x,f(G)) is true. In short, the predicates cp(%) and q(%,i) provide

the specifications for the program to be written.

In order to construct such a program, we prove the theorem

(v~)Ccp(~) 1 (s+GG)  1 l

The desired program is then implicit in the proof that the output

vector Z exists. The theorem prover must be restricted to show the

existence of Z constructively, so that the appropriate program can be

extracted from the proof automatically.

Frequently, cp(?) is identically true; i.e., we are interested in

the performance of the program for every input 2 . Then the theorem to

be proved is simply

r
L

or equivalently,

(V?)(SZ)~(X,Z) .

In such cases we shall neglect to mention the input predicate.

Let us first illustrate the flavor of this idea with three examples:

( 1i The construction of an iterative program to compute the quotient

and the remainder of two natural numbers;

(ii) The translation of a LISP recursive program for reversing the

top-level elements of a list into an equivalent LISP iterative

program;



(iii) The construction of a recursive program for finding the maximum

among the terminal nodes in a binary tree with integer terminals.

In each case we give the specifications for the program, the

induced theorem, and the automatically synthesized program, without

introducing the proofs of the theorems or the extraction of the

programs from the proofs. Such details will be given in the examples

of our later sections.

In our examples we express our input and output predicates in a

modified predicate calculus language. However, this is not essential

to the method; any language for describing relations may be used.

Example 1: Construction of an iterative division program.

We wish to construct an iterative program to compute the integer

quotient and the remainder of two natural numbers x1 and x2 , where

x2 0.# The program should set the output variable z1 to be the

quotient of x1 divided by x2 , and the output variable z2 to be

the corresponding remainder.

Thus, 2 = x1,x2 and z = z1,z2 . Since we are not interested

in the program's performance for x2 = 0 , our input predicate is

cp($ : 5 + 0 l _

The output predicate is

*(i&Z)  : (⌧1 = z1*⌧2+z2) A (z2 < ⌧2) l

The theorem induced is then

@Xl)  @x2) b, + 0 1 &) (3Z2)b1  = Z1*X2+Z2)  A (Z2 < X2) I) .

The program synthesizer proves the theorem, and a program such as that

5



T' l

3 (Zl'Z2) f- (YlJY2)

Figure 1: A division program

We have assumed that certain symbols, including the "minus" operator

and the "less than" predicate, for instance, exist in our progrming language;

therefore, these operators are said to be primitive. However, if the use of

the "minus" operator or the "less than" predicate is not permitted in the

language (i.e., if they are non-primitive), the above program is illegal.

This suggests that the user must always specify a list of primitive

operators, predicates, and constants that the derived program may use. If,

for example, we allow our-system to use the constant 11 '?0 , the "successor"

and "predecessor" operators, and the "equality" predicate, but not the

"minus" operator or the "less than" operator, the program illustrated in

Figure 2 might be constructed.

Henceforth, we shall assume all commonly used symbols are primitive

unless we make explicit mention to the contrary.

-7* Statements in which n-tuples of terms are assigned to n-tuples of
variables represent simultaneous replacements. For example,
(yljy2) t- (yl+1,y2-x2) means that yl is replaced by yl+l and y2

bY Y2-x2 simultaneously.
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(YlJY2'3T3)  + (“>o>xl)

I

Yl +-if Y2 = x2 -lthen yl+l else yl

Y2 t-if Yp = x2 -lthen 0 else y2+1- -

Y3 +y3-1

Figure 2: Another division program

Example 2: Translation of a recursive reverse program into an iterative

program.

We wish to translate a LISP recursive program for reversing the

top-level elements of a list into an equivalent LISP iterative program.

For example, if x is the list (a b (c d) e) , then its reverse is

(e (c d) b a) .

Here, 2=x, z=z and since we want the program to work on

all lists, cp(%) is T . The output predicate will be

$f(ii,Z)  : z = reverse(x) ,

where reverse is defined by the recursive program (see McCarthy [1962]):
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reverse(y) <= if Null(y) thenm-

else

NIL

ypend(reverse(cdr(y)),list(car(y)))  .

The function append(yl,y2) concatenates the two lists yl and y
2

.

For example, if yl is the list (a b (c d)) and y2 is the list (e) ,

then append(yl,y2) is the list (a b (c d) e) .

Thus, the theorem

(vx) (3z) [z =

The above theorem

itself. Therefore our

unsatisfactory program

to be proved is

reverse(x)] .

has a trivial proof, taking z to be reverse(x)

program synthesizer might construct the following

START7
c5HALT

This introduces the problem of primitivity again. The reverse

function should not be considered as a primitive in the programming

language in this specific task because we clearly do not want reverse to

occur in our iterative program. Henceforth, we shall assume that the

name of the program to be constructed is never primitive.

If ye allow our system to use the constant NIL, the operators

car, cdr, and cons, and the predicate Null as primitives, the program- -

illustrated in Figure 3 might be constructed.
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(y13y2) t- (x,NIL)

I

F

V

b13Y21 +- (cdr(yl)3cons(caro,Y2))--
.

I

Figure 3: The reverse program

Note that the computation of the derived iterative program consumes

less time and space than the computation of the given recursive program.

This is not only because of the stacking mechanism necessary in general

to implement recursive calls, but also because the repeated use of the

append function during execution of the recursive program introduces

redundancy in the camputation.

Example 3: Construction of a recursive maxtree program.

We wish to construct a recursive program for finding the maximum

among the terminal nodes in a binary tree with integer terminals. We

shall introduce a special language called TREE for manipulating binary trees.

The primitives allowed in our TREE language are the operators

(a) left(y) : the left subtree of the tree y ,

(b) right(y) : the right subtree of the tree y ,

9



and the predicate

(c) Ata : is the tree y a single integer?

For example, if y is the binary tree

left(y) is right(y) is 2 , Atom(y)

Atom(right(y)) is T .

I

, then

is F , and

Let 2 = x , z=z, cp(3 be T 3 and the output predicate be

*(x,2): T erminal(z,x) /\ (Vu)[Terminal(u,x)  1 u 5 z] ,

where Terminal(y13y2) means that the integer yl occurs as a terminal

in the tree y2 . The output predicate says that the integer z is a

terminal of the tree x not less than any other terminal node of x .

Thus, the theorem to be proved is

(Vx)(3z){Terminal(z,x) A (Vu)[Terminal(u,x)  3 u ,< z]} .

If we allow the max operator over the integers,

max(yl,y2) :the maximum of the integers yl and. Y2 3

to be used as a primitive, the recursive program produced might be

i

z = maxtree where

maxtree <= if Atom(y) then y- -

else~max(maxtree(left(y)),maxtree(right(y)))  .- -

If we do not allow the max operator to be used as a primitive but allow

the predicate "less than or equal to"*, the program produced might be

c
Z =- maxtree where\ ,

maxkree(y)  <= if Atom(y) then y- -

else if maxtree(left(y)) <maxtree(right(y))- - -

then

else

10

max%ree(right(y))

maxtree(left(y))  l



Note that although the symbol maxtree, the name of the program, is

not primitive, it may be used as a dummy function name in the recursive

definitions. Any other function name could have been used instead.

We feel that at this point we should clarify the role of the input

predicate. Compare the following program writing tasks: in the first,

the input predicate is ~(2) and the output predicate is $(z,z) ,

while in the second, the input predicate is cp*(z) : T and the output

predicate is I)' (i&Z) : cp(Z) 3 Jr(ii,Z) . In the first task we do not care

how the synthesized program behaves if the input 2 does not satisfy

cp(;;)  l
In the second case we insist that the program terminates even

if % does not satisfy ~(2) , but we still do not care what the value

of the output is.

The theorems induced are:

(v:)[rp(q 3 (3+P(%Z) 1

and

respectively. Surprisingly enough these theorems are logically equivalent,

even though they represent distinct tasks. This suggests that the program

extractor must make use of the input predicate in the process of synthesizing

the program. -

Suppose, for instance,

program (cf. Example 1) we

$' (ii) : T

that in constructing our iterative division

had given the systa the input predicate

and the output predicate

$'(Z,i) : x2 + 0 3(x =z
1 p2+zJ A (5 < x2> .



The theorem induced in this case would be

(~xl)(~x2)(3Zl)(3~2)[x2 + 0 = (xl = Z1*x2+z2) A (z2 <x,)3 ,

which is logically equivalent to the theorem

(Vxl)(Vx2)cx2 f 01 (3~,)(3~,>[(x, = zlox2+z2) A (z2 <x2) 13 .

However, the program extracted from the first theorem (Figure

for every natural number input, whereas the program extracted

second theorem (Figure 1) does not halt when x2 is 0 .

4) halts

from the

START7
T .

b (z13z2) c- '(arbitrary values)
.

(Y13Y2) + (03x1)

T
+ (592) + (Yl'Y2)
I

F
Y .

(Yl'Y2) t- (Y1+13Y2-x2)
‘

I
d

Figure 4: Another division program
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3. CONSTRUCTION OF LOOP-FREE PROGRAMS

We would like first to illustrate with two examples the extraction

of a program from a proof. The programs we will construct are especially

simple since they have no loops. The program extraction process in this

case may be roughly described as follows: substitutions into the output

variables in the proof result in assignment statements in iterative programs

and operator composition in recursive programs. Case analysis arguments

in the proof result in conditional branching in both iterative and recursive

programs.

Example 4: Reversing a two-element list.

We wish to construct a LISP program that takes as input a list of

two elements, and produces as output the same list with the elements

reversed.

Thus, the output predicate is

+(x,z) : (tru,) (Vu,)[x = list

and the theorem to be proved is

,(u,,u,) 2 z = list b2’U1)  1 3

(Vx)(3z){(Vul)(Vu2)[x  = list(u13u2) Z, z = list(u2,ul)])  .

We assume that any system used to prove this theorem has a large supply

of facts about the data structure and the progratmning language to be used,

stored in the form of axioms and rules of inference. We assume in

particular that the rules of inference stored within the system can handle

deductions of the first-order predicate calculus with equality such as

those we use in the proof below.

13



During the process of proving the above theorem, the system will

eventually choose the following axioms:

1. car(list(u,v))  = u ,- -

2. cdr(list(u,v)) = list(v) , and- -

3. append(list(u),list(v)) = list(u,v) .

Note that the operator list takes a variable number of arguments.

The proof will proceed as follows: Suppose x = list(ul,u2) for

some arbitrary ul and u2'
Then by Axioms 1 and 2, respectively,

* 4. car(x) = ul , and

5* cdr(x) = list(u2) .

From 4 we have

6. list(car(x))  = list(ul) .- -

Then combining 5 and 6 using Axiom 3, we obtain

7. append(cdr(x),list(car(x)))  = list(u2,ul)  .- -

Letting z be append(cdr(x),list(car(x)))  , we obtain- -

8. z = list(u2,ul) ,

which is the desired conclusion.

Now, in order to extract the program, we keep track of the

substitutions made for z during the proof. In the above proof we have

replaced z by append(cdr(x),list(car(x)))  ; therefore, the desired- -

program is simply

I]z t append(cdr(x) list(car(x)))

.

14



Example 5: The max of two numbers.

The program constructed in this example contains a conditional

branch but no loops. We wish to find the maximum of two given integers.

Thus, the output predicate is

jr(xl,x2,z) : (z = x1 V z = x2) A z ->xl A z ,> x2 ,

L

L

and the corresponding theorem is

(~X,)(~X,>(~Z)[(~  = X1 v Z = X2) A Z Lx1 A Z ->X21 l

The proof proceeds by case analysis; it may appear poorly motivated,

but it is well within the capacity of existing theorem-proving programs.

Translating the theorem into disjunctive normal form, we have

ml) (vx,) (34 c (z = xlA z >xlA z 2x2) V  ( z  =x2A z >X_ 1 A z ,> 5) 1 l

If we assume (u = v) 3 (u 1 v) as an axiom, we can simplify the above formula to

m,> 07x2) (34 [ (z = xlA z 2x,)  v ( z  = x2A z _>y)l .

Now suppose xl-> x2 ,l then if we let z be x1 , the first disjunct

is satisfied. On the other hand, suppose x, <x3 ; then if we let z be x, ,

the second disjunct is satisfied.

Since the substitution we made for z depends on whether or not xl

was greater than or equal to x2 , the program extracted from the proof

of the theorem is

START7
I z cif x1 ,> x2 then x1 else x- 2 I

i. cc5HALT

15



The reader who is unsatisfied with our seat-of-the-pants description

of the program extraction process may examine any of the more rigorous

accounts in the literature (e.g. Green [1969a] [ 1969b 1, Waldinger and

Lee [1969], Waldinger [ 19691, and Luckham and Nilsson [1970]).

The above programs are clearly of limited interest since neither

contains a loop. In order to construct a program with loops, application

of some version of the principle of mathematical induction is necessary.

Therefore, in the next section we digress into a discussion of the

induction principle.
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The induction principle is most c-only associated with proving

theorems about the natural numbers, but analogues of it apply to other

data structures, such as lists, trees,and strings. Furthermore, for each

data structure there are many equivalent forms of the principle.

Mathematicians use whichever version is most convenient. Similarly, the

theorem prover chooses an appropriate induction principle from a given

supply during the course of the proof. This choice directly determines

the form of the program to be constructed, since each induction rule has

an associated program form stored with it. Therefore, if we want to

restrict the form of the extracted program, we must limit the set of

available induction principles accordingly.

4.1 Natural numbers

We shall discuss four versions of the induction principle for the

-natural numbers; two will be appropriate for writing recursive programs

and two for writing iterative programs. In each class, one rule will be

called a "going-up" principle and the other a "going-down" principle.

We will illustrate each of these with a different version of the factorial

program. The output predicate is

$(x,z) : z = factorial(x) ,

where

factorial(y) <= if y = 0 then 1 else y*factorial(y-1)  .- -

This example will illustrate clearly the difference between the programs

generated by using "going-up" induction and rrgoing-downrr  induction: the

i 17



"going-up" programs compute x! in the order 1 , 1.2 , 1.203 3 l **3

while the "going-down'* programs compute x , x*(x-l) , x*(x-1)0(x-2) ,... .

The proofs required for the synthesis of the programs use two

axioms induced by the above definition:

factorial(O) = 1

and

u > 0 2 [factorial(u) = u*factorial(u-1)] .

We will not include those proofs, but merely will give the programs

extracted, in order to illustrate the relationship between the form of

the induction principle used in the proof and the form of the constructed

program.

(a) Iterative going-up induction

The reader is probably familiar with the most common version of

the induction principle over the natural numbers,

do)

(VY,)[a(y,)  = c7(y1+l) 1

(Wa(⌧)  l

Intuitively, this means that if a property 0 holds for 0 and if

whenever it holds for yl it holds for yl+l , then it holds for every

natural number x . We call this version iterative going-up induction.

For our purpose we use a special form of the principle in which

a(y1) is (3Y2)B(Yl'Y2) 3 where B still represents an unspecified

property. The induction principle now becomes

18



(3Y2)A(0,Y2)

(vYl)[(3Y2)HY13Y2)  1 (3Y2)NYl+l,Y2) 1

(W@Y,)r"3(X,Y,)  l

The program form associated with this rule is illustrated in Figure 5.

If the theorem to be proved happens to be of the form

(Vx)(34B(x,z) 3

and if going-up induction is applied, the program extractor then knows

that the program must be of the form illustrated in Figure 5.

START7
*-

I
(Y,,Y,> + (034

4
f >

(Y,,Y,) c (y1+1,dY13Y2))

Figure 5: Iterative "going-up" program form

The constant a and the function g(y,,y,> are unspecified in

the above form. The task of the program constructor is now to write

subroutines to ccxnpute a and g in such a way that the program of

Figure 5 will satisfy the desired relation. This is done as follows.

19



The theorem to be proved is of the form (VX)(~Z)~(X,Z)  . This

is precisely the form of the consequent of the induction principle.

Therefore, if we can prove the two antecedents, then we are done. This

suggests-that we attempt to prove the two lemmas:

(3Y&3(03Y2) 3
L

and

(B) WY,)  [ (3Y2MYl3Y2) = (3Y2)n(Yl+13Y2)  1 3

orequivalently, translating into prenex normal form,

0 )1 (VYl)(VY2)(3Y;)[n(Y13Y2)  = n(y,+LY;Il  l

The proof of Lemma A generates a subroutine with no variables

that yields a value for y2 satisfying B(0,y2) . This is the

desired definition of the constant a ; hence

(1) n(o,a> is true.

The proof of Lemma B* generates another subroutine which yields

a value of y: in terms of y
1 and y2 . This subroutine provides

a definition of g(yl,y2)  satisfying

(2)

ow (3z)B(x,z). We have now completely specified a program that

R(yl,y2) 2 B(yl+Ldyl"Y2))  for all yl and y2 .

The proof of the lemmas concludes the proof of the theorem

computes a function z = f(x) satisfying B(x,f(x)) for all values of x .

For the suspicious reader we are ready to verify the above assertion.

Consider the iterative "going-up" program form labeled as in Figure 6.

20



f - - - - - - - - - - - - R(Y,, Y*)

T

F
W *

(Yy YJ + (Y1+1, dY1, Y2) 1
* L

I

Figure 6: Labeled iterative 'going-up' program form

We will use Floyd's approach [1967] and show that whenever control passes

through arc Q! , R(Yp Y& is true for the current values of yl and y2 .

Furthermore, whenever control passes through arc B , B,(x, 4 is true

for the initial value of x and the final value of z .

Beginning at the START node, we set yl to 0 and y2 to a ,

and so when we pass through arc Q! , n(Y,>Y*> (i*ev n(o,a> >

is true by (1).

Now suppose that at some point in the execution, control is passing through

arc a and currently R(yl,y2) is true and yl # x . Then, by (2)

(3) w(Yl+b 63b19y2)) is tme.

Traveling around the loop we simultaneously set yl to yl+l and y2

to dY,,Y,> and reach arc a again. That HY1,Y2) is satisfied at

this time follows directly from (3) and our assignments to y1 and y2 .

Clearly, wemust at some time reach arc a with yl = x , since x

is a natural number. Then we set z to y2 and pass to arc p . Since

R(yl>Y,) was true at arc a and yl = x , n(x, 4 is true at arc /3 .

This concludes the Broof that the program constructed has the desired

properties.

21



Example 6: Iterative "going-up" factorial program.

We wish to construct an iterative "going-up" program for camputing

the factorial function. The theorem to be proved is

(Vx)(Sz)[z = factorial(x)] .

Applying the iterative going-up induction principle (with B(y,,y,) being

y2 -- factorial(yl) )) we are presented with the two lemmas

(A) (3y,)[y, = factorial(O)]

and

(B 1t ’ (Vyl)(Vy2)  (3y9 [[y2 = factorial(yl)]  3 [yg = factorial(yl+l)]j  .

The lemmas are proven, and the values for y2 and y2 (i.e., a and

g(yl,y2) ) found are 1 and (yl+l)*y2 , respectively. The program

extracted is illustrated in Figure 7.

Figure 7: Iterative "going-up" factorial program

Note that for simplicity we have assumed in the above discussion that the

program to be constructed has only one input variable x and one output

variable z . This restriction may be waived by a straightforward generalization

of the induction principle given above as illustrated in Examples 13 and 15.
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(b) Recursive going-up induction

We present another going-up induction principle that leads to a

different program form. The principle

a@>

WY,) [Yl f 0 A dY1-Q = a(Yl> 1

me)

is logically equivalent to the first version but leads to the construction

of a recursive program of the form

z = f(x) where

y = 0 then a else g(y,f(y-1)) .

We call this version recursive going-up induction. Note that the f is

a dummy function symbol that need not be declared primitive.

We have omitted the details concerning the derivation of this

program but they are quite similar to those involved in Section (a) above.

(c) Iterative going-down induction

L

Another form of the induction principle is the iterative going-down

form

II - The reader may verify that this rule is equivalent to the recursive

'c,
going-up induction, replacing Q by -0 'and twice using the fact

that p A. q 3 r is logically equivalent to - r A q 3 -p .

In this case we use a special form of the principle in which

a(~,) is of the form (3y2)B(x,yl,y2)  , where x is a free variable.

i L-

1

!
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The induction principle now becomes

@Yl)(3Y2)n(x,Yl,Y2)

(tTy1)[~~  k 0 A @Y~)R(x,Y~,Y~)  2 (~Y~)&GY~-L Y,) 1

NY2)nW,Y2) l

Suppose now that the theorem to be proved is of the form

(W(34B(x,O,4  l

The theorem may be deduced from the conclusion of the above induction

principle. If the iterative going-down induction principle is used, the

program to be extracted is automatically of the form illustrated in

Figure 8.

,*,

(Yl,Y,> + (Y1-LdX,Yl'Y2)) 1

Figure 8: Iterative "going-down" program form

Thus, all that remains is to construct subroutines to compute the functions

hi(x) Y h2(X)  Y and &Yl�Y☺  l

The antecedents of the induction principle give us the two lemmas

to be proved

(A) O-Y,> (3Y2MX,Yl,Y2)

- and



(B) (vYl)[~l+ 0 A (3y2)n(xr~l~~2)  1 (~Y~)@~YY~-~YY~)]  Y

or equivalently,

(B )t (vYl)(v~2)(3y;)[yl  # 0 A n(x,yl~Y2) 1 ~(⌧,~~-l,Y;)l
l

The proof of Lemma A yields subroutines to canpute yl and y2 in

terms of x, which define the desired functions hi(x) and h2(x) y

respectively. The proof of Lemma BT yields a single subroutine to

compute y: interms of x, yl, and y2 , thus defining the desired

fbmtion dx, yly y21 . The program is then completely  specified, and its

correctness and termination can be demonstrated using Floyd's approach,

as was done before.

Note that iterative going-down induction is of value only if the

constant 0 occurs in the theorem to be proved. Otherwise, the theorem

prover must manipulate the theorem to introduce 0 .

Example 7: Iterative "going-down" factorial program.

We wish to construct an iterative "going-down" program for computing

the factorial function. The theorem to be proved is again

(vx)(3z)[z = factorial(x)] .

The theorem contains no occurrence of the constant 0 . Thus, the

theorem prover tries to introduce- 0 , using the first part of the definition

of the factorial function (i.e., factorial(O) = 1) and its supply of

axioms (u.1 = u , in particular), deriving as a subgoal

(Sz)[factorial(O)*z  = factorial(x)] ,

where x . is a free variable. This theorem is in the form of the consequent

of the iterative going-down induction, i.e., (3y2)B(xyOyy2)  ; hence, the

theorem prover chooses the induction hypothesis @x,ylyy2) to be

factorial(yl)*y2 = factorial(x) .

25



(4
and

I(B 1

(3yl)(3y2)[factorial(yl)*y2  = factorial(x)] ,

(VY~)(~Y~)(~Y&~  { 0 A [factorial(yl)*y2 = factorial(x)]

2 [factorial(yl-1)-y: = factorial(x)]3  .

The values obtained for yl, y2 , and yz (i.e., hi(x) Y h2(4 Y and

g(xyyl,y2) ), respectively, are x , 1 , and yl*y2 . The program

constructed is illustrated in Figure 9.

The lemmas proposed are

Figure 9: Iterative "going-down" factorial program

(d) Recursive -going-down induction

The recursive going-up induction was very similar to the

going-up induction. In the sme way, the recursive going-down induction,

(3YlkaY1)

(VY,) [a(y,+U 3 a(yl) ]

iterative

a(o) I
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is very similar to the iterative going-down induction. The form we are most

interested in is

(3Y&%x’ OY Y& ,

where x is a free variable.

If the rule is used in generating a program, the two appropriate

lemmas allow us to construct hi(x) , h2(x) anet g(xyylyy2) as before,

and the program extracted is

t

z = f(x) = f'(x,O) where

y = hi(x) then h2(x) else g(x,y,ft(x,y+l)) .

Example 8: Recursive ttgoing-down" factorial program.

The program we wish to construct this time is a recursive "going-down"

program to compute the factorial function. Again the theorem

(Vx)(3z)[z = factorial(x)]

is transformed into

(3z)[factorial(O)*z = factorial(x)] .

We continue as before and the program generated is

f'(x,y) <= if y = x then 1 else (y+l)*ft(x,y+l) .

L
27
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4.2 Lists

Ourtreatmentsof  lists and natural numbers are in some ways analogous,

since the constant NIL and the function cdr in LISP play the same role as

the constant 0 and the 'predecessorTt function, respectively, in number

theory. The induction principles of both data structures are closely

related, but since there is no exact analogue in LISP to the %uccessorrt

function in number theory, there are no iterative going-up and recursive

going-down list induction principles. Hence, we shall only deal with two

I induction rules in this section: recursive (going-up) and iterative

(going-down) list inductions. In the discussion in this section we shall

omit details since they are similar to the details in the previous section.

Weshallillustrate the use of both induction rules by constructing

two programs for sorting a given list of integers. The output

predicate is

where

jf(x,z) : z = sort(x) ,

(Vy)(Vz)([z  = sort(y)] 3 g Null(y) then Null(z)

else (Vu)[Member(u,y@z  =merge(u,sort(delete(u,y)))]).- -

Here,

Member(u,y) means that the integer u is a member of the list y ,

delete(u,y) is the list obtained by deleting the integer u from the

list y , and

merge(u,v) , where v is a sorted list that does not contain the integer u ,

is the list obtained by placing u in its place on the list v ,

so that the ordering is preserved.
-
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The theorem to be proved is

(Vx)(az)[z = sort(x)] .

(a) Recursive list induction

The recursive (going-up) list induction principle is

i
a(NIL)

L. <VYll [- Nm(yl) A a(cdr(Yl)) = ab,) 1

The program-synthesis form of the rule is

/<L

,

i

i

L

i

i

i

(3Y2)B(NILYY2)

(~Y~~[--N~l(Yl) A (3Y@odr(Yl)YY2)  2 (3Y2)B(Yl’Y2)  1

(Vx)(3Y2)B(x,Y2) l

The corresponding program form generated is

E

Z = f(x) where

f(y) <= if Null(y) then a else g(y,f(m-

Example 9: Recursive sort program.

The sort program obtained using the recursive list induction

principle is

z = sort(x) where

sort(y) <= if Null(y) then NIL else merge(car(y),sort(cdr(y)))  .m- - -

(b) Iter'ative list induction

The reader can undoubtedly guess that the iterative (going-down)

list induction principle is

29



(ml)a(Yl)

(v$ I- i\Jull(~~) A a(Q 3 a( et-(Q) 1

CI(NIL)  l

We are especially interested in the form

where x is a free variable.

The corresponding program form generated is illustrated in Figure 10;

it employs the construction known among LISP programmers as the '%dr loop".

r b

F

3 ,
(Yl,y,) t- (cwY&dxYYyY2))

I

A

Figure 10: Iterative list program form
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Example 10: Iterative sort program.

Using the iterative list induction, we can extract the sort program

of Figure 11.

Figure 11: Iterative sort program

4.3 Trees

There is no simple induction rule for tree structures which gives

rise to an iterative program form, because such a program would have to

use a cconplex mechanism to keep track of its place in the tree. However,

there is a simple recursive tree-induction rule:

(Fry11 M~o~Y~) = a(Yl> I

(Vy,)[-Atom A a(left(yl)) A c7(right(yl)) 3 a(y,)]

(Wabd .

In the automatic program synthesizer we are chiefly interested in the

following form

31



(Yy1) [Atodyl) = (3Y2)W(Yl'Y2)  1

@y~)[NAtom(Y~) A (3y2)@left(Yl)~Y2) A k2)B(ri&t(yl),y2) I (3y2)/$yl,y2)]

(Vx)(3Y&xYY2)  l

If we want to prove a theorem of form (VX)(~Z)~(X,Z) using tree

induction, we must prove two lemmas

(VYl) bdYl) 2 (3Y2)@Yl,Y2)  1 Y

or equivalently,

(A >t (VYl) @Y,> [-4Yl) = BCYl’Y2) 1 ,

and

(B) @Yl> [- Atom A @@%left b-& Y@ A @y2)~bightbl)  Yy2)  3 @Y&Y& 1 Y

or equivalently,

From the proof of Lemma At we define a subroutine h(yl) to compute y2

in terms of y, . The proof of Lemma Bt yields a subroutine g(yl,y2,y$)
-L

to compute yz in terms of yl, y2 and y; .

The corresponding program form is

z = f(x) where

f(yl) <= if Atom then h(yl) else g (Y, fY

Note that this program form employs two recursive calls.

Example 11: Recursive maxtree program (see Example 3).

We wish to give the synthesis of a TREE recursive program for finding the

maximum among the terminal nodes in a binary tree with integer terminals.

This will be the first detailed example of the construction of a program

-
containing loops.
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The theorem to be proved is

(Vx)(Sz>[z = maxtree( ,

where

(1) [z = max%ree(x)] - [T erminal(z,x) A (Vu)[Terminal(u,x) 2 u ,< z]] ,

and

(2) Terminal(u,v)  <= if Atom(v)m-

We assume that maxtree itself is

The theorem is of the form (Vx)(3z)B(x,z)  ,where S(x,z) is

then u = v

else Terminal(u,left(v))  v Terminal(u,right(v))  .

not primitive.

z = maxtree . Taking z to be y2 , this is precisely the conclusion

of the tree induction principle. Therefore, we apply the induction with

n(y,,y,) : Y2 = m=-(yl)  l

Hence, it suffices to prove the following two lemmas:

(A') (Vyl)(3y2)[Atom(yl) 2 y2 = m=tr4y,>l ,

and

(B’) (VY, ) (VY,>  (VY:)  (3~:) [: - Atody, )
I L L L

A y2 =

A y; =

. 3y;=

maxtree(left(yl))

maxtree(right(y.$)

m~r4yl) 1 .

The proof of the lemmas will rely on the definition of maxtree (Axiom 1)

and the following two axioms induced by the recursive definition (2)

of the Terminal predicate:

(2a) Atom(v) 3 [Terminal(u,v)  = (u = v)] ,

and

w -Atam(v)~[Terminal(u,v)n  [Terminal(u,lef%(v)) V Terminal(u,right(v))].].

33



1

First we prove Lemma At. By Axiom lit follows that we want to prove

(VY,)@Y,) IAtOdYJ 1 [Te~indy2,yl)  A (Vu)[Teminal(uyyl)  3~5~~1  I] ,

or equivalently, using Axiom (2a) (with u being y2 and v being yl) ,

(VYl)(3Y2)cAtom(Yl) = [Y2 =Y1A (W[u =Y13U-<Y2111  l

It clearly suffices to take y2 to be yl to complete the proof of

the lemma. Therefore, the subroutine for h(yl) that we derive from

the proof of this lemma is simply h(yl) = yl .

The proof of Lemma Bt is a bit more complicated. Let us assume

that yl is a tree such that -Atom and let y2 = m&ree(lef't(yl))

and Y; = maxtree(right(yl)) . We want to find a y: (in terms of

YlY Y2 Y and Y&l for which y% = maxtree . This means, by Axiom 1,

that we want y: such that

Terminal(yz,yl)  A (V~)[Terrninal(u,y~)  =, u ,< yl] .

This implies, by Axiom (2b) and our assumption -Atom , that we

have to find a yg satisfying the following three conditions:

( >i Terminal(y~,lef't(yl))  V Terminal(yE,right(yl))  ,

(ii) (V~)[Terminal(u,lef't(y~)) I> u 5 y;l ,

and

(iii) (V~)[Terminal(u,right(y~))  1-u 5 y:] .

It was assumed that y2 = maxtree(left(yl)) and

y; = maxtree(right(y1)) . Thus, using Axiom 1, condition (i) implies- -

t& Y: ,< y2 V YE 5 Y; y condition (ii) implies that y2 ,< yi , and

condition(iii) implies that y; 5 y: . This suggests that we take yi

to be ma4y2,y;) Y which indeed satisfies the three conditions. Therefore,
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is

subroutine for g(y,,y,,y$) that we extract from the proof of this lemma

dY,YY,,y;) = max(y2,y;) l

The complete program derived from the proof is

Z = maxtree where

maxtree <= if Atom then yl- -

else ma&maxtree(lef%(yl)),m&xtree(right(yl)))  .- -

35
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59 COMPLETE INDUCTION

The so-called complete induction principle is of the form

(VY, 1 C W-4 [U < Y, = a(U) I = ah, 13

Intuitively, this means that if a property fl holds for a natural number

yl whenever it holds for every natural number u less than yl , then it

holds for every natural number x .

Although this rule is in fact logically equivalent to the earlier

number-theoretic induction rules (see, for example, Mendelson [1964]),

we shall see that it leads to a more general program form than the previous

rules, and therefore it is more powerful for program-synthetic purposes.

However, it puts more of a burden on the theorem prover because less of

the program structure is fixed in advance and more is specified during

the proof process.

We are most interested in the version of this rule in which a(y,>

has the form @Y2MYlYY& Y i.e.,

(VYl> E (v4 L-u < Yl = (5'2)BoYY2) 1 3 (3Y2)B(YlYY2) 1

(W (3Y2MXJY2) '

Thus, in order to prove a'theorem -of the form

(W W~bY 4 Y

it suffices to prove a single 1-a of the form

(A 1t (iY1) m-4 WY,) NY;) Ch < Yl = Bb, Y2) 1 1 a(Y,,Y;) 3 l

Fram a proof of the lemma we extract one subroutine for camputing the

value of u in terms of yl (called NY11 )Y and another for computing

the value of yl in terms of yl and y2 (called g(y,,y,) ). These
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functions satisfy the relation

0) [h(yl) < yl 2 B(h(Y1),y2)  1 = n(yl,dyl~Y2)) for every yl and y2 .

The program form associated with the complete induction rule is

then the recursive program form:

(2) I Z

f

= f(x) where

(Y) <= dYYf(h (Y)))  l

This form requires sOme justification.

Assume that the function f satisfies the output predicate

(3) B(UY f(u) 1 for all u < x .

We will try to show

n(⌧, f(4) l

First, suppose h(x) <x . Then by the hypothesis (3), m-wYfoGH)  l

Therefore, from (1) (taking yl to be x and y2 to be f(h(x)) ) we

obtain B(x,g(x,f(h(x)))) , i.e., by (2),  B(⌧,f(⌧)>  .

Now, suppose h(x) ,> x . Then taking yl to be x , -the antecedent

of (1) is true vacuously, and we conclude .B(x,g(x,f(h(x))))  , i.e., by (2),

nb, f(x)) .

Example 12: The recursive quotient program (see Example 1):

We want to construct a recursive program to find (the integer part

of) the quotient of two natural numbers x1
and x2 , given that x2 k '0 .

Our output predicate is therefore

~(xlyx2,z) : (3r)[xl = z-x2+r A r < x2] .

The theorem is then

(Vx,)(Vx,){x,  # 0 I> (3z)(3r)[xl  = z*x2+r  A r < x2]] .

Assume now that x2 is a fixed positive integer. Then we wish to prove

(Vxl)(3z)(3r)[xl = zmx2+r A r <x2] .

- The theorem is now in the ssme form as the conclusion of the complete
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induction rule, taking x to be x1 , y2 to be z , and '

B(Yl,Y2) : (3r)[Yl = y2-x2+ r A r <x2] .

Therefore, the single lemma to be proved is

(A') (vyl)(3u)(v~,)(34([u  <ylx (b)[u = y2*x2+r A r <x2]]

2 (3r)[yl = yz=x2+r  A r <x2]] ,

or equivalently,

(v~~)(3u)(V~~)@yg)(Vr)(3r*){[u  < ~~2 h = y2*x2+r A r <x2]]

= [Yl
*

= y2=x2+r*  A r* <x2]] .

If Yl < 35 we satisfy the conclusion of the lemma by taking yz to

be 0 (and r* to be y,) . If, on the other hand, yl 2 x2 , we take

*
u to be yl- x2 , y2 to be y2+l (and r* to be r) ; then the

conclusion follows using an appropriate set of axioms for arithmetic.

The program derived is then

z = div(xl,x2)w h e r e

div(yl,x2) <= if yl < x2 then 0 else div(yl - x2,x2)+1 .- -

Although the program we constructed has two input variables, we were

able to use the single-variable induction principle in its synthesis by

treating the second input x2 as-a free variable. Typically when constructing

programs with more than one input variable, we shall have to use a suitably

generalized induction rule.

The next example will use two input variables, and we will not be

able to treat either of them as a free variable. Therefore we take this

opportunity to demonstrate how to generalize the cclmplete  induction

principle to construct programs with two inputs.
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The form of complete induction was

(VY,) C (VU> 1~ < yl = a(U) 1 = abl> 3

Wa(x) .

For the two-input-variable case, we take a(yl) to be

(Vy2) (3y3)B(ylyy2,y3)  , obtaining the version

Suppose we want to prove a theorem of the form

(~x,)(~x,)(34n(x,,x,,z>  l

This is the same as the consequent of the complete induction rule. Thus,

it suffices to prove the antecedent as a lemma:

or equivalently,

(A') ('dyl)(vy2)(3u)(3~;)(v~3)(3~;)i[u<~l~B(u~~;,~3) 1 W(Y;,Y~,Y;)]  .

From the proof of this lemma we extract three subroutines

hl(YIYY& Y h&YlYY2) , and g(y ,y ,y )
12 3

corresponding to u ,
*

y2 I and Y; Y respectively. The program extracted from the proof

of the theorem will be of the form

z = f(xlyx2) where

f(Yl'YJ  <= g(Y,YY,,f(h,(Y,YY,)Yh2(YlYY2)))  l
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Example 13: The greatest common divisor program.

The program to be constructed must find the greatest common

divisor (gcd) of two positive integers x1 and x2 . For simplicity,

we ignore the possibility of x1
or x2 being 0 , and the theorem to

be proved is then

@xl> @x2> (34 [ z = gcd(xl,x2)  ] , ’

where

[z = gcd(xl,x2)]  = {zlxl A  z  lx2 A vu[ulxl  A u\x2 I> u ,< z]} .

Here, dv means "u divides v evenly" . Recall that

should not be considered to be primitive.

The theorem is in the same form as the conclusion of the complete

the function gcd

induction rule (for two input variables), taking y3 to be z , and

NY-l-Y  Y,,Y,)  : Y 3  = gcd(YlYY2)  l

Therefore, we must prove the following lemma:

(VY,)  OYJ (34 NY;) (VY3) PY;, Ch < Yl=  Y3 = gcG4Y;~l

= Y"3 = gcd(YlYY2)  3 l

This is one of the proofs we consider to be a challenge for existing

theorem-proving systems. We suggest taking

U to be Y-dYgY Y1>

and y*
3

to be if rem(y2,yl) = 0 then y else y ,- - - l - 3

where =dYp Y1> is the remainder when y2 is divided by yl .

Therefore,

hl(Yl’Y2) is =dY2YYl) Y
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he(Y1YY2) is

and. g(yl,y2,y3) is if rem(y2,yl) = 0 then yl else y .VP - 3

The cmplete gcd program extracted is therefore

yl y

c

z = gcd(xl,x2) where

gcd(Yl,Y2)  <= if r~(y,,y,) = 0 then yl

else gcd(ra(Y2YYl)YYl)  l- -
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L 6. TIXNSLATION FROM REXXRSION TO ITERATION

Iterative programs and recursive programs compute the same class

of functions (namely, the partial recursive functions). However,

L

\

c

recursive programs are canmonly far more inefficient in time and space

than the corresponding iterative programs. Although it is straightforward

to transform an iterative program into an equivalent recursive program,
,

L
the reverse transformation presents difficulties. (See, for example,

McCarthy [1963a], Strong [1970], and Paterson and Hewitt [1970].)

c LISP and ALGOL compilers, for example, translate recursive programs

i

i

into iterative programs that use stacks, without changing the essence of

the computation. Using program-synthetic techniques, it is sometimes

possible to perform the transformation in such a way that the resulting

iterative program performs the computation in a fundamentally better way
,

/

L than the original recursive progrsm. Although we have no mechanism to

ensure this improvement in general, we shall see how this occurs in the

L two examples presented in this section, the first concerning the reverse

: function and the second, the Fibonacci sequence.

rI
L

Example 14: The reverse function (see Example 2).

We are given a recursive reverse program:

lb-

ih

Z = reverse(x) where

reverse(y) <= if Null(y) then NIL- -

7

L

else append(reverse(cdr(y)),list(car(y)))  .- -

As we mentioned earlier, this definition is quite inefficient since it

i

L
involves repeated computation of the append function, which in itself

requires a relatively complex computation.

L
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The theorem to be proved is

(Vx)(az)[z = reverse(x)] .

Recall that the reverse function is not considered to be primitive l

For efficiency we also omit the append function from the list of

primitives.

Since we want to write an iterative program, we must use the

iterative list induction rule:

(VY+J!JWYl)  A (3Y2)n(xYYl,Y2)  =) (3Y2)n(x,  Cdr(Yl),Y2) 1- -

(3Y2)@x,NIL,Y2)  l

Aside from this rule we have two axioms that result directly from the

given definition of the reverse function:

(1 1a reverse(NIL) = NIL ,

(lb) -Null(y) 1 [reverse(y) = append(reverse(cdr(y-)),list(car(y)- - HI .

Furthermore the system will use the following axioms chosen from its supply

during the course of the proof;

(24 append(NIL,u)  = u ,

m
(3)

wend(u,NIL) =

spend(u,append

UY

v,w)) = append(append ,(u,v),w) y and

(4) wend(list(u),v)  = cons(u,v) .

The theorem to be proved, (vx)(sz)[z = reverse(x)] , is not in

the correct form to apply the iterative induction because NIL does not

occur in it. However, by Axiom 2a and the definition of reverse
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(Axiom la), our theorem prover will translate the theorem in& the

following satisfactory form:

(v~>(3~>[~end(reverse(~L),z)  = reverse(x)].

Therefore, we can apply the iterative list induction rule with

~(xyylyy2) : append(reverse(y,),y,)  = reverse(x)

and the two lemmas to be proved are:

Y

(A) (3yl)(3y2)[append(reverse(yl),y2)  = reverse(x)] ,

and

(B >t (~Yl)(~~2)(~&N~l(~l)  A append(reverse(yl),y2)  = reverse(x)

1 append(reverse(c~(yl)),y~) = reverse(x)].

Using Axiom 2b, the system chooses yl to be x and y2 to be NIL ,

concluding the proof of L-a A.

To prove Lemma Bt, the system assumes -Null(yl) and

append(reverse(yl),y2) = reverse(x) . Using the definition of reverse

(Axiom lb), and the assumption that -Null(Yl) Y it derives

reverse(y,) = ~pend(reverse(cdr(yl)),list(car(yl))) .- -

Substituting in the hypothesis, it deduces

append(a~pend(reverse(cdr(yl)),list(car(yl))),y2)  = reverse(x) .

Using the associative rule for wend (J&i,orn  3), it obtains

.append(reverse(cdr(yl)),~end(list(car(yl)),y2))  = reverse(x)- -

Then, from,Axiam 4, it derives

append(reverse(cdr(yl)),cons(car(yl),y2))  = reverse(x) .- -

Camparing this formula with the desired conclusion, the system takes

y: to be cons(car(yl),y2)  , concluding the proof.- -
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Such a proof is well within the capabilities of existing theorem

provers. In fact, the above proof of Lemma Bt has actually been found

(see Brice and Derksen [1970]) using the &A3 theorem-proving system

(Green and Raphael [1968]) with Morris's E-resolution [1969].

Since in the proof of Lemma A, y, and y3 were replaced by x

*
and NIL, respectively, and in the proof of Lemma Bt, y2

by cons(car(y,),y,) y the iterative progrsm illustrated- -

will be constructed. Note that this program is far more

its,recursive counterpart.

was replaced

in Figure 12

efficient than

Figure E: Iterative reverse program

Example 15: The Fibonacci sequence.

The advantage of iteration over recursion is particularly

in the computation of the Fibonacci series

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .,

apparent

each of whose terms (after the second) is the sum of the preceding two.

Given a natural number x , the value of the x-th Fibonacci number
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is most simply defined by the recursive program.
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Z = fibonacci(x) where

fibonacci(y) <= if (y = 0 V y = 1) then 1

else fibonacci(y-l)+  fibonacci(y-2) .

In practice this program is grossly inefficient, involving many repetitions

of the same computation. We would like to use our approach to translate

this progrsm into an efficient iterative program with no redundant

camputation.

The theorem to be proved is simply

(vx)(az)[z = fibonacci(x)] .

The recursive definition of the fibonacci function implies the axioms:

(1 >a ( u = 0 V u = 1) 3 fibonacci(u) = 1,

ON (u 2 2) 2 fibonacci(u) = fibonacci(u-l)+ fibonacci(u-2) ,

or equivalently,

fibonacci(u'+2)  = fibonacci(u'+l)+  fibonacci(ut)

Axiom la suggests to the theorem prover that the case

be treated separately; in.this event, we take z to be 1

output relation is satisfied.

It remains to prove

(VX){X 12 1 (Bz)[z =fibonacci(x)]j ,

or equivalently (using Axiom lb)

.

( x = OVx=l)

, and the

L (vx)[x ,> 2 5 (sz)[z = fibonacci(x-1) + fibonacci(x-2)])  .
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Thus, taking xt to be x-2 ,we have

(Vxt)(3z)[z = fibonacci(x'+l)+ fibonacci(xt)] .

Since the "plusrt operator is primitive, taking z to be zl+z2 ,

it suffices to prove

(Vxt)(3zl)(3z2)[zl  = fibonacci(x,+l) A z2 = fibonacci(x')] .

Note that we now have two output variables z1 and z2 rather than

one. However, the proof procedure is precisely analogous to the single-

variable case; the iterative going-up induction principle used is

(BX) (5,) (3Y3)BCxJ  Y2Y Y,) Y

with

B(yl,Y2Y  Y3> : Y2 = fibonacci(yl+l) A y3 = fibonacci(yl) .

Taking z1 to be y2 and z2 to be y3 (i.e., z is y2+y3

the conclusion of this induction rule is identical to the modified

theorem. Thus, the two lemmas to be proved are

(A) NY,> (3Y3) [Y, = fibonacci(1)  A y3 = fibonacci(O)]

and

@'I (VY,) (VY2)  WY31

> Y

3Y9(3Y9UY2= fibonacci(yl+l)Ay3  =fibonacci(yl)]  3

=fibonacci(yl+2)Ay;=fibonacci(yl+l)]) .

Lemma A is proved using Axiom la taking y9 and y5 both to be 1 .
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To prove Lemma Bt
we aSSume y2

= fibonacci(yl+l) and

y3
= fibonacci(yl) . Then taking y: = y2+y3 , as suggested by Axiom lb,

46
and. Y; = Y2 Y as suggested by the hypothesis, we have completed the

proof of Lemma Bt.

The program extractor combines all the replacements and substitutions

made in the proof to form the program of Figure 13, which exhibits none

of the crude inefficiencies of the original recursive program. The reader

may observe how closely the operations in the program mirror the steps

of the proof.

START9

r Figure 13: Iterative fibonacci program
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7* FUTURERESEARCH

Clearly the results reported in this note represent but a step in

the direction of automatic program synthesis. Our chief goal was not

to present a completed work, but rather to stimulate other people to

examine these problems.

(a) Suggested theorem-proving research

The foundation of our approach, and its chief weakness, lie in the

theorem prover. We have mentioned that many of our proofs are probably

beyond the state of the art of mechanical theorem proving, although

none of them are terribly difficult. We therefore can use our wperience

to pinpoint some weaknesses in the current methods and to suggest some

directions for theorem-proving research.

Any theorem-proving system stores its knowledge either in the form

of axioms (which are simply assertions) or rules of inference (which are

methods for transforming assertions). A system that relies mainly on

axioms is very general; new facts may be introduced without modifying

the system because new axioms may be added long after the system is

written. However, without restrictive strategies about how each axiom

is to be used, such systems tend to thrash and flounder. On the other

hand, systems such as King's  [1969] ( see also King and Floyd [1970]),

which rely on rules of inference applying to a specific semantic domain,

proceed with a great sense of direction but usually require reprogramming

when new facts are introduced.

We therefore would like to see a system that combines the virtues

of both approaches, using rules of inference when possible and axioms when

-
49



necessary. We further hope that the user would be able to introduce

new rules of inference without being forced to reprogram the system.

Thus we would be able to give the system special knowledge about the

semantic domain (the integers or lists, for example) without affecting

its generality.

We are dissatisfied with the large number of equivalent induction

principles required by our system. One might prefer to have a single

general induction rule with.a more powerful program extraction mechanism

( see, for example, Burstall [ 19691, Park [ 19701, and Scott [ 19691).

It is not yet clear what this mechanism would be, and we are not sure

that the machine implementation of such a rule in a theorem-proving

system would be feasible.

Finally, it occurred to us during the preparation of this paper

that partial function logic (see McCarthy [1963b]) would be a more

appropriate vehicle for program synthesis, because in this language we

may discuss partial functions, whereas in the usual predicate calculus

all operations and predicates are assumed to be total. We believe the

techniques we have already outlined above apply to partial function logic

as weJL Some work has already been done by Hayes [1969] towards the

machine implementation of this logic. Taking this remark in conjunction

with a paper by Manna and McCarthy [ 19703 suggests that partial function

logic may be the most natural language for program analysis and synthesis.

(b) -Language and representation

In our discussion we have used a modified predicate calculus in

specifying the program to be constructed. This suggests that predicate

calculus could be used as a higher-level programming language, where the
-
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compiler would be a program synthesis system, extracting a program in

a lower-level language.

On the other hand, we are not bound to the use of predicate calculus

as our source language. Programmers might find such a language lacking

in readability and conciseness. However, any language that might be

developed for expressing input and output relations would be satisfactory

so long as the system could translate it into the language its theorem

prover understood.

Of course, there are cases in which it is as easy to write the program

itself as to write input and output relations describing it. However,

this is more likely to be the case with trivial examples than with

complex realistic programs.

(c) Interactive program synthesis

We have not considered the possibility that the synthesizer might

interact with the user in constructing its programs. However, an

interactive approach might lead immediately to a more practical system.

For example, if the theorem prover were interactive the power of the

program synthesizer would be greatly increased. Alternatively, we

might interact by allowing the user to suggest program segments to the

synthesizer, allowing the system to incorporate them into the program.

(d) Program modification

We have not approached the problem of constructing efficient programs

in any systematic way. We have contented ourselves with the construction

of correct programs, and have seldom been very critical of the programming
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quality exhibited. Although in Section 6 we illustrated that we can

write more efficient programs by avoiding recursion and declaring inefficient

subroutines non-primitive, more general work in this direction is clearly

needed.

Once we have developed a method for controlling the efficiency of the

extracted program, wenot only can produce better programs with the purely

synthetic approach, but also can use our techniques to write better

compilers and program optimizers, which transform programs written by

human beings. We take such a program (or a portion thereof) and transform

it into its representation in predicate calculus (see Ashcrof't  [1970],

Burstall [ 19701, Manna [ 19691, and Manna and Pnueli [ 19703)) which is

then taken as the specification of a new, more efficient reconstruction.

Another way program@synthetic techniques may be used in the

improvement of an already existing program is in the construction of

an automatic debugging system. Current program verification methods

give us a way to detect and locate errors in a program; we then can

use the program-synthetic approach to replace the incorrect segment

without affecting the remainder of the program.
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