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Abstract: An elementary outline of the theoremproving approach to
autonatic program synthesis is given, wthout dwelling on technical
details. The nethod is illustrated by the automatic construction of
both recursive and iterative programs operating on natural nunbers,
lists, and trees.

In order to construct a program satisfying certain specifications,
a theorem induced by those specifications is proved, and the desired
programis extracted from the proof. The sane technique is applied
to transform recursively defined functions into iterative prograns,
frequently with a major gain in efficiency.

It is enphasized that in order to construct a program wth |oops
or with recursion, the principle of mathematical induction nust be
applied. The relation between the version of the induction rule used

and the form of the program constructed is explored in some detail.
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1. | NTRODUCTI ON

It is often easier to describe what a conputation does than it is to
define it explicitly. That is, we may be able to wite down the relation
between the input and the output variables easily, even when it is difficult
to construct a programto satisfy that relation. A program synthesizer is a
system that takes such a relational description and tries to produce a
program that is guaranteed to satisfy the relationship, and therefore does
not require debugging or verification.

Oh a nmore limted scale we can envision an automatic debugging system
that corrects prograns witten by humans instead of nerely verifying them
W can further imgine clever conpilers and optimzers that understand the
operation of the prograns they manipulate and that can transform them
intelligently.

Sone program synthesizers have already been witten, including the
Heuristic Conpiler (Sinon [1963]), DEDUCOM (Sl agl e [19651),QA3 (G een
[1969a], [1969b]), and PROW (Wl di nger and Lee [1969] and Wl di nger [1969]).
The last three of these systems use a theoremproving approach: in order
to construct a program satisfying a certain input-output relation, the

system proves a theorem induced by this relation and extracts the program

directly fromthe proof. Al three used the resolution principle of
Robi nson [1965]. However, these systens have been fairly limted; for
exanpl e, they either have been conpletely unable to produce progranms with
| oops, or they introduced |oops by underhanded nethods

Wien a theoremproving approach is used in program synthesis, the
introduction of loops into the extracted programis closely related to the
use of the principle of mathematical induction in the corresponding proof.

The induction principle presented special problens to the earlier program-



synthesis systens, problens which [imted their ability to produce

| oop programs. These problens are discussed in this paper. W propose
to use a variety of different versions of the induction rule, each of
which applies to a particular data structure, and each of which induces
a different formin the extracted program The data structures treated
are the natural nunbers, lists, and trees.

VW do not rely on any specific mechanical theoremproving techniques
here, both because we do not wish to restrict our class of readers to
those fanmiliar with, say, the resolution principle, and because we believe
the approach to be nore general and not dependent on one particul ar
theoremproving nethod. W give a large nunber of exanples of prograns,
with the corresponding theorems and proofs used in their synthesis. The
proofs we give are informal and in the style of a mathematics textbook
Sone of them have been achi eved by such systens as PRONand QA3; others
we believe to be beyond the powers of existing automatic theorem provers
but none are unreasonably difficult, and we hope that the designers of
theoremproving systens will accept them as a chall enge.

Section 2 gives the flavor of the approach illustrated by three
exanples. In that section we do not prove the induced theorens, and we
present the constructed programs wthout describing the extraction process.
In Section 3 we denonstrate the extraction process with conplete exanples
of the synthesis of two programs without |oops. W choose |oop-free prograns
for these exanples so as to postpone discussion of the principle of
mat hemati cal induction.

The heart of the paper is contained in Section 4, with the presentation

of the induction principles and their corresponding iterative or recursive



program forns. (ne of the exanples in this section gives details of the

proof and program extraction process. gection 5 denpnstrates a nore
general rule, the conplete induction principle. Section 6 suggests
applying programsynthesis techniques to translate recursive prograns
into iterative programs, and presents two exanples, in which a striking
gain in efficiency was achieved. Finally, in Section 7 we suggest

further research in this field.
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2. GENERAL DI SCUSSI ON

W define the problem of automatic program synthesis as follows:

given an _input_predicate ¢(x) and an out put predicate ¥(x,z),

construct a program computing a partial function z = f£(x) such that

if x is an_input vector satisfying o(x), then f(x) is defined and

¥(x,£(%X)) is true. In short, the predicates @(x) and ¥(x,z) provide
the specifications for the programto be witten.

In order to construct such a program we prove the theorem

(vx) [o(x) > (Fz)¥(x,2) 1.
The desired programis then inplicit in the proof that the output
vector z exists. The theorem prover nust be restricted to show the
exi stence of z constructively, so that the appropriate program can be
extracted from the proof automatically.

Frequently, o(x) is identically true; i.e., we are interested in
the performance of the program for every input x . Then the theoremto
be proved is sinply

(vx) [T o (42)¥(x,2)] ,
or equivalently,
(Vx) (82)¥(x,2) .
In such cases we shall neglect to mention the input predicate.

Let us first illustrate the flavor of this idea with three exanples:

(i) The construction of an iterative program to conpute the quotient
and the remainder of two natural nunbers;
(i) The translation of a LISP recursive program for reversing the

top-level elements of a list into an equivalent LISP iterative

program



(ii1) The construction of a recursive programfor finding the maximm

among the termnal nodes in a binary tree with integer termnals.

In each case we give the specifications for the program the
i nduced theorem and the automatically synthesized program w thout
introducing the proofs of the theorens or the extraction of the
prograns from the proofs. Such details will be given in the exanples
of our later sections.

In our exanples we express our input and output predicates in a
nodi fied predicate calculus |anguage. However, this is not essential

to the nethod; any |anguage for describing relations may be used.

Exanple 1: Construction of an iterative division program
W wish to construct an iterative program to compute the integer

quotient and the remai nder of two natural nunbers X, and X, wher e

X, # 0. The program should set the output variable zy to be the

quoti ent of % di vi ded by x and the output variable z, to be

2 i)
the corresponding renainder.

Thus, x = X5%, and z = Z11%, - Since we are not interested
in the prograns performance for x, =0, our I nput predicate is
P(x) 1%, £0,

The output predicate is
¥(x,2) . (xl ; Zl°X2+22) (z2 , xe)
The theorem induced is then
(vx)) (V%) {x, £ 0 2 (F29) (F2,) [(x) = 2 x,5%2,) A (2, < x,) 1)

The program synt hesizer proves the theorem and a program such as that
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illustrated in Figure 1 is extracted from the proof.—/

START

»
EEARCED

{ (21,2,) < (v757,)

1 >
(y5¥p) & (¥1717,5-%,).

Figure 1. A division program
W have assuned that certain synbols, including the "mnus" operator
and the "less than" predicate, for instance, exist in our programming |anguage;

therefore, these operators are said to be prinmtive. However, if the use of

the "nminus" operator or the "less than" predicate is not permtted in the
| anguage (i.e., if they are non-primtive), the above programis illegal.
This suggests that the user nust always specify a list of primtive
operators, predicates, and constants that the derived program may use. If,
for exanple, we allow our-systemto use the constant "0" , the "successor"
and "predecessor" operators, and the "equality" predicate, but not the
"mnus" operator or the "less than" operator, the programillustrated in
Figure 2 mght be constructed
Henceforth, we shall assume all comonly used synbols are prinmtive

unless we nake explicit nention to the contrary.

i Statenments in which n-tuples of ternms are assigned to n-tuples of
vari abl es represent simultaneous replacenents. For exanple,
(yl;yg)e—(yifl,yé-xz) means t hat vy is replaced by ¥+l and Yo

by Yo%, si mul t aneousl y.



START

¥ «if Y2 = x2-1then yl+l el se vy

Y2 «if y, = x2-Ithen 0 else y2+l

Y3 &« yi'l

Figure 2:  Another division program

Exanple 2: Translation of a recursive reverse programinto an iterative
progr am

VW wish to translate a LISP recursive program for reversing the
top-level elements of a [ist into an equivalent LISP iterative program
For exanple, if x is the list (ab (cd) e , thenits reverse is
(e (cd ba).

Here, x=x, z =2z and since we want the programto work on
all lists, o(x)is T . The output predicate will be

V(x,2z) : z = reverse(x)

where reverse is defined by the recursive program (see MCarthy [1962]):
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reverse(y) <= if Null(y) then NIL

el se append(reverse(cdr(y)),list(car(y))) .

The function M(yl,yg) concatenates the two |ists ¥y and Yy
For exanple, if ¥y is the list (a b(ecd)) and v, is the list (e) ,
then append(y;,y,) is the list (a » (c d) e)
Thus, the theoremto be proved is
(v¥) (32) [z = reverse(x)]
The above theoremhas a trivial proof, taking z to be reverse(x)
itself. Therefore our program synthesizer mght construct the follow ng

unsatisfactory program

START
¥

z « reverse(x)

This introduces the problem of primitivity again. The reverse
function should not be considered as a primtive in the programming
| anguage in this specific task because we clearly do not want reverse to
occur in our iterative program Henceforth, we shall assume that the
nane of the programto be constructed is never primtive.

If we allow our systemto use the constant N L, the operators
car, cdr, and cons, and the predicate Null as primtives, the program

illustrated in Figure 3 mght be constructed.



(yl’ yg) « (cdr(yl) »cons (car(yl) :YE) )

Figure 3: The reverse program

Note that the conputation of the derived iterative program consumes
less time and space than the conputation of the given recursive program
This is not only because of the stacking nechanism necessary in general
to inplenent recursive calls, but also because the repeated use of the
append function during execution of the recursive program introduces

redundancy in the computation.

Exanple 3: Construction of a recursive maxtree program
Ve wish to construct a recursive program for finding the maximm

anong the termnal nodes in a binary tree with integer termnals. W

shal | introduce a special |anguage called TREE for manipulating binary trees.
The primtives allowed in our TREE |anguage are the operators

(a) left(y) : the | eft subtree of the tree y ,

(b) right(y) : the right subtree of the tree y ,
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and the predicate

(¢) Atom(y) : is the tree y a single integer?
For exanple, if y is the binary tree , then
2
3 4
left(y) is /\h’ right(y) is 2, Aton{y) is F, and
3

Atom(right(y)) is T .

let x = x, z=12, ®(x) be T , and the output predicate be
V(x,z): T erminal(z,x) A (Vu)[ Terminal(u,x) > u < z] ,

wher e Termina.l(yl,yg) means that the integer y, occurs as a term nal

in the tree Yy - The output predicate says that the integer z is a

termnal of the tree x not less than any other termnal node of x .
Thus, the theoremto be proved is

(¥x) (7z) { Terminal(z,x) A (Vu)[Terminal(u,x) o u < z]} .

If we allow the max operator over the integers,
M(yl,yg) : the maxi mum of the integers y; and. Y2

to be used as a prinitive, the recursive program produced mght be

Z = maxtree(x) where
maxtree(y) <= if Atom(y) then vy

else max(maxtree(left(y)),maxtree(right(y))) .

If we do not allow the max operator to be used as a primtive but allow
the predicate "less than or equal to", the program produced mght be

"z = maxtree(x) where

maxtree(y) <= if Aton{y) then y
el se if maxtree(left(y)) <maxtree(right(y))

t hen maxtree(right(y))

S el se maxtree(left(y)) .

10



Note that although the synbol maxtree, the name of the program is
not primtive, it may be used as a dumy function name in the recursive

definitions. Any other function name could have been used instead.

Ve feel that at this point we should clarify the role of the input
predicate. Conpare the followi ng program witing tasks: in the first,
the input predicate is ¢(x) and the output predicate is ¥(x,z) ,
while in the second, the input predicate is @'(x) : T and the output
predicate is V' (x,z): ®(x) D ¥(x,2z) . In the first task we do not care
how the synthesized program behaves if the input x does not satisfy
®(x) . In the second case we insist that the program termnates even
if x does not satisfy ¢@(x), but we still do not care what the value
of the output is.

The theorens induced are:

(vx) [9(x) o (Fz)¥(x,2) 1
and

(vx) (az) [9(x) 2 ¥(x,2)]
respectively. Surprisingly enough these theorems are |ogically equivalent,
even though they represent distinct tasks. This suggests that the program
extractor nust make use of the input predicate in the process of synthesizing
t he program

Suppose, for instance, that in constructing our iterative division
program (cf. Exanple 1) we had given the system the input predicate

vx) T
and the output predicate

vt (x,2) : X, £00> (xl = zl'x2+z2) A (z2 < XE) .



The theorem induced in this case would be

(Vxl) (VXQ) (Cr{zl) (E[ZE) [X2 £00> (xl = zl-x2+z2) A (z2 < Xe)] ,
which is logically equivalent to the theorem

(,) (V) [y # 0D (Fzp) (B2) [(xy = 2y xghzy) A (2, < xp) 1)

However, the program extracted from the first theorem (Figure %) halts
for every natural nunber input, whereas the program extracted from the

second theorem (Figure 1) does not halt when X5 is 0.

(20,2,) « (y1,7,)

F

(Y1'Y2) « (y1+1,7,%,)
|

Figure L4: Another division program

12

(z),2,) « '(arbitrary val ues)
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3.  CONSTRUCTION OF LOOP-FREE PROGRAMS

VW would like first to illustrate with two exanples the extraction
of a program froma proof. The prograns we will construct are especially
sinple since they have no |oops. The program extraction process in this
case may be roughly described as follows: substitutions into the output
variables in the proof result in assignment statements in iterative prograns
and operator composition in recursive prograns. Case analysis arguments
in the proof result in conditional branching in both iterative and recursive

prograns.

Exanpl e L4: Reversing a two-elenment |ist.

VW wish to construct a LISP program that takes as input a list of
two el enents, and produces as output the sanme list with the elenents
rever sed.

Thus, the output predicate is

V(x,2) © (Yuy) (Vuy)lx = List (upuy) >z = List (uyuq) 1,

and the theoremto be proved is

() (82) { (V) (V) [x = List(uy,u,) > 2 = List(uyu)1} .

W assume that any system used to prove this theorem has a large supply

of facts about the data structure and the progratming |anguage to be used,
stored in the formof axioms and rules of inference. V& assune in
particular that the rules of inference stored within the system can handl e
deductions of the first-order predicate calculus with equality such as

those we use in the proof bel ow

13



During the process of proving the above theorem the system will
eventual |y choose the follow ng axions:

1. car(list(uw,v)) = u ,

2. cdr(list(u,v)) = list(v) , and

3. append(list(u),list(v)) = list(u,v) .

Note that the operator |ist takes a variable nunber of arguments.
The proof will proceed as follows: Suppose x :_1ist(ul,u2) for

sone arbitrary u and Py Then by Axions 1 and 2, respectively,

- 4. car(x) = and

_ul’

5. cdr(x) = list(ue) .

Fromk4 we have
6. list(car(x)) = list(u)) .
Then combining5and 6 using Axi om 3, we obtain

7. append(cdr(x),list(car(x))) = _]ﬁi:.(ue,ul)

Letting z be append(cdr(x),list(car(x))) , we obtain

8. z = list(u,w))

which is the desired concl usion.
Now, in order to extract the program we keep track of the
substitutions made for z during the proof. [In the above proof we have

repl aced z by append(cdr(x),list(car(x))) ; therefore, the desired

program is sinply

C START )

Z «aappend(cdr(x), list(car(x)))




Exanpl e 5: The max of two nunbers.

The program constructed in this exanple contains a conditional
branch but no |oops. W wish to find the maxinum of two given integers.
Thus, the output predicate is

\I!(Xl,xe,z) @z = xl V z = X2) Az >X, Az >2X

1 2"

and the corresponding theoremis

(Vxl)(Vxe)(Hz)[(z = XlVZ=x2)/\sz Az >x,] .

1
The proof proceeds by case analysis; it may appear poorly notivated,
but it is well within the capacity of existing theorem proving prograns.

Translating the theorem into disjunctive normal form we have
(Vxl)(’v'xg)(ﬁz)[(z =X ANz 2% Az >x)V (z= xg/\zlel\z?_xz) 1.
I'f we assume (u =v) 3 (u>v) as an axiom we can sinplify the above formula to
(Vxl)(sz)(Hz)[(z =X AZ2X)V( 2=%,A% le)] .

Now suppose x; > x, ,.then if we let z be x the first disjunct

l 1

is satisfied. On the other hand, suppose X, <X then if we let z be X

the second disjunct is satisfied.

Since the substitution we made for z depends on whet her or not X

was greater than or equal to X, the program extracted from the proof

of the theoremis

Csmart >

z «if x; > x, then x, else X

1 1 2 |

15



The reader who is unsatisfied with our seat-of-the-pants description
of the program extraction process may exanmine any of the more rigorous
accounts in the literature (e.g. Geen [1969a] [ 1969b ], Wl di nger and
Lee [1969], Wl di nger [ 1969], and Luckham and Nilsson [1970]).

The above prograns are clearly of limted interest since neither
contains a loop. In order to construct a program with |oops, application
of some version of the principle of mathematical induction is necessary.
Therefore, in the next section we digress into a discussion of the

i nduction principle.

16
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k. THE [ NDUCTI ON PRI NCI PLE

The induction principle is nbst commonly associated wth proving
theorens about the natural numbers, but analogues of it apply to other
data structures, such as lists, trees,and strings. Furthernore, for each
data structure there are many equivalent forns of the principle.

Mat hemati ci ans use whi chever version is nost convenient. Simlarly, the
t heorem prover chooses an appropriate induction principle from a given
supply during the course of the proof. This choice directly determ nes
the form of the program to be constructed, since each induction rule has
an associated program form stored with it. Therefore, if we want to
restrict the formof the extracted program we nust linit the set of

avail abl e induction principles accordingly.

4.1 Natural nunbers

W shal | discuss four versions of the induction principle for the
-natural numbers; two will be appropriate for witing recursive prograns
and two for witing iterative progranms. In each class, one rule wll be
called a "going-up" principle and the other a "going-down" principle.

W will illustrate each of these with a different version of the factorial
program The output predicate is

V(x,z) : z = factorial (x) ,
wher e

factorial(y) <= if y = 0_then 1 else y-factorial(y-1) .

This exanple will illustrate clearly the difference between the prograns

generated by using "going-up" induction and "going-down" induction: the

17



"goi ng-up" prograns conpute x! in the order 1, 1.2, 1.2.3 ,,
while the "goi ng-down'* prograns conpute x , x.(x-1), x.(x-1)-(x-2) ,...
The proofs required for the synthesis of the prograns use two
axi oms induced by the above definition:

factorial (O =1
and

u>0 o> ([factorial (u) = usfactorial(u-1)] .

W will not include those proofs, but merely will give the prograns
extracted, in order to illustrate the relationship between the form of

the induction principle used in the proof and the form of the constructed

program

(a) Iterative going-up induction

The reader is probably famliar with the nmost common version of
the induction principle over the natural nunbers,

do)
(Yy) [a(v) o aly+1) 1

(vx)a(x)

Intuitively, this nmeans that if a property ¢ holds for 0 and if
whenever it holds for ¥y it holds for vl then it holds for every

natural nunmber x . W call this version iterative going-up induction.

For our purpose we use a special formof the principle in which
a(y,) 1is (3y,)B(yy>v,) » where B still represents an unspecified

property. The induction principle now becones

18



(8y,)B(05¥,)

(Vy1) [(@y,)B(y157,) 2 (Fy,)B(y+1v,) 1

(¥x) (87, B(x,7,,)

The program form associated with this rule is illustrated in Figure 5.
If the theoremto be proved happens to be of the form
(vx) (82)B(x,z) ,
and if going-up induction is applied, the program extractor then knows

that the programnust be of the formillustrated in Figure 5.

(¥15v5) = (yl;i,ﬁé( ¥59,))

k |

Figure 5: |Iterative "going-up" program form

The constant a and the function g(yl’y2) are unspecified in
the above form The task of the program constructor is now to wite
subroutines to compute a and g in such a way that the program of

Figure 5 will satisfy the desired relation. This is done as foll ows.

19



The theoremto be proved is of the form (vx)(3z)Bx,z) . This
is precisely the form of the consequent of the induction principle.
Therefore, if we can prove the two antecedents, then we are done. This

suggests-that we attenpt to prove the two | emmas:

) (Ty,)B(0,7,)
and
(B) (vy) [(Ey,)B(y157,) D (Fy) By +1y,) 1,

or equivalently, translating into prenex normal form

(8") (V1) (V5,) (2y,) By, 5,) 2 By +Lyy)]

The proof of Lemma A generates a subroutine with no variables
that yields a value for Yo satisfying B(O,yg) . This is the
desired definition of the constant a ; hence
(1) B(0,8) is true.

The proof of Lemma B* generates another subroutine which yields
a val ue of ;yz in ternms of y, eand Vs - This subroutine provides
a definition of g(yl,ye) satisfying
(2) B(yy35) = By +1,8(yy57,)) for all y, and y,

The proof of the |emmas concludes the proof of the theorem
(vx) (4z)B(x,2z) . W have now conpletely specified a program that

conputes a function z = f(x) satisfying B(x,f(x)) for all values of x .

For the suspicious reader we are ready to verify the above assertion.

Consi der the iterative "going-up" program form |abeled as in Figure 6.

20



(v v) = (yy*Ls glyys ¥,) )
|

Figure 6: Labeled iterative 'going-up' program form

Ve will use Floyd s approach [1967] and show that whenever control passes
t hrough arc a BQ@; yg) is true for the current val ues of ¥y and Y, -
Furthernore, whenever control passes through arc g, B(x, z) is true
for the initial value of x and the final value of z .
Begi nning at the START node, we set vy to 0 and Y5 to a ,
and so when we pass through arc @,  B(y»¥,) (i.e., 5(0,a) )
is true by (1).
Now suppose that at sonme point in the execution, control is passing through
arc o and currently B(yl,yz) is true and y; £ x . Then, by (2)
(3) B(y +1, &(y5¥,)) is true.
Traveling around the |oop we sinultaneously set vy to yi+l and o
to g(yl,ye) and reach arc « again. That EKyl,yg) is satisfied at
this time follows directly from(3) and our assignnents to 1 and ¥ -
Cearly, wemust at sone time reach arc a with ¥ =X, since X
is a natural number. Then we set z to Yo and pass to arc g . Since
B(yl,yg) was true at arc @ and y; = X , B(x,z) is true at arc B .

This concl udes the groof that the program constructed has the desired

properties.

21



Exanple 6:I1terative "going-up" factorial program
W wish to construct an iterative "going-up" program for computing
the factorial function. The theoremto be proved is
(vx) (7z)[z = factorial (x)]
Applying the iterative going-up induction principle (wth B(yl,ye) bei ng

vy = factorial(yl) ) we are presented with the two | emmas

(4) (%y,) [y, = factorial (O]
and
(B') (¥y,) (Vyg)(ﬂy;) {ly, = factorial(y,)] > [yZ = factorial(y,+1)1} .

* .
The | emmas are proven, and the val ues for Vo and Yo (i.e., a and

g(y;»y,) ) found are 1 and (yl+l) "y, , respectively. The program

extracted is illustrated in Figure 7.

(v,,¥5) < (0,1)

(yl,yé) = (y7+1 (y1+1) *v,)

l

Figure 7. |lterative "going-up" factorial program

Note that for sinplicity we have assumed in the above discussion that the
program to be constructed has only oneinput variable x and one output
variable z . This restriction may be waived by a straightforward generalization

of the induction principle given above as illustrated in Exanples 13 and 15.

22



(b) Recursive going-up induction

W present another going-up induction principle that leads to a
different program form The principle
a(o)

(vy) Ly AFon a(y-1) > ayy) 1

(Vx)a(x)

is logically equivalent to the first version but leads to the construction

of a recursive program of the form

yz = f(x) where

Lf(y) <= if y = 0 then a elseg(y,f(y-1)) .

We call this version recursive going-up induction. Note that the f is

a dummy function synbol that need not be declared primtive.
W have omtted the details concerning the derivation of this

program but they are quite simlar to those involved in Section (a) above.

(c) lterative going-down induction

Another form of the induction principle is the iterative going-dow

form
(Fyyaly;)

(Vy)[yy £ 0 A aly)) 2 aly;-1)]

a(o)

The reader may verify that this rule is equivalent to the recursive
goi ng-up induction, replacing ¢ by ~g "and tw ce using the fact
that p A g>r is logically equivalent to~rAQ>D-p .

In this case we use a special formof the principle in which

d(yl) is of the form(ﬂyg)s(x,yl,yz) , where x is a free variable.
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The induction principle now beconmes

(Vyl) [yl £ 0 A (Hyg)B(X:.Vl;ye) > (HYQ)B(X93’1"1; y2) 1

(Hyz)e(x) O) ye)

Suppose now that the theoremto be proved is of the form

(vx) (32)B(x,0,2)

The theorem may be deduced from the conclusion of the above induction
principle. If the iterative going-down induction principle is used, the

program to be extracted is automatically of the formillustrated in

Figure 8.

C START )

(yl’yE) “ (hl(x),h2 (%))

(yl’yQ) < (yl-l,g(X,yl,yg)) l

Figure 8: Iterative "going-down" program form

Thus, all that remains is to construct subroutines to conpute the functions
hl(}{:) ) hg(x) J and g(x’yl)ye)
The antecedents of the induction principle give us the two |enmas

to be proved

(&) (Hyl) (Hy2)6(x: ¥y Yg)

and
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(B) (fy ) lyy # 0 A (8y,)B(%,55¥,) D (Fy,)B(%,y,-1v,) 1
or equivalently,

(8!) (¥y,) (¥y,) (EyZ)[yl £ 0 A B(x,yl:ye):)/_‘?(x,yl-l,y;)]

The proof of Lemm A yields subroutines to canpute vy and Yo in
terms of x, which define the desired functions hy(x) and h,(x) ,
respectively. The proof of Lemma B' Vyields a single subroutine to
conput e yZ in terms of X, ¥y, and Yo t hus defining the desired
function g(x, ¥y y2) _ The programis then completely specified, and its
correctness and termination can be denonstrated using Floyd s approach,

as was done before.

Note that iterative going-down induction is of value only if the
constant 0 occurs in the theoremto be proved. Qherwise, the theorem

prover must mani pulate the theoremto introduce 0 .

Exanple 7: [Iterative "going-down" factorial program

VW wish to construct an iterative "going-down" program for conputing

the factorial function. The theoremto be proved is again
(vx) (dz) [z = factorial (x)]

The theorem contains no occurrence of the constant 0 . Thus, the
theorem prover tries to introduce- 0 , using the first part of the definition
of the factorial function (i.e., factorial(Q = 1) and its supply of
axions (u-l = u, inparticular), deriving as a subgoa

(82) [factorial(0)-z = factorial (x)] ,
where x . is a free variable. This theoremis in the formof the consequent
of the iterative going-down induction, i.e., (SyE)BCx,O,ye) ; hence, the
t heorem prover chooses the induction hypothesis Bbgyjfyé) to be
factorial(y,)-y, = factorial (x)
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The |emmas proposed are

(A) (Eyl)(ﬂyg)[factorial(yl)-yg = factorial (x)] ,
and
(B") (Vyl) (Vyg)(Hy;) {yl £0A [factorial(yl) "V, T factorial (x)]

- [factorial(yl—l)-y; = factorial(x)]} .

. * .
The val ues obtained for y,, vy, , and y, (i.e., hy(x) , hy(x), and
g(X,yl:ye) ) respectively, are x , 1, and Yy, - The program

constructed is illustrated in Figure 9.

(y575) < (%1)

Figure 9: Iterative "going-down" factorial program

(d) Recursive -going-down induction

The recursive going-up induction was very sinilar to the iterative

goi ng-up induction. In the same way, the recursive going-down induction,

(Fyaly,)

(Yy1) [@(vy*1) = alyy) ]

ao) ,
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is very similar to the iterative goi ng-down induction. The form We are nost

interested in is

(3y,) (By,)B(%,757,)

(¥y)) [(@y,)B(x,71+1,7,) D (Fy,)B(x,157,) ]

(87,)8(x,0,7,) »

where x is a free variable.

If the rule is used in generating a program the two appropriate
|l enmas allow us to construct hl(x) , hg(x) and g(x,yl,ye) as before,
and the program extracted is
{z = f(x) = £'(x,0) where

fr(x,y) <= ify = hl(x) t hen hg(x) el se g(x,y,f'(x,y+1)) .

Exanpl e 8 Recursive "going-down" factorial program
The program we wish to construct this time is a recursive "goi ng-down"
programto conpute the factorial function. Again the theorem
(vx)(¥2z)[z = factorial (x)]
is transformed into
(8z) [ factorial(0)+z = factorial (x)]
V& continue as before and the program generated is

(z = f(x) = £'(x,0) where

lf'(x,y), <= if y = x then 1 else (y+t1)-f'(x,y+1)
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k.2 Lists

Our treatmentsof |ists and natural nunbers are in some ways anal ogous,
since the constant NIL and the function cdr in LISP play the same role as
the constant 0 and the ™predecessor™ function, respectively, in nunber
theory. The induction principles of both data structures are closely
related, but since there is no exact analogue in LISP to the "successor"
function in nunber theory, there are no iterative going-up and recursive
goi ng-down list induction principles. Hence, we shall only deal with two
induction rules in this section: recursive (going-up) and iterative
(going-down) list inductions. In the discussion in this section we shall

omt details since they are sinmlar to the details in the previous section.

Weshal lillustrate the use of both induction rules by constructing
two prograns for sorting a given list of integers. The output
predicate is

¥(x,2) 1 z = sort(X)

wher e

(vy)(¥z){{z=sort(y)] = if Null(y) then Null(z)

el se (Vu)[Member(u,y) Dz =merge(u,sort(delete(u,y)))]1}.

Here,

Member(u,y) neans that the integer u is a nenber of the list y ,
delete(u,y) is the |ist obtained by deleting the integer u fromthe
list y , and
merge(u,v) , where v is a sorted |ist that does not contain the integer u ,
is the list obtained by placing u inits place on the list v,

so that the ordering is preserved.
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The theoremto be proved is

(vx)(3z)[z = sort(x)]

(a) Recursive |ist induction

The recursive (going-up) list induction principle is

a(NIL)

(Vy) [~ Null(y;) A aledr(y)) 2 alyy) 1

(vx)a(x)
The programsynthesis form of the rule is

(SYE)B(NIL: '.Y2)

(V,Yl) [~ Eu_ll_(yl) A (EYE)B(SET_(Y]_);YE) o (Hyz)ﬁ(yl,yg) 1

(V) (57,) B(x,¥,)

The corresponding program form generated is

z = f(x) where
f(y) <=if Null(y) then a_else g(y,f(cdr(y)))

Exanpl e 9:Recursive sort program
The sort program obtained using the recursive list induction

principle is

z = sort(x) where
sort(y) <=.if Null(y)_then NIL el se merge(car(y),sort(cdr(y))) .

(b) Iterative |ist induction

The reader can undoubtedly guess that the iterative (going-down)

l'ist induction principle is
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(Ty,)a(y,)

(vy)) [~ Null(yy) A d(y1) 2 2( cdr(y,)) ]

d(NIL)

W are especially interested in the form

(H.Vl) (HYE)B(X) ¥y yg)

(¥y,) [~ Nall(y)) A (Sy)B(6,,57,) O (8,)B(xscar(y;),¥,) )

(H:YQ)B(X) NIL) Y2) 2

where x is a free variable.
The corresponding program form generated is illustrated in Figure 10;

it enploys the construction known anong LI SP progranmmers as the "edr | oop”.

T

(v,57,) « (by(x),0,(x))

(¥575) « (edr(y;)s8(%y,57,))

¢ \

Figure 10: Iterative list program form
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Exanple 10: Iterative sort program

Using the iterative list induction, we can extract the sort program

of Figure 11.

('Vl’ yE) < (x,NIL)

o

(v5,) = (cdr(y,) merge(car(y;),v,))

Figure 11: Iterative sort program

4.3 Tr ees

There is no sinple induction rule for tree structures which gives
rise to an iterative program form because such a program would have to
use a complex mechanismto keep track of its place in the tree. However,

there is a sinple recursive tree-induction rule:

(¥y,) [Atom(y;) > a(y,) ]

(Vy,) [~ Atom(yy) A @(1eft(y,)) A @(right(yy)) > aly;)]

(Yx)a(x)

In the automatic program synthesizer we are chiefly interested in the

followng form
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(Vy,) [Atom(y;) = (Fy,)B(v;5¥,) 1

(V%) (8y,)B(x,,)

If we want to prove a theorem of form (V¥x)(Hz)A(x,z) using tree
i nduction, we nust prove two |enmas
(8) (Vy,) [Atom(yy) = (8y5)8(y,5¥,) 15
or equivalently,
(al) (Fy,) (3y,) [ston(y) > Bly,¥,)1

and

(B)  (¥yy) [~ Atom(yy) A (By,)B(Left (v;),,) A (y,) Blright (v;) »¥,) = (Ay,)B(y1,7,) 1

or equivalently,

(B') (¥yy) (¥y,) (¥yp) (Fyy) [~ Atom(y,) A B(Left(y,),v,) AB(zight(y,),¥)) DBy ,ve) ] -

From the proof of Lemma A' we define a subroutine h(yl) to conpute y,
interms of y,. The proof of Lenma B' yields a subroutine g(yl,yg,yé)
to conmpute yz in ternms of vy 0 Y and 5 -

The corresponding program formis

z = f(x) where

£(y,) <= if Atom(y,) then n(y;) else g(y,,f(Lleft(y,)),f(right(y,))) -

Note that this program form enploys two recursive calls.

Exanpl e 11: Recursive maxtree program (see Exanple 3).

VW wish to give the synthesis of a TREE recursive program for finding the
maxi mum anong the termnal nodes in a binary tree with integer termnals.
This will be the first detailed exanple of the construction of a program

contai ning | oops.
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The theoremto be proved is
(vx) (9z)[z = maxtree(x)] ,
wher e
(1) [z = maxtree(x)] = [Terminal(z,x) A(Vu)[Terminal(u,x) > u < z]] ,
and
(2) Terminal(u,v) <= if_Atom(v) then u = v

el se Terminal(u,left(v)) v Terminal(u,right(v)) .

W assune that maxtree itself is not primtive.
The theoremis of the form (vx)(dz)B(x,2z) ,where B(x,z) is
= maxtree(x) . Taking =z to be Vo this is precisely the conclusion

of the tree induction principle. Therefore, we apply the induction with
Bly»vp) ¢ Y2 . maxtree(y,).

Hence, it suffices to prove the following two |emrmas:

(a")  (vy;)(y,) [Atom(y,) > y, = maxtree(y;)],
and

(8')  (¥yy) (¥y,) (¥y2) (Syp) [ ~ Atom(y,)

Ay, = maxtree(left(yl))

A yé = maxtree(right(yl))

*
. Dy, = maxtree(yl) 1.

The proof of the Ienmas will rely on the definition of maxtree (AXi om 1)
and the following two axionms induced by the recursive definition (2)

of the Ternminal predicate:

(2a)  Aton(v) o [Terminal(u,v) = (u = v)] ,

and

(2b)  ~ Atom(v) D [Terminal(u,v)= [Terminal(u,left(v))V Terminal(u,right(v))]1].
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First we prove Lemma A'. By Axiomlit follows that we want to prove
(Vyl) (Hye) {A’com(yl) ) [Terminal(ye,yl) A (Vu) [Terminal(u,yl)jusyg] 1,

or equivalently, using Axiom (2a) (with u being y, and v being yl) :
(¥y,) (Ty,) {atom(yy) 2 [y, = y3 A (Vu)lu =y, > u <y,11}

It clearly suffices to take v, to be y, to conpl ete the proof of
the lemma. Therefore, the subroutine for h(yl) that we derive from
the proof of this lemma is sinply h(yl) =¥y -

The proof of Lemma B' is a bit nore conplicated. Let us assume

t hat vy is a tree such that ~Atom(yl») and | et Yy = maxtree(left(yl))

. * .
and y} = ma.x‘tree(right(yl)) . W want to find a Yo (in terns of

¥y» Y2 , and yé) for which yz = ma.xtree(yl) . This neans, by Axiom 1,

*
t hat we want Vo such that
* *
Termina.l(yz,yl)A(Vu)[Terminal(u,yl) > u <yl

This inplies, by Axiom (2b) and our assunption ~Atom(yl) , that we

have to find a y; satisfying the follow ng three conditions:

. * *
(i) Terminal(yg, lef‘t(yl)) % Terminal(ye, right(yl)) ,

(i) (Vu)[Terninal(u,left(y,)) > u < v, ,
and

(iii) ('v'u)[Teminal(u,righ‘li(yl)) Su < yZ] )

It was assuned that Yy = ma.x’cree(lefb(yl)) and

vh = max‘treg_(right(yl)) . Thus, using Axiom 1, condition (i) inplies
t& ¥, < ¥, V ¥, < ¥4 » condition (ii) inplies that y, <y, , and
condition(iii) inplies that V5 <V, This suggests that we take Vo

to be max(y,,y}) , Which indeed satisfies the three conditions. Therefore,
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the subroutine for g(yl,ye,yé) that we extract fromthe proof of this lemma
is  &(y¥,vh) = max(y,,vh).

The conplete program derived from the proof is

z = maxtree(x) where

maxbree(yl) <= jf Atqm(yl) t hen vy

el se mai(ma.x‘tree(lef‘b (yl) ) ;maxtree(right (yl) )) .
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5.  COVPLETE | NDUCTI ON

The so-called conmplete induction principle is of the form

(fy,) { (Yu) [u <y, 2 @(w) | 2 4y, )}

(vx)a(x) -

Intuitively, this neans that if a property ¢ holds for a natural nunber
vy whenever it holds for every natural nunber u less than ¥y then it
hol ds for every natural number x .

Al'though this rule is in fact logically equivalent to the earlier
nunmber -t heoretic induction rules (see, for exanple, Mendel son [1964]),
we shall see that it leads to a nore general program form than the previous
rules, and therefore it is more powerful for programsynthetic purposes.
However, it puts nore of a burden on the theorem prover because |ess of
the program structure is fixed in advance and nore is specified during

the proof process.

W are nost interested in the version of this rule in which d(yl)

has the form (Hyg)/i’(yl,yg) s i.e.,

(fy)) { (Vw) [u <y 2 (Fy,)6(wy,) 12 (Fy,)8(vy,v,) )

(¥x) (Fy,)B(x,y,) -
Thus, in order to prove a theorem -of the form
(vx) (82)B(x, z)
it suffices to prove a single lema of the form
‘ *
(A () (@) () (3) {lu < vy 2 By, v,) 126(y,7,)}

From a proof of the |lenma we extract one subroutine for computing the
value of u in terns of ¥y (called h(yl) ), and another for conputing

* .
t he val ue of v, in terns of ¥y and Yo (called g(yl,ye) ). These
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functions satisfy the relation

The program form associated with the conplete induction rule is
then the recursive program form

z = f(x) where

(2)
f(y) <= g(y,£(n(y)))

This formrequires some justification.

Assune that the function f satisfies the output predicate
(3) B(u, £(w) ) for all u < x .
Ve will try to show

B(x, £(x))

First, suppose h(x) <x . Then by the hypothesis (3), B(h(x),f(h(x))) .
Therefore, from (1) (taking y; to be x and v, to be f(h(x)) ) we
obtain B(x,g(x,f(u(x)))) , i.e., by (2), B(x,f(x)) .

Now, suppose h(x) > x . Then taking v, to be x , <he antecedent
of (1) is true vacuously, and we conclude B(x,g(x,f(h(x)))) , i.e., by (2),

B(x, £(x)) .

Example 12: The recursive quotient program (see Exanple 1).’
W want to construct a recursive programto find (the integer part
of) the quotient of two natural nunbers Xq and X5, gi ven that X, £'0 .
Qur output predicate is therefore
w(xl,xg,z) , (Hr)[xl = z.X+rAr < X

2 2] ’
The theoremis then

(’V'xl) (“v'xg) {x2 £0 D (Hz)(ﬁr)[xl = X trAT < XE]} _

Assume now that x, is a fixed positive integer. Then we wish to prove
(Vxl) (4z) (dr) [Xl = z-X,tr AT <x2] )

The theoremis now in the same formas the conclusion of the conplete
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induction rule, taking x to be x ygto be z, and

1 i)
B(y1s¥,) (ar)ly; = VpXot TAT <X

Therefore, the single lema to be proved is

(a')  (Yyp) (Fu) (Vyg)(HYZ){[u <y 2 (E)[u = yyx,*+rA T < x,]]

*
> (@)ly) = ypyxptTA T <xyl}
or equivalently,

(Vyy) (2w (¥y,) (@) (¥e) (&) {[w < 3, o [u = yoxphr A T <x,]]

* * *
Oy, = yax+r AT <x.]} .
1 272 2

If y; <x, W satisfy the conclusion of the lema by taking y; to
be 0 (and r to be yl) . If, on the other hand, y, >x,, We take
uto be Y© %y tho be y2+1(and r to be r) ; then the
conclusion follows using an appropriate set of axions for arithnetic.

The program derived is then

z =wivlx,,%) e

dlv(yl’xe) <= if ¥y < % then 0 el se div(y, — X, X,)+1 .

1

Al though the program we constructed has two input variables, we were
able to use the single-variable induction principle in its synthesis by

treating the second input x, as a free variable. Typically when constructing

2
prograns with nore than one input variable, we shall have to use a suitably

generalized induction rule.

The next exanple will use two input variables, and we will not be
able to treat either of themas a free variable. Therefore we take this
opportunity to denonstrate how to generalize the complete i nduction

principle to construct prograns with two inputs.
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The form of conplete induction was

Ty i) lu<y, 2a(w) 1> aly,) 3

(vx)a(x)

For the two-input-variable case, we take a(yl) to be

(¥y,) (HyB)B(yl,ye,%) , obtaining the version

(vy) {(¥w) [u <y > (¥5,) (Ty3) B(u, 7, 75)] 2 (Vy,) (By3) B(y 1575 75) }

: (Vxl) (sz) (HYB)B(X:L)X2) y5)
Suppose we want to prove a theorem of the form
(Vxl) (Vxe) (HZ)B(XlJ XE, Z)
This is the sane as the consequent of the conplete induction rule. Thus,
it suffices to prove the antecedent as a |emm:

or equivalently,

(A1) (F,) (¥3,) (2w) (23) (V55 (E5) {[v <y, D B35, 75) 1 28(57,75)]

From the proof of this |emma we extract three subroutines

h (y155,) 5 n,(y;5,) , and g(yl,-ye,y3) corresponding to u ,

* * .
¥, » and V5 respectively. The program extracted from the proof

of the theoremwll bhe of the form

&z = f(xl,xg) wher e
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Exanple 13: The greatest common divisor program
The program to be constructed must find the greatest conmon

divisor (gcd) of two positive integers x, and X, - For sinplicity,

1

we ignore the possibility of x, or x, being 0 , and the theoremto

be proved is then

(Vxl) (VXE) (HZ) [ z = _g_c_d_;(xl) X2) ] y
wher e

[z = gcd(xl,xg)] {lel A z |x2 A Vu[ulxl A u|1»c2 Du<zl}.
N Here, wu|v means "u divides v evenly" . Recall that the function gcd
shoul d not be considered to be primtive.

— The theoremis in the sane formas the conclusion of the conplete

ﬁ= induction rule (for two input variables), taking Vs to be z , and

B(yy ¥pr¥3): Y 3 =8cd(yy5¥,) .
. Therefore, we nust prove the follow ng |enmma
* * *
(a") (¥y,) (V) (8u) (Fy,) (¥y3) (Fyz) {lu<yy 2 v3 = ged(w,y,)]
— *
L This is one of the proofs we consider to be a challenge for existing
t heorem proving systems. W suggest taking
~—
u tobe rem(y,y;)
v N :
— Yo to be vy
* .
and yy t0 be if rem(y,,y;) =0 theny else vy,
wher e ggg(&g,yl) is the remainder when y, is divided by y, .
Therefore
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hy(ypp¥,)  is ¥y,
and g(yl,yg,yB) is if rem(y,y,) = O then y, else Y,
The complete gcd program extracted is therefore
z = gcd(xl,xg) wher e
&i(yl:.yz) < if @(yg:yl) = O then yl

,else gssd_ (rem(y2) yl))yl) .
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6.  TRANSLATION FROM RECURSION TO | TERATI ON

Iterative prograns and recursive progranms conpute the sane class
of functions (nanely, the partial recursive functions). However,
recursive prograns are camonly far more inefficient in tine and space
than the corresponding iterative programs. Although it is straightforward
to transform an iterative programinto an equival ent recursive program
the reverse transformation presents difficulties. (See, for exanple,
McCarthy [1963a], Strong [1970], and Paterson and Hewitt [1970].)

LI SP and AIGOL conpilers, for exanple, translate recursive prograns
into iterative programs that use stacks, without changing the essence of
the conputation. Using programsynthetic techniques, it is sonmetines
possible to performthe transformation in such a way that the resulting
iterative program performs the conputation in a fundanentally better way
than the original recursive program. Al though we have no nechanismto
ensure this inprovenent in general, we shall see how this occurs in the
two exanples presented in this section, the first concerning the reverse

function and the second, the Fibonacci sequence.

Exanpl e 14: The reverse function (see Exanple 2).

W are given a recursive reverse program

z = reverse(x) where

reverse(y) <= if Null(y) then NL

el se append(reverse(cdr(y)),list(car(y))) .

As we nentioned earlier, this definition is quite inefficient since it
i nvol ves repeated conputation of the append function, which in itself

requires a relatively conplex conputation.
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The theoremto be proved is

() ("z)[z = reverse(x)]

Recal | that the reverse function is not considered to be primtive .
For efficiency we also omt the append function from the list of
primtives.

Since we want to wite an iterative program we nust use the

iterative list induction rule:

(y,) (Fy,)B(%, 515 7,)

Aside fromthis rule we have two axionms that result directly fromthe
given definition of the reverse function:

(1a) reverse(NIL) = NIL ,

(1b) -Nul I (y) o [reverse(y) = append(reverse(cdr(y)),list(car(y)))] .

Furthermore the systemw ||l use the follow ng axi oms chosen fromits supply

during the course of the proof;

(2a) append (NIL,u) = U ,
(2b) append(u,NIL) = u ,
(3) append(u,append(v,w)) = append(append(u,v),w) , and
(4) append(list(u),v) = cons(u,v) .
The theoremto be proved, (vx)("Fz)[z = reverse(x)] , is not in

the correct formto apply the iterative induction because NIL does not

occur init. However, by Axiom 2a and the definition of reverse
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(Axiom la), our theorem prover will translate the theorem intc the

follow ng satisfactory form

(Vx) (2z) [append(reverse(NIL),2) = reverse(x)]

Therefore, we can apply the iterative list induction rule with
B(x,yl,ye) : append(reverse(yl),yz) = reverse(x)

and the two lemas to be proved are:

(a) (Hyl) (Hye)[ap;gend(reverse(yl),yz) = reverse(x)] |
and

(Bt) (Vyl) (Vyz) (HY;) [~ N_ul_l(yl) A append(reverse(yl),yg) = reverse(x)

*
) append(reverse(ﬂr_(yl)),yz) = reverse(x)]

Using Axi om 2b, the system chooses y, to be x and v, to be NI L ,

concl uding the proof of Lemma A

To prove Lemma B', the system assumnes ~Null(yl) and

append(reverse(y,),¥,) = reverse(x) . Using the definition of reverse

(Axiom I'b), and the assunption that A;Nuu(yl) ,; it derives

reverse(yl = appénd(reverse(cdr(yl)),list (9_8'2(3’1))) .

Substituting in the hypothesis, it deduces

append(a_ppend(reverse(cd;c'(yl)),list(car(yl))):Yz) = reverse(x)

Using the associative rule for_append (Axiom3), it obtains

append (reverse(cdr (y,)) , append (List (car(y,)),¥,)) = rever se(x)

Then, from Axiom 4, it derives
append(reverse(cdr(y,)),cons(car(y,),¥,)) = reverse(x)
Compering this fornmula with the desired conclusion, the system takes

y; to be cqns(c_:_ag(yl),ye) , concluding the proof.
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Such a proof is well wthin the capabilities of existing theorem
provers. In fact, the above proof of Lemma B' has actual ly been found
(see Brice and Derksen [1970]) using the QA3 theorem proving system
(Geen and Raphael [1968]) with Morris's E-resolution [1969].

Since in the proof of Lemma A ¥y and v, were repl aced by x
and NIL, respectively, and in the proof of Lemma B', y; vwas repl aced
by cons(car(y,),y,) , the iterative program illustrated in Figure 12

will be constructed. Note that this programis far nore efficient than

its recursive counterpart.

C_ START D

b,

(Yl) Y2) < (x,NIL)

(y15¥,) « (cdr(y;),cons(car(y,),¥,)

k |

Figure 12: |Iterative reverse program

Exanpl e 15: The Fibonacci sequence.

The advantage of iteration over recursion is particularly apparent

in the conputation of the Fibonacci series

1, 1, 2, 3, 5 8, 13, 21, 34, 55 ...,

each of whose terms (after the second) is the sum of the preceding two.

Gven a natural number x , the value of the x-th Fibonacci nunber
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is most sinply defined by the recursive program

z = fibonacci (x) where

fibonacci(y) <=_if (y = 0 Vvy=1) then 1
el se fibonacci(y-1)+ fibonacci(y-2)

In practice this programis grossly inefficient, involving many repetitions
of the same conputation. W would like to use our approach to translate
this program into an efficient iterative programwth no redundant
camputation.

The theorem to be proved is sinply

(vx) (2z) [z = fibonacci (x)]

The recursive definition of the fibonacci function inplies the axioms:
(1a) (u=0Vvu =1) o fibonacci(u) =1,

(1b) (u>2) o fibonacci(u) = fibonacei(u-1)+ fibonacci(u-2) |

or equivalently,
fibonacci(u'+2) = fibonacci(u'+l) + fibonacci(u')

Axiom | a suggests to the theorem prover that the case (X=0Vx = 1)

be treated separately; in.this event, we take z to be 1 , and the

output relation is satisfied.

It remains to prove
(¥x){x >2 o (¥z)[z =fibonaceci(x)]} ,
or equivalently (using Axiom |b)

(vx){x > 2 = (dz)[z = fibonacci(x-1) +_fibonacci(x-2)]} .
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Thus, taking x' to be x-2 ,we have

(vx*)(dz)[z = fibonacci(x'+1l) + fibonacci(x')] .

Since the "plus" operator is prinitive, taking Z to be z +z, ,

it suffices to prove
(vx") (3z4) (22,) [z, =_fibonacei (x'+1) A Z, = fibonacei(x*')] .

Note that we now have two output variables zy and Z, rat her than
one. However, the proof procedure is precisely analogous to the single-

variable case; the iterative going-up induction principle used is

(@y,) (8y3)B(0, ¥, ¥3)
(¥y)) L(E) (F55) By 157 ¥5) 2 (8p) (T5)B(¥1 L9 ¥3) |

Wth
B(yy2Ypr¥3) ¥p = fibonacci(y +1) A yz = fibonacei(y,) .

Taki ng z, to be Y5 and z

the conclusion of this induction rule is identical to the nodified

» tO be Vs (i.e., z is Y5tV5 )5

theorem Thus, the two |emmas to be proved are

(8) (Ty,) (HyB)[yg = fibonacci(1)Ayy = fibonacei(0) ]
and
(B')  (¥yy) (Vy,)(¥y3) HyZ)(Eyg) {ly, = fibonacei(y,+1) Ay = fibonacci(y,)]

* *
[y, = fibonacci(yl+2) A3 = fibona.cci(yfl) 13 .

Lemma A is proved using Axiomla taking y, and y, both to be 1 .
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To prove Lemma B' we assume ¥y = fibonacci(yl+l) and

3 = fibonacci(yl) . Then taking y; = ¥ty . @ suggested by Axiom | b,

and. y§ = Y2 , as suggested by the hypothesis, we have conpleted the

proof of Lema B'.

The program extractor conbines all the replacements and substitutions
made in the proof to formthe program of Figure 13, which exhibits none
of the crude inefficiencies of the original recursive program The reader
may observe how closely the operations in the programmrror the steps

of the proof.

rx' ‘—X-QJ

(y1: Yo yB))]‘— (0,1,1) ,

T

F
(7073 = 1 LygHy57,) |

|

N

- Figure 13: Iterative fibonacci program
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Te FUTURE RESEARCH

Cearly the results reported in this note represent but a step in
the direction of automatic program synthesis. Qur chief goal was not
to present a conpleted work, but rather to stinulate other people to

exam ne these problens.

(a) Suggested theorem proving research

The foundation of our approach, and its chief weakness, lie in the
theorem prover. W have mentioned that many of our proofs are probably
beyond the state of the art of nechanical theorem proving, although
none of themare terribly difficult. W therefore can use our experience
to pinpoint some weaknesses in the current methods and to suggest sone
directions for theoremproving research.

Any theoremproving system stores its know edge either in the form
of axions (which are sinply assertions) or rules of inference (which are
nethods for transforming assertions). A systemthat relies mainly on
axions is very general; new facts may be introduced without modifying
the system because new axioms may be added |long after the systemis
witten. However, without restrictive strategies about how each axi om
is to be used, such systens tend to thrash and flounder. On the other
hand, systens such as King's[1969] ( see also King and Floyd [1970]),
which rely on rules of inference applying to a specific semantic domain
proceed with a great sense of direction but usually require reprogranm ng
when new facts are introduced.

W therefore would like to see a system that conbi nes the virtues

of both approaches, using rules of inference when possible and axi oms when
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necessary. W further hope that the user would be able to introduce
new rules of inference without being forced to reprogram the system
Thus we would be able to give the system special know edge about the
semantic domain (the integers or lists, for exanple) without affecting
its generality.

W are dissatisfied with the large nunber of equivalent induction
principles required by our system (One might prefer to have a single
general induction rule with-a nore powerful program extraction nechani sm
(see, for exanple, Burstall [1969], Park [1970], and Scott [ 19691]).

It is not yet clear what this mechanism would be, and we are not sure
that the machine inplenentation of such a rule in a theoremproving
system woul d be feasible.

Finally, it occurred to us during the preparation of this paper
that partial function logic (see MCarthy [1963b]) woul d be a nore
appropriate vehicle for program synthesis, because in this |anguage we
may di scuss partial functions, whereas in the usual predicate calculus
all operations and predicates are assuned to be total. W believe the
techniques we have already outlined above apply to partial function |ogic
as well. Some work has already been done by Hayes [1969] towards the
machine inplementation of this logic. Taking this remark in conjunction
with a paper by Manna and MCarthy [ 1970] suggests that partial function

logic may be the nost natural |anguage for program analysis and synthesis.

(b) -Language and representation

In our discussion we have used a nodified predicate calculus in
specifying the programto be constructed. This suggests that predicate

calculus could be used as a higher-level programmng |anguage, where the
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conpi ler would be a program synthesis system extracting a programin
a lower-level |anguage.

On the other hand, we are not bound to the use of predicate cal culus
as our source language. Programmers might find such a |anguage |acking
in readability and conciseness. However, any |anguage that mght be
devel oped for expressing input and output relations would be satisfactory
so long as the system could translate it into the language its theorem

prover under st ood.

O course, there are cases in which it is as easy to wite the program
itself as to wite input and output relations describing it. However,
this is more likely to be the case with trivial exanples than with

complex realistic programns.

(c) Interactive program synthesis

VW have not considered the possibility that the synthesizer m ght
interact with the user in constructing its prograns. However, an
interactive approach mght lead inmediately to a nore practical system
For exanple, if the theorem prover were interactive the power of the
program synt hesi zer would be greatly increased. Alternatively, we
mght interact by allowing the user to suggest program segnents to the

synthesizer, allowing the systemto incorporate theminto the program

(d) Program nodification

V¢ have not approached the problem of constructing efficient programs
in any systematic way. W have contented ourselves with the construction
of correct programs, and have sel dom been very critical of the programm ng
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quality exhibited. Although in Section 6we illustrated that we can

wite nore efficient progranms by avoiding recursion and declaring inefficient
subroutines non-prinmtive, nmore general work in this direction is clearly
needed.

Once we have devel oped a nmethod for controlling the efficiency of the
extracted program wenot only can produce better prograns with the purely
synthetic approach, but also can use our techniques to wite better
conpilers and program optimzers, which transformprograns witten by
human beings. W take such a program (or a portion thereof) and transform
it into its representation in predicate calculus (see Ashcroft[1970],
Burstall [ 1970], Manna [1969], and Manna and Pnueli [19701), which is
then taken as the specification of a new, nore efficient reconstruction.

Anot her way program-synthetic techniques may be used in the
i mproverment of an already existing programis in the construction of
an automatic debugging system Current program verification nethods
give us a way to detect and locate errors in a program we then can
use the programsynthetic approach to replace the incorrect segment

without affecting the remainder of the program
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