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On Generality and Probl em Sol vi ng:

A Case study Using the DENDRAL Program

Edward A Feigenbaum Bruce s. Buchanan and Joshua Lederterg

In discussing the capability of a problem solving system one
shoul d distinguish between generality and expertness.
Cenerality is being questioned when-we ask: how broad a

uni verse of problens is the problem solver prepared to work
on? FExvnertness IS being questioned when w ask: how good are
the answers and were they arrived at with reasonabl e cost?
Ceneral ity has great utility in sone ways, but is not often
associ ated with superior performance. The experts usually are

speci al i sts.

In anal ytic chemstry, there is a domain of inductive

i nference problens involving the determnation of nolecul ar
structure by analysis of certain physical spectra of the

mol ecule.  we have witten a probl em sol ving program
(Heuristic DENDRAL) that is prepared to attenpt to solve any
problemin this very large donain. By now, it has sol ved
hundreds of structure d=termination problens and in many
different chemical fanilies. For some famlies of nolecules,
it is an, expert, even when conpared with the best hunman

per f or nance. For the other famlies, i.e., nost of chemstry,




it performs as a novice, or worse.

This paper will use the design of Heuristic DZNDRAL and its
performance on many different problens it has solved as raw

material for a discussion of the follow ng topics:

1. the design for generality;

2. the performance problems attendent UPON t 00 much
generality;

3. the couplirg of expertise to the general problem solving
processes;

4. the synbiotic relationship between g2n2rality and
expertness, and the inplications of this symbiosis for the

study and design of problem solving systanms.

W conclude the paper with a view of the desigu for a general
probl em solver that is a variant of the "bigswitch" theory of

generality.

Previ ous papers have given a detailed exposition of the
wor ki ngs of the Heuristic DENDRAL program (Buchanan, et al,
1969) and a 4discussion of some general issues of
representation and theory formation suggested by the DENDRAL
wor k (Buchanan, et al, 1970). It is fair to ask for an

i ntegrated presentati on of the resultsofthis application of

heuristic programming to an inportant chemical inference



problem  Several papers presenting these results to chemsts

have appeared or are in press (Lederberg, et al. 1969;
Duffield, et al. 1969; Schroll,et al. 1963: Buchs, et al.
1970), but no sunmary of these results is available in the

artificial intelligence literature.

Yet the attention given to the program as an application of
artificial intelligence research has tended to obscure the
more general concerns of the project investigators. These
are:

1. To studly and construct detailed information processing
model s of processes of scientific inference. By scientific
inference we mean the inferential process by which a model is
constructed to explain a given set of enpirical data.

2. To study experimentally the "operating characteristics@
and the effectivaness of different designs (strategies) for
the depl oynment of task-specific know edge in a scientific
area

3. To develop a nethod for eliciting froman expert the
heuristics of scientific judgnment and choice that he is using
in the performance of a conplex inference task

4, To solve real problens in an area of significance to
modern science, and to do so with a |evel of performance high
enough to have a noticeable inpact upon that area of science.

5. To discover the heuristics which Iie behind efficient

selection. As we conclude |aker, the significant problem nay



not he so much tuning a specialist with a new set of

heuristics as learning how to acquire these heuristics,

THE TASK ENVIRONMENT

For the sake Of completeness and review, we include here a
brief description of the scientific problem that vas chosen as
the task environment in which te pursue the project's goals
(publications listed in t.he References will give the
interested reader the conplete story). The problem given to
the programis the usual problem of theanalytic chemst: to
determine the nol ecul ar structure of an unknown compourAd.
while the chem st may usenany anal ytic techniques, the
program uses only two of the nost inportant tools to collect
data about the unknown sanple. The primary source of
enpirical data is a mass spectroneter, an instrunent that
fragnments molecaules of a chemical sanple (using an el ectron
beam) and records the results. A nass spectrum the output of
themass spectroneter, is a two-dinensional record of the
abundance of various fragnents plotted as a function of their
mol ecul ar weights. A secondary source of data is a nuclear
magnetic resonance (NMR) spectroneter, which uses variations
in magnetic field strengths to provide infornation about
certain specific kinds of structure internal to a nolecule.
(In addition, there is no difficulty in utilizing a third

source of data, the infrared (IR) spectroneter, as soon as it



becomes sufficiently inportant to do so)

The probl em solver is given the mass spectrum the NMR
spectrumif it is available, and the elementary fornula if it
is available {nunber of atons of each kind). For the classes
of nolecules reported in this paper, the program need not be
given the formula butcan infer it directly fromthe spectrum

by a heuristic procedure,

The output of the problem solver is a graph, i.e., a

t opol ogi cal nodel, of the nolecular structure of the unknown
compound. O, if nore than one graph is a plausible

expl anation of the given data, the output is a list of the

pl ausi bl e nol ecul ar graphs, rank ordered, with their relative

plausibility scores.

The determnation of nolecular structure by these electronic
instrunental techniques is seen by physical chemsts to be a
significant advance over ol der chem cal nethods, and is
enticing because of the speed ani econony of the analysis and
the generality of the approach. However, the al nost
bew | dering variety of fragnentations and reactions that can
be induced by the high energy of the electron beamin a mass
spectrometer are far from being conpletely understood, so that
the science of mass spectrum anal ysis, though no |onger an

infant, has still not reached its maturity.



GENERALI TY VS SPEED AND ECONOWY

"y view of existing problem solving programs woul d suggest, as
common sense woul d also, that. there is a kind of "1aw of
nature" Operating that relates problem solving generality
(breadth of applicability) inversely to power (solution
successes, efficiency, etc.) and power directly to specificity

(task-specific information).('Fei genbaum 1968)

"Evidently there is an inverse relationship between the
generality of a nethod and its power. Each aided condition in
the problem statenent is one nore itemthat can be exploited
in finding the solution, hence in increasing the power,"

(Newel |, 1969)

One does not need a view of generality in problem solving
systens of the scope of CPS (Ernst and Newell, 1969) to
appreciate the inportance of this tradeoff between generality
(breadth of applicability) and effectiveness in solving a
given problem (particularly speed and cost). The story of the
DENDRAL progranis success as an application is in part a story
of this tradeoff, which the remainder of this paper wll
sketch. we approach this discussion of generality of problem

solving systenms with some caution since the history of the



search for generality in problam solvers (primarily the Gps
effort) will tend to color the discussion no matter what we

say or do not say about it.

Structure determ nation by mass spectral analysisisa

techni que pursue3 by its scientific practitioners because of
its generality: its broad applicability to all types of

mol ecul es.  The designer of a problem solving systemto
interface with this enpirical data is inclined, at |east
initially, to try to match the generality of the physical
process wWith generality of the reasoning process. Yet he soon
finds, paradoxically, that he can not afford this match, that
he must retreat and rework his analysis into nore specialized
fornms if he istobe able to use hisproblem solver on rea

probl ens.

The Heuristic DENDRAL program has sol ved hundreds of
structural inference problems, nost recently of structures in
the famly oforgani c amines, for which the analysis is
reasonably conplex. The difference in running speed between
solving these probl ens by the nost general nethods known to
the programand solving themby its heuristic nethods
specialized for this type of problemis estimated to be as

| arge asa factor of thirty thousand!

The world Known to the DENDRAL programis the world of organic




chem cal structures. For the purponses of thi S paper DENDRAL's
world will be taken to he the world of non-ringed (acyclic)
organi ¢ nol ecul es, although not all parts of the program are

SO constraired, *

- —— -

*As of July, 1970, the Structure Generator could delineate
all acyclic isoners and all mono-cveclic (single-ringaed)
isomers of a given chemcal fornula, the Predictor could
predi ct mass spectra for acyclic nolecules (and nanipulate the
internal structure of any cyclic nol ecul es), and the Pl anner
could infer structural information fromthe spectral data of

any saturated acyclic nonofunctional molecule,

In the discussion to follow generality will nean breadth of
applicability within the confines of the pENDRAL world. Some
procedures apply to all possible structures in this world, ani
they will be considered themostgeneral, Tf there were a
procedure that applied to only a single molecule, that
procedure would he the least .general. Thus, generality is to

be taken to mean relative generality in the DENDRAL worl d.

THE GENERAL PROBLEM SNLVERS OF THE DENDRAL WORLD

In another place, we have sunmarized our overall design



phi |l osophy as follows: "some Oof the essential features of the

DENDEAL program i ncl ude:

1) Conceptual izing organic chemstry in terms of topologica
graph theory, i.e., a general theory of ways of conbining
at ons.

2) Enbodying this approach in an exhaustive hypothesis
generator. This is a program which is capable, in principle,
of "imagining" every conceivabl e molecular structure.

3) organizing the generator so that it avoids duplication
and irrelevancy, and noves from structure to structure in an
orderly and predictable way. The key concept is that
i nduction becomes a process of efficient selection fromthe
domain of all possible structures. Heuristic search and

evaluation is used to inplement. this efficient selection2

This is a design philosophy which is clearly aimed at the nost
general kind of problem solving capability within the DENDRAL
world, that is any nmass spectrum and associated chem ca

formula within the DENDRAL worl d-can be treated.

From anot her point of view, the DENDRAL program can be seen to
be inmplenented within a generate-and-test paradigm to use
Newell's terminology (Newell, 1969). The "generate" part is
the Structure Generator programand the “test™ part is the
Predictor program  Hypothesis generation and hypothesis

-validation are equally appropriate |abels for these two stages



of the problem sol ving.

The Structure Generator incorporates:

1. an algorithmthat allows it to proceed systematically
from one possible candidate to the next, i.e., a |legal move
generator that defines the space;

2. general criteria for instability of organic nolecul es
thatal low it to avoid working on chemically irrelevant
structures;

3. procedures for treating subqrnphs as if they were atons,
allowing particularly inportant conbinations of atons to he
treated as a unit in the conbinatorial work of the generator
Because Of the structure of nol ecul ar graphs, this task
environment lends itself to partial solutions using the

t echni ques descri bed bel ow.

The Structure Generator program knows nothing of the theory of
mass spectrcnetry. Gven a chemcal formula, it will generate
all the isomers (structural variants,) that, are chemcally
plausible a priori. These are the candidates that are input

to the "test" part of the generate-and-test procedure.

The Structure Generator, even when used al one, has perforned
val uabl e service for chem sts by exhibiting the sizes and
structures of the analytic chemist's probl em spaces. The

number of chem cally possible structural nodels, as shown in

- 10 -



Table 1, IS an important boundary on a chemist's problem
hitherto known only for a few classes of problens (see
Lederberg, et al. 1969).

The Predictor programis the "expert"™ on the general theory of
mass spectronmetry. |t answers this question for the system
Though the candidate may be chemcally plausible on a priori
grounds, IS it a good candidate to explain the given nass
spectrun? 1n other words, does its-predicted spectrumfit the

dat a?

The predictor incorporates a general theory of the
fragmentati on and reconbi nation processes that. can take pl ace
In a-mass spectroneter, insofar as these are known to our
chem st collaborators. The Predictor programis continually

under devel opnent as the theory of mass specttometry devel ops.

Any chem cal structure in the DENDRAL world can be handl ed by
the Predictor. 1In this sense, the Predictor is as general a
probl em solving elenent. as the Structure Generator; in fact,

it is the necessary conpl enent.

The Heuristic DENDRAL program contains a great deal nore than
just this generate-and-test team, as will be described
subsequently. But it is instructive to ask: how powerful are

these “generalists" in solving mass spectral analysis

- 11 -




probl ens?

Table 2 exhibits the results for selected nenbers of the
famly of amno acids. This famly is distinguished fromthe
other famlies withwhich we have worked by virtue of
containing a relatively large number of -heteroatoms (atons not
carbon or hydrogen) relative to the nunber of carbon atons.
For each entry, we give its conmon nane, its chemcal fornula,
the size of theproblem space in terns of the nunber of

topol ogical |y possible isomers, the number of chemcally

pl ausi bl e isoners actually generated by the Structure

CGenera tor (using the "zero-order" theory explained below), and
the rank order assigned to the correct candidate (i.e., the
"right answer®) by +the Predictor. It will be seen that the
heuri stics concerning unstabl e molecules have a substanti al
effect for amno aciils, i.e., the nunber of chemcally

pl ausi bl e nolecules is muchless than the nunber of

topol oyical ly possible candidates. This will not in general
be true for nolecules with fewer types of atoms for exanple,

ket ones, ethers and amines, as we shall |ater se+.

prROBLEMS ATTENDANT UPON TOO MUCH GENERALITY

Experiments such as those justsunmarized pointed up design

probl ens that were consequences of the program's generality.
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As a result of havingto be prepare? to handle in a

honmogeneous an?. complate nmanner any formula or any structure
presented, the prograns are costly in terns of conputer
running time and use of main nemory. with respect to the
Predictor, this means that it is feasible to test only a
relatively small nunber of candidate sol utions. Int he
Structure Ganerator this neans that it is feasible to start

with only a smallcollection of atons.

The generality of the Structure Generator, which enploys only
relatively weak a priori constraints and no constraints

i mposed by the data, tends toward producing too nany

"plausi bl e candi dates. The qgenerate-ani-test procedure
breaks down because the generator is too prolific and the test

is too expensive.

The solution to this design problemis to strengthen the

heuristic ccntrols over the generation of candidate sol utions.
There are a nunber of ways available to do this, some of which
were tried with success, some with failure. The failures were

at least as illumnating as the successes.

The most obvious way will be mentioned first, and then
di scussed no further in this paper. It is this: raview
carefully thetricks in the- heuristic progranmmer% toolkit

(particularly those that apply to thesearch of anNp-oR problem

- 13 -



reduction trees) and do not fail to apply them when they are
applicable. The follow ng exanples fromthe Structure

CGenerator illustrate the point:

1. At. an OR node (in peEvprAL, the selection of a particular
partitioning of the renaining unassigned atons), try the
easi est subproblem first. At an AND node (in DENDRAL, making
radicals from partition elenents), try tke hariest subproblenm
Fiest

2. Limt the numbar of subproblems considerei at an or node
by eval uating the "gquality" of subproblenms and discarding
t hose bel ow a threshold value.

3. For difficult problems, allow human intervention in the
choi ce of subproblems (this potentially powerful heuristic
procedure is available in DENDRAL, but has never been used in

sol ving probl ens).

HEURI STI CS RELATED TO PROBLEM DATA: THE E%ERGENCE OF
" SPECI ALI STS'

By far the nmost powerful method of gaining effective control
over the generator is to force its search to be relevant to
specific problem data given as the input (the spectral data).
That is, the candidates produced by the generator nust be not

only chemcally plausible a priori but also likely solutions

- 14 -



to the specific problemat hanA.

In DENDRAL, one method for doing this is as follows: whenever
a nove in the problem space defines a new piece of an energing
structure, validate the nove with respect to mass spectra
theory by predicting its consequences in terns of expected
spectral lines; an? prune moves that can not be so validated.
In Other words, reduce the search in light of the problem data
by applying the theory of mass spectronetry to nodes in the
probl em space. For exanple, prune all structures to be built
out of a cluster of 2 carbon atons, 3 hydrogens and 2 oxygens
if there is no corresponding data point (mass = 59). A sinple
version of +this nmethod was used in early versions of the
DENDRAL program  The theory of nmass spectrometry used was so
oversinplified that we called it derisively "the zero-order
theory of nass spectrometry”. Yet it turned out to he a cheap
an3 effective pruning criterion for some problens, nanely the
amino acids, for whose fragnentation the zero-order theory was

not a bad theory.

The zero-order theory failed, of course, on nore conplex
problems, but a better theory was available, the general
theory in the Predictor. A procedure was devel oped by which
the Predictor was called every time there was a need for

validation of a partial structure.

—13-



when in doubt consult the “generalist”! Rut the iesign
experiment failed, for these reasons:

1.  The “generalist”, as we have said, is too expensive even
for partial structures; and it was called too frequently.

2. The theory is nost powerful in naking statements about
fragmentation at termni of chem cal graphs; -buttheStructure
CGenerator builds candidate graphs bystarting at the center of
the graph and building toward the termni. Thus the theory
was most powarful precisely when it. was havingthel east
hauristic effect! This representational nismatch could have
been remedied by considerable reprogramming (al though a total
correction would have benefittead by a complete
reconceptual i zation and reprogrammng of the Structure
Generator), but it points up how critical are the problems of
rapresentation When one considers using the know edge held by

one process to control another.

There are other heuristic methnds available in this concrete,
runni ng program however. These we shall call "agqgregation"
and "plarning®". Eoth have general (an? well recognize?!)

i mportance quiteapart fromtheir power in the DENDRAL
application. Tn DENDFAL, both are enployed prior to the
search for candi date solutions, and serve to "preset"the
generator to work on only those famlies of structures that
meet certain conditions inferred fromthe problemdata. Tobe

effective, these processes mustbecheap, relative to a search

- 16 -~



unconstrained by their inferences. Aswe shall see, this is
achieved hy the use of highly specialized rules for
interpreting the "meaning" of the problemadata (spectral
lines). These rules are the formal representation of what the
chem st considers to be his good judgment in properly

organi zing his inference problem

Agygregation s a self-evident general techni que for reducing
the nunber of alternatives produced-by any conbinatori al
generator. Aggregate the conbinatorial elaments into higger
units and treat these as ifthey were el enents. | N DENDRAL,
any subgraph can be treated as a "superaton" with a val ence.
The internal structure of the superatomis not nanipul ated by

the conbinatorial qenerstor.

The npst general view 0¢ the aggrejation heuristic in DENDRAL
is this:

nise Whatever specialized know edge and processes and
what ever auxiliary data are available to infer pieces (partial
structures) of the solution. m™ake these superatons, For the
remai ning atoms, unconmtted to superatons, use the general
structure generating machinery to build the interstitia
structures in all the ways allowed by the heuristics defining

chem cal plausibility.

This general approach has been used in many particular ways.

- 17 -




For exanpl e:

1. The Structure Cenerator can be supplied with a |ist of
superatoms that are known a priori to be highly stable and
therefore likely to occur in nature,

2. A nucl ear magnetic resonance spectrum important
auxiliary data to a mass spectrum anal ysis, often provides
clear and easily obtained infornmation ahout the numher of
nmet hyl superatons (c#l in the structure. Infra-red and
ultra-violet spectra can reveal other kinds of substructure,
which can be simlarly treated as superatoas.

3. The key subgraphs of a nolecule (those containing the
het er oat ons) usually leave their particular "fingerprints" in
the lines of the mass spectrum  Conplex pattern recognition
criteria have been developed by us for identifying t hese key
sutgraphs, Wwhich ara then treated as superatons. A few of
these rules are shown in Table 3.

4.  Sequence extrapol ation and deft nunerol ogy have been used
to infer some sinple structures, such asthel ongest
unbranched chain in themolecule. nnce identified, they
become Superat ons.

5. By direct human intervention, any aggregation--any
superatom-- Can be established. This is of great inportance
when theprogramis used as an "assistant™ in a very
complicate3 probl em The human chem st often knows in advance
basically what kind of structures he is working with, i.e., he

knows nost of the structure ah initio. The known piece of

- 18 -



structure i S inNput as a superatom; DENDRAL then is of
assi stance in analyzina the unknown part and connecting all

parts to form conpl ete molecules.

Aggregation, as just described, is a part of tke more fornal,
more organi zed, more conpl ete heuristic process i n DENDRAL

that we call planning.* we have organized the planning

-

*The aggregation heuristics are currently the nost inportant
parts of our planning process, butnot the only parts. For
exanmple, the heuristics which infer the weiqghts of radicals
attached to the central subgraph (see discussion in text) for
| ater use in search control in the generator are not
aggregation heuristics. Planning, in our view, can be a nuch
broader process than justaggregation. A plan can contain any
information that subsequently will he useful in controlling

the search for solutions.

process around a planning nodel shown bel ow
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where P is the key suhgraph of the nol ecules (that which
determines its chemcal famly), and R . . . Rn are the
subgraphs (radicals) that are connected to it. At the
planning stage in a particular analysis, nore than one F may
be possible. The nunber of radicals attached to the various

possible r's may differ.

A plan given to theStructure Cenerator by the Planner
consi sts of:

1. One or nore P's, as superatons

2. for each F, the "molecular" weights of the radicals
attached to the various val ence bonds

3. other information about aggregation.

The plan delineates the subset of the set of allplausible

structures that wll be allowed as solution candi dates, Ttn
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effect, it deternines that the search for solutions will take
place in sone particul ar subtree of the DENDRAL space. How
far telow the root of the space (i.e., how nuch of the "upper
levels" need not te searched) is a function of how much

aggregation there is in the r's.

In the early fornms of the planning process (previously called
a v“preliminary inference" process), the r's and the pattern
recognition rules for identifying F's were determined in
basically an ad hoc fashion, by the thorough, careful but

pai nst aki ng techni que invol ving chem st, conputer, and DENDRAL
stsff member that has been describ2d as "Eliciting a Theory
from an xpect", (Buchanan, et al, 1970). In a series of
careful ly chosen steps up the ladd=r of structural and mass
spectral conplexity, heuristically powerful sets of r*'s and
rules for the acyclic nonof unctional (i.e., one Fat a ting)
chemcal famlies were worked out. The aggregation heuristics
previously discussed were enployed. The Planner devel oped
into the system's "specialist® on the neaning of spectral
lines--3 collection of special f-acts and special.-purpose

heuristics crganized around particular chemcal famlies.

The use of the Planner as a specialist controlling a general
search process is powerful. Results for the analysis of mass
spectra of the chenical families of ketones and ethers are

illustrative. See Tables 4 an3 5. The differences between

- 21 -



nunbers of structures in the columms | abel ed "Nuaber of
Chem cally Plausible Structures" and the columms | abel ed
"Nunber of Structures Generated" exhibit the power of planning

in limting search in these problems.

THE PLANNTNG PROCESS

The primary fact of life for heuristic program designers is
that increases in conplexity of problems are acconpani ed by
exponential increases in the size of the problem spaces to be
searched.  Successful heuristic designs cope by increasing the
nunber and/or power of the heuristics to match increases in

the size of the space.

The chemcal famly of amines presents such a challenge for
DENDRAL. amines contain a nitrogen atomas the key

het er oat om Since nitrogen has three val ence bonds conpared

W th oxygen's two, amines represent the next |ogical step up
in conplexity fromthe ketones and ethers. For any fixed
nunber of carbon atonms there are many nore amines than either
ketones or ethers. That is, there is a marked increase in the

size of the spaces to be searched.

Early experinents with amines showed the usual pattern of

system breakdown synptomatic of too little heuristic power for
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the size of the spaces. Since for amines the a priori
stability heuristics that define chemcal plausibility for the
generator have little or no heuristic power, all of the
heuristic control over tha generator nust cone fromthe plan
Producing plans sinply by extrapolating the techni ques used

for the ketone and ether famlies was grossly inadequate.

Tn such a situation, a sensible design change is to give the
Pl anner the ability to specify more completely the form of
acceptabl e solution candidates. The generator is thereby
constrained to search a snaller space. One way to do this is
by nore aggregation--to0 cause nore pieces or |arger pieces of
structure to be “predeterm ned® by special-purpose inference

schenes.

In the DENDRAL devel opnent, increased aggregation in the
pl anni ng stage was designed in as foll ows:

1. In a systematic way, the size of the F's was increased to
incorporate nore carbon and hydrogen atons. If the set of P's
is to be logically conplete within the size bounds chosen,
then hy the ordinary combinatorics, the nunber of possible F's
fromwhich selections wll be nade nust increase. This
conplicates the classification decision by which it is
inferred that t.he spectral data indicates a particular ¢ (or

set of F's).
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The systematic nethod used for enunerating theset of f's for
amines was chosen very carefully to mate best with that part
of the theory of mass spectronmetry that seemed nost powerful
in aiding the classification decision. The system for
constructing the F*s and the mass spectral theory to which it
mat es (al pha-carbon fragnentation theory) are described in
detail el sewhere (Buchs, et al, 1970) and will not be

explicated here.

2. Heuristics for the interpretation of nuclear magnetic
resonance spectra were added to the Planner. As previously
mentioned, these auxiliary data ars useful for inferring the
number of CH3 superatoms in the structure (also how many of
these superatons are linked to a carbon, how nany to the
heteroatom. A complete i nterpretation of the NYR spectrum
often is inpossible to make, whether the interpreter is human
or DENDRAL, but in any event is not necessary. \atever
partial interpretation can be done unanbi guously by the
heuristics will be reflected in the plan by corresponding

aggregation infornation,

A new Pl anner (for historical reasons called "Inference Maker"
in Buchs, et al, 1970) inplements these ideas. The structure
of this programis very sinple, but the mass spectrum
interpretation heuristics are quite conplex. These rules

devel oped by the DENDRAL group stand on their own as a
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contribution to the methodol ogy of mass spectrum anal ysi s.
Because of their conplexity, however, they are best applied by
a conputer progra m, not a human chem st, giving DENDRAL a
substantial performance edge over human anal ysts for the class

of problens handl ed by the rules.

The Pl anner has the follow ng organization:

1. 1f an NMR spectrumis given as problem information, infer
all that can be inferred about the methyl superatons. Include
this information in the plan. Tn addition, use it in the test
part of step 4 bel ow.

2. Cenerate a list of the relevant r*s for the chem cal
fam |y being considered (for exanple, generate the 31 F's
rel evant to amines).

3. Associate with each F a property list which contains a
nunber of criteria of applicability (*diagnostic" criteria)
for that 7. In large neasure these criteria are inferred from
mass spectral theory. (Ve mentioned earlier thatthe nethod
of structuring theF*s was chosen to make this application of
t heory easy.)

4. Test each superatom agai nst the gi ven nmass spectrumto
ascertain whether all of the "diagnostic" criteria for it are
satisfied by the data. [If any part of this validation test
series fails, discard the .

5. All F's not. discarded -are included in the plan. For each

of these, infer the weights of the attached radicals fromthe
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spectral data and include these sets ofweights in the plan.

Table 6 exhibits the results of using this planning process on
a group of amne conpounds. There aresomenoteworthy things
about the data in this table, for exanple:

1.  The size of the problem spaces for some. of the amines
(over 14 mllion isomers of c20H43N?);

2. The inmpotence of the mass spectrum alone in finding the
answer (or a small set of answers). This difficulty is not
caused by a lack of expertise in the progqram. Human experts
are in exactly the samesituation, or perhaps worse.

3. The extraordinary effect of the NVR data to assist the
mass spectrum anal ysi s. Every tine a "1* appears in the right
most column, it. i ndi cates that the plan contai ned so much
information about the solution, that the plan in fact uniquely
deternined the solution? Even in the other cases, the number

of isomers in the plan-constrained space is trivially small.

This is remarkable, The planner, which is the specialist at
"understanding" the data and inferring conditions on the
solution, is so powerful that the need for the general problem
solving processes of the systemis obviate?, Another way to
viewthis is that all the relevant theoretical know edge to
solve these am ne problens has been mapped over fromits
general formin the predictor ("first principles") to

efficient special fornms in the Planner ("cookbook recipes").
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The details of how each specialist works have been descri bed
el sewhere. 1n each particular case, new constraints on the
problem lead to new heuristics for shortcutting the genera
conbi natorial theory. \Wen the shortcuts can be discovered a
speci alist emerges; otherw se, the programrelies on its

ganeral capabilities.

On the average, ¢*he problems Of Table 6 each took about. 0.5
seconds of conputer tine to solve, whereas the average ketone
or ether problem shown in previous tables took a few m nutes
to solve; ani the average amine probl em done by the method

used for the ketones woul d tak2 nuch longer,

PLAMNING RULE GRENERATOR

At this point, we Will review the nost inportant features of

t he planning process.

Though it honsesafew general practitioners performing
aggregation, the Planner is primarily a house of specialists.
The areas of specialty are chemcal famlies such as ketones,
ethers, and amnas. One process makes the necessary

pl an-formul ati on decisions for all thespecialists. The
expertness of a specialist is contained in what it knows about

its famly of specialization, particularly the expected
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patterns of mass spectral lines for a set of subclasses of the

famly.

There is, in effect, an N position switch at the very front
end of DENDFAL, which is set when a heuristic procedure or
human intervention declaresthe famly of molecules to be

consi dered, *

*Deci ding on an appropriate setting of the SWtch may i nvol ve
SONEe "act ive" processing, e.g., SOMe search. unless told by
human intervention, DENDRAL does not know at the outset what
the appropriate specialis+. is. 1+ discovers this by some
trial and error search. This involves, first, quessing the
correct heteroatom (assumng that the enpirical formula is not
given). If, as a result of this guess, the specialist thatis
appropriate can not validate even one F, a "backtracking"
takes place in which the guessis abandoned, and a new guess

as to heteroatomis made.

Setting theswitch calls the appropriate specialist. If there
is none, the switch is set to a default position which calls
only general practitioners. The specialist knows how to
generate the central superatons relevant to its famly and the

associated validation criteria for each superatom
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The specialist was given this information by us, the

desi gners. The designers, who know the theory of nass
spectronmetry, have selected sone of this theory--first order
effects--as the basis for a prelimnary interpretation of the
data. The slice of theory so selected determ nes what size
and structural formthe central superatoms must have. The
desi gners then deduce the actual structures of all of the
logically possi bl e central superatons of that size an? form
The designers al so deduce fromthe-first-order theory specific
values for the validation criteria to be associated with each
central superatom The results of these two deductive steps
(superatons and criteria) taken together constitute a set of
planning rules to be used at. the time the specific plans are
formulated. Thus a set of planning rules makes the Pl anner a
specialist for a chemcal famly. Once alive and tested, the

new specialist is added to the "big switch?

It is evident that when the designer has chosen the slice of
theory he wishes to use for planning purposes, the remainder
of his work, the generation of planning rules, can be, in fact
should be, done by program As the nolecular famlies treated
become nore conplex; necessitating the addition of heuristic
power in the planning stage if the generator is to be properly
controlled, the planning analysis involves increasingly nore
theory, which in turn leads to increased difficulty+ for humans

in generating logically conplete and accurate sets of planning
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rules. In addit ion, a Planning Rule Generator program can
create, autonatically, specialists for each of the
menber-famlies of the broad class of famlies to which the
theory now applies. This is an automatic nass production
process that can replace the tedious and expensive process of
eliciting know edge from an expert that we have used in the

past .

A Planning Rule CGenerator has been witten for DENDRAL. 1t
deals with the very general class of saturated (i.e., no
doubl e bonds or rings), acyclic nonof unctional conpounds.

Pl an schema have been generated by this program for the
following famlies: thiols andi thioethers (heteroatomis
sulphur) ; ethers; al cohols: and amines. These planning rules
were then used by oeEwbpraL in solving problens in these areas
(i.e., the ordinary DENDRAL performance node). The results
are shown in Tables 5, 6, and 7. The conments we nade earlier

concerning Table 6 apply also to Tables & and 7.

The Planning Rule Generator .is a conplex program the details
of which can not be described here. Those interested can find
a description of the program from a chem cal point of view in

a recent publication (Buchs, et al, 1970).

The pENDRAL Planner is a performance process. The Planning

Rule Generator is not. It is a higher |evel planning process

- 30 -




by which it is determ ned how planning shall be done in
particular classes of problems. For us it is the first snal
step up the |adder of prograns for theory manipul ation and
theory formation "meta™ to the DENDRAL performance program

we view the building of such programs as a pronising endeavor.
DENDRAL as a performance programis conplex. enough and rich
enough in internal structure and theory to provide many firm
foundation points on which to erect a meta-level for the study

of theory formation processes.

GENERALI TY AND THE DESI GNS FOR PROBLEM SOLVING SYSTEMS

We shall conclude this paper with a return to the thene with
whi ch we began: generality, expertness, and the design of
probl em solvers. Asa case study, we have traced the
evolution of designs for a systemthat solves difficult
scientific inference problenms. The forcing function for the
evol ution of designs was primarily the set of demands pl aced
upon the organi zation of the DENDRAL program by increasingly
more conplex and difficult tasks. The design we now have is
"natural® (i.e., shaped bythe real world), not "artificial"

Oor atstract.

Many threads have been woven into our discussion: genera

processes and representations in DENDRAL; the cost of
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generality; heuristic power; the specialization of know edge
in the planning process; planning as a nethod for translating
problem data into search constraints and solution conditions;
hi gher-1evel planning as a method for building specialists
fromgeneral theory. W now ask whether these threads forma

meani ngful fabric.

The study of generality in problem solving has been dom nated
by a point of viewthat calls for the design of "universal®
nmet hods and "universal" probl em representations. These are
the GPS-1ike and Advice Taker-like mnodels. This approach to
generality has great appeal, butthere are difficulties
intrinsic toit: the difficulty of translating specific tasks
into the general representation; and the tradeoff between

generality and power of the methods.

In recognition of thesedifficulties, a viewpoint at the other
extreme has emerged, infornmally called "the big switch

hypot hesi s?*

*we first heard the phrase "big switch hypothesis" in a

| ecture given by A. vewell at Stanford University in 1966.

In this view, general problem solvers are too weak to he use?:

as the basisfor building high-performance systens. The
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behavi or of the best genaral probl em sol vers ve know, human
probl em sol vers, is observed to be weak and shall ow, except in
the areas in which the human problem solver is a specialist.
And it is observed that the transfer of expertness between
specialty areas is slight. A chess nmaster is unlikely to be
an expert algebraist or an expert mass spectrum anal yst, etc.
In this view, the expert is the specialist, with specialist’s

know edge of his area and specialist’s methods and heuristics.

The "big switch hypothesis® holds that generality in problem
solving is achieved by arraying specialists at the termnals
of a big switch. The big switch is noved from specialist to
specialist as the problem solver switches its attention from

one problem area to another.*

*rt his paper, we nerely state the hypothesis vithout
discussing it. The kinds of problem solving processes, if
any, which are involved in Wtting the switch" (selecting a
specialist) is a topic that obviously deserves detailed

exam nation in another paper.

Qur case study of the DENDRAL program suggests a synthesis of
these extrene points of vie-u. The features that characterize

a general problem solving process are present. W®ithin the
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DENDRAL world, the search for solution canlidates in the
Structure Generator and the validation procedure of the
Predictor are "universal" methods, and the representation

enpl oyed i s "universal", The general nethods do sol ve DENDRAL
problens, sometimes well as with some amno acid spectra, but

they are relatively weak and inefficient.

To increase accuracy and efficiency, specialists energed, but
in a design which called for conpatibility and coexistence
with the general rrocesses. The existing interna
representation was nai ntain& throughout as a “conmon

| anguage" understood by both generalist and specialist. The
specialists did not replace the generalists. They were
witten to function as planners, providing search constraints
and solution conditions. The "big switch” in DENDRAL i S at
the front eni1 of the Planner Program  Despite the array of
power ful specialists on the switch, perhaps the nost inportant.
position is the default position--the "not el sewhere
classified" bypass--that calls the general problem solving

processes when the knowledgeda specialist is not avail able.

The Planning’ Rule Cenerator nakes the synbiosis of generali st
and speci alist mutual. The theory of mass spectronetry that

is used by the Predictor to validate candidates (or some part
of it) 'is used by the Planning Rule CGenerator to deduce a new

specialist for the "hig switch?
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Herein we think lies the germ of another method for problem
solvers. A general problem solving process in part achieves
general ity because it enploys a general theory of the nature
and behavior of the objects and operators of its world. This
theory can be used in what we mght call "execute mode", as
for exanple when DENDRAL's Predictor is validating a candidate
soluticn, But this theory can also be used in what mght be
call ed "conpile mode*, as for exanple when the Planning Rule

CGenerator is deducing a new specialist.

This idea needs an extended di scussion, which we are not
prepared to give here. But we shall makeafew brief

observati ons.

The first observation is thatthe idea closely parallels the
line of argunent given by Sinon in his book of essays on
heuristic programming entitled "The New Science of Management
pDacision" (Sinon, 1960). In discussing human decision making,
particularly inorganizations, Sinmon draws a dichotony between
t he routire repetitive decision problens, which he calls
"programmed deci sions" and the novel one-shot decision

probl ens, which he calls "nonprogrammed decisions".

Concerning "progranmred decisions", the organization "develops
specific processes for handling them.® Exanples are: habits

(an individual % "compiled subroutines"), Standard Operating
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Procedures (anorgani zation's "conpil ed subroutines"),

mat hemat i cal nodel s from operations Research, and EDP

procedur es. The "non pr ngrammed" deci Sion probleas are
"handled by general problemsolving processes? To a large
extent., it is the repetitiveness With which a decision problem
presents itself that determi nes whether it is economic for an
organi zation to invest resources in routinizing and
specializing the decision making process, i.e., "compile®

ge2neral procasses INnto special-purpose routines.

The second observation is that theideamay he much nore
difficult to inmplenent than it appears at first for the sinple
reason that the tradeoff between generality and power hol ds
for processes at the meta-level just as it holds for
performance |evel processes. Thus, for example, DENDRAL'S
Planning Rule CGenerator is powerful for ths supra-famly of
all saturated, acyclic, nonofunctional conmpounds, hut is
usel ess for all other classes of conpounds. when We extend
DENDRAL's capability to families of cyclic: nolecules, we may
have to wite a new Planning rule Generator. O is there yet
anot her process lurking at a higher level, a Generator of

Plarning Rule CGenerators?

The arpropriate place for an attack on the probl em of
generality may beat the meta-levels of |earning, know edge

transformation, and representation, not at. the level of
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performance programs. Perhaps for the designer of intelligent
systems what is nost significant about human general problem
sol ving behavior is the ability to learn specialties as
needed--to |earn expertness in problem areas by |earning
probl em specific heuristics, by acquiring problemspecific
information, and by transform ng general know edge and general

processes into specialized forns.
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TABLE 1

Numbers of Possible Non-Cyclic Molecular Structures of Selected Formulas (1)

Number of Carbon Atoms

Chemical Formula b S 6 7 8 9 10
CRH(2n+2) 2 3 5 9 18 35 75
CnH(2n+2)0 7 14 32 72 171 405 989
CAH(2n+3)N 8 17 39 89 211 507 1238
CnH{2n+3)NO

(1) These numbers define the size of the search space for problemsinvolving molecules of a given chemical
formula.. TiThelzie® of the space increases dramatically withboth the number of carbon atoms and the
number of other types of atoms in the formula. This table Is abstracted from Lederberg, et al, 1969.
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Namne of
"Unknown'

Glycine
Alanine

Serine
Threonine

Leucine

Chemical
Formula

C2H5NO02

C3H7NO2
C3H7NO3

C4HINO3

Co6H13N02

TABLE 2
Amino Acid Results

Number of
Size of Plausible
Problem Space (1) Structures (2)

38 12
216 50
324 L0
1758 , 238
10000 (approx.) 3275

Number of
Structures
Generated (3)

10

288

Rank Order

of Correct
Candidate (4)
1st, 7 excluded
ist

1st, 9 excluded
1st

Tied for 2nd,
277 excluded

(1) The total size of the problem space Is the number of topologically possible molecular structures
within valence considerations alone.
of plausible structures is the number of molecular structures in the total space which

generated

(2) fhe number

also meet
Increased

(3) The number

program as candidate explanations of the experimental data.

“zero-ord

molecular structure used as a test "unknown'.

a priori conditions of chemlcal stability.

numbers of non-carbon, non-hydrogen atoms.
of structures generated is the number of molecular structures actually generated by the

er" theory during structure generation.
(4) The rank order of the correct structure Is the validation program's assignment of rank to the actual

process is also indicated.

The a priorl rules have greater effect with

Pruning has been achlieved by using the

The number of structures excluded in the validation
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Name

Ketone

N=Propy!l
Ketone3

Ether

(1) See Duffield, et al, (1969), Schroll, et al.

TABLE 3

Heuristics Used for ldentifying Three Superatoms (1)

Superatom

Structure

R

0
CH3 -CH2-CH2-C-CH2-C~CH

-¢c-0-C¢C -

of these and other sets of heurlstics used in planning.

Identifying Conditions

There are 2 peaks at mass units x1 & x2 such that

a)
b)
c)
d)

10
2,
3.
"o
i

1.
2.
3.

X1l + x2 = M + 238,

x1l - 28 Is a high peak,

x2 - 28 Is a high peak,
At least one of x1 or x2 Is high.

71 is a high peak,
43 is a high peak,
86 is a high peak,
58 appears with any intensity.

M-18 Is a peak of 0 or 1% intenslity,

M=17 1s a peak of 0 or 1% intensity,

There are 2 peaks corresponding to the alpha-cleavage
fragments.

(1969), and Buchs, et al., (1970) for fuller discussions
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TABLE &4

Ketone Results

Mumber of Number of Rank Order

Name of Chemical Size of Plausible Structures of Correct
"Unknown' Formula Problem Space (1) Structures (2) Generated (3) Candidate (4)
2-Butanone C4H80 11 11 1 1st
3-Pentanone C5H100 33 33 1 1st
3-Hexanone C6H120 91 91 1 1st

2-Methyl-=-

hexan-3-one C7H140 254 254 1 1st
3~Heptanone C7H140 254 254 2 Tied for 1st
3-Octanone C8H160 698 698 & 1st
4-Octanone  C8H160 " 698 698 2 1st, 1, excluded

2,4-Dimethyl~
hexan-3-one CB8H160 698 698 3 Tied for lst,
1 excluded

6-Methyl-

heptan=3-one C8H160 698 698 L 1st
3-Nonanone C9H180 1936 1936 . 7 ist
2-Methyl-

octan-3-one C9H180 1936 1936 b st (5)
h-Honanone C9H180 1936 1936 L 1st (5)

(1) The total size of the problem space Is the number of topologically possible molecular structures
generated within valence considerations alone,

(2) The number of plausible structures is the number of molecular structures In the total space which
also meet a priori conditions of chemical stability. The a priorl rules have no effect with
formulas containing a single non-carbon, non-hydrogen atom.

(3) The number of structures generated is the number of molecular structures actually generated by the
program as candidate explanations of the experimental data. Pruning has been achieved by using the
planning Information from the Planning program,

(4) The rank order of the correct structure is the valldation program's assignment of rank to the actual
molecular structure used as a test "unknown". The number of structures excluded in the
process is also indicated.

(5) Previous publication showed the correct structure excluded. The general rules of the
program have since been modifled to improve its performance.
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Table 5
Ether and Alcohol Results

Number of Number of Number of Number of
Alcohol CnHansa O inferred Ether CuHan+a O inferred
lsomers(l 2) lIsomers(3) isomers(1,2) isomers(3)
A B A B
n-butyl ch 7 2 1 Methyl=-n-propyl C4 7 2 1
1so-butyl 7 2 1 Methyl-iso-propyl 7 3 1
Sec-butyl 7 3 2 Methyl-n-butyl 14 2 1
2-methyl=-2-butyl C5 iy 1 1 Methyl-jso-butyl 14 2 1
n-pentyl 14 4 1 Ethyl-lso-propyl 14 1 1
5-pentyl 14 1 1 Ethyl=n-butyl (o] 32 b 1
2-methyl=1-buty]l 1y 4 2 Ethyl-jso-butyl 32 ) 2
2-pentyl 14 2 1 Ethyl-sec-butyl 32 2 2
3-hexyl Co 52 2 1 Ethyl-tert-buty!l 32 1 1
5-methyl-1-pentyl 32 8 4 Di-n-propyl 32 1 1
Lh-methyl=-2-pentyl 32 4 1 Di-iso-propyl 32 1 1
n-hexy]l 32 8 1 n-propyl=-n-butyl c7 72 2 1
3-heptyl c7 72 b 1 Ethyl-n-pentyl 72 L 1
2-heptyl 72 8 1 Methyl=-n-hexyl 72 8 1
3-ethyl-3-pentyl 72 1 1 lsg-propyl-sec-butyl 72 3 2
2,4=-dimethyl=3-penty] 72 3 1 lso-propyl-n=-pentyl 171 4 1
n-heptyl 72 17 1 n-propyl-n-pentyl 171 3 1
3-methyl-1-hexyl 72 17 6 Di-n-butyl 171 3 1
n-octyl cs8 171 39 1 1so-butyl-tert-butyl 171 2 1
5-octyl 171 8 1 Ethyl-n-heptyl c9 405 34 1 ‘
2,3,4-trimethyl=3=-pentyl 171 3 1 n-butyl-n-pentyl 405 8 1
n-nonyl C3 405 89 1 Di-n-pentyl Clo 989 10 1
2-nonyl 405 39 1 Di-iso-penty! 989 18 7
n-decyl C10 989 211 1 Di-n-hexyl Cl2 6045 125 2
b-ethyl=-3-octyl 989 39 9 Di-n-octyl C1l6 151375 780 1
3,7-dimethyl-l-octy] 989 211 41 Bis-2-ethylhexy!l 151375 - 780 21
n-dodecyl c12 6045 1238 1 Di-n-decyl C20 11428365 22366 1
2-butyl-l-octyl 6045 1238 25
n-tetradecyl Cl4 38322 7639 1
3-tetradecy! 38322 1238 1
n-hexadecyl . C16 151375 48865 1

A = Inferred isomers when only mass spectrometry is used.
B = Inferred Isomers when the number of methyl radicals is known from NMR data.

(1) The total size of the problem space is the number of topologically possible molecular structures
generated within valence considerations alone.

(2) The number of plausible structures is the number of molecular structures in the total space which
also meet a priort{ conditions of chemical stability. The a priori rules have no effect with
formulas containing a single non-carbon, non-hydrogen atom.

(3) The number of structures generated is the number of molecular structures actually generated by the
program as candidate explanations of the experimental data. Pruning has been achlieved by using the
planning information from the Planning program.
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Number of Number of Number of Number of

Aming CnHanes N inferred Amine CnHaneg N inferred
isomers isomers i somers | somers

A B A B

n-propyl c3 4 1 1 N-methyl-do-lig-propylc7 89 15 3
1so-propyl 1 2 1 n-octyl 211 39 1
n-butyl C4 8 2 1 Ethyl-n-hexy! 211 24 1
lso-buty!l 8 2 1 1-methylhepty]l 211 34 1
Sec-butyl 8 4 2 2-ethylhexyl 211 39 9
Jert-butyl 8 3 1 1,1-dimethylhexy! 211 32 4
Di-ethyl 8 3 1 Di-n-butyl 211 24 1
N-methyl=-n-propyl 8 4 1 Di-sec-butyl 211 33 8
Ethyl=-n-propyl c5 17 5 1 .Di-iso-butyl 211 17 5
N-methyl-di-ethy! 17 4 1 Di-ethyl=-n-buty! 211 17 3
n-pentyl 17 4 -1 3-octyl 211 26 2
lso-pentyl 17 L 2 n-nony c9 507 89 1
2-pentyl 17 2 1 N-methyl=-di=-n=-butyl 507 13 1
3-pentyl 17 5 1 Tri-n-propyl 507 2 1
3-methyl=-2-butyl 17 [N 1 Di-n-pentyl C10 1238 83 1
N-methyl=-n-butyl 17 4 1 Di-iso-penty] 1238 109 16
N-me thyl-gggc-buty!l 17 3 1 N,N-dimethyl-2-ethylhexyl 1238 156 9
N- methyl-i;g-butyl 17 b1 n-undecy! C11 3057 507 1
n-hexyl cé 39 8 1 n-dodecyl Cl2 7639 1238 1
Tri-ethyl 39 2 1 n-tetradecyl Cly 48865 10115 1
2~hexyl 39 8 1 Di-n-heptytl 48865 646 1
Di-n-propyl 39 8 1 N,N-dimethyl~-n-dodecyl 48865 4952 1
Di-iso-propyl 39 8 1  Tri-n-pentyl Cl5 ' 124906 40 1
N-me thyl-n-pentyl 39 8 1 Bis=-2-ethylhexy!l Cl6 321988 2340 24
N-methyl-jsg-penty] 39 8 2 N,N-dimethyl-n-tetradecyl 321988 3895 1
Ethyl=-n-butyl 39 6 1 Di-ethyl~n-dodecy) 321988 2476 1
N,N-dimethyl=-n-buty]l Y] 10 1 n-heptadecyl Cl7 830219 124906 1
n-heptyl c7 89 17 1 N-methyl-bis~-2-ethylhexyl 830219 2340 24
Ethyl-n-penty! 89 16 1 n-octadecy! Cl8 2156010 48865 1
n-butyl-jso-propy! 89 11 1 N-methyl-n-octyl-n~nonyl 2156010 15978 1
Lb-methyl-2-hexyl 89 16 4 N,N-dimethyl-n-octadecyl1C2014715813 1284792 1

Iable &

Amine Results

A = Inferred isomers when only mass spectrometry is used.

B = Inferred isomers when the number of methyl radicals Is known from NMR data.

(1) The total size of the problem space Is the number of topologically possible molecular structures
generated within valence considerations alone.

(2) The number of plausible structures is the number of molecular structures in the total space which
also meet a priori conditions of chemical stablility. The a prlori rules have no effect with
formulas contalning a single non-carbon, non~-hydrogen atom.

(3) The number of structures generated is the number of molecular structures actually generated by the
programn as candidate explanations of the experimental data. Pruning has been achieved by using the
planning Information from the Planning program.
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fable 7
Thioether and Thiol Results

Number of Mumber of Number of Number of
Ibicether CaHaneg S inferred Ihiot CyHan+a S inferred
isomers(1l,2)isomers(3) isomers(1,2) Isomers(3)
_ A B A B
Methyl-ethyl C3 3 1 1 n-propy!l c3 3 2 1
Methyl-n-propyl Ck 7 1 1 1so-propy1 3 1 1
Methyl-jso~propy!} 7 2 1 n=buty" Ch 7 3 1
Di-ethyl 7 1 1 1so~-buty! 7 3 1
Methyl-n-butyl C5 14 ) 1 Tert-butyl . 7 1 1
Methyl=-jso-butyl 14 5 2 2-methyl=-2-buty Cs 14 1 1
Methyl-tert-butyl 14 1 1 3-methyl=-2-butyl 14 2 1
Ethyl-jiso-propyl 1y 1 1 3-methyl=-1-butyl 14 6 3
Ethyl-n-propyl 14 2 1 n-pentyl 1y 4 1
Ethyl-n-butyl Cco 32 3 1 3-pentyl 14 5 3
Ethyl-tert-butyl 32 1 1 2-pentyl 14 6 3
Ethyl-jso-buty!l 32 3 2 n-hexyl . Cé 32 8 1
Di-n-propy! 32 2 1 2-hexyl 32 12 5
Methyl-n-penty! 32 10 1 2-methyl-1l-pentyl 32 8 4
Di-jiso-propy] 32 1 1 L-methyl-2-pentyl 32 4 2
Ethyl-n-pentyl c7 72 N 1 3-methyl-3-penty! 32 1 1
n=-propyl-n-butyl 72 5 1 2-methyl=-2-hexyl c7 72 8 3
lso-propyl -n-butyl 72 5 2 n-heptyl 72 17 1
1so-propyl-tert-butyl 72 1 1 2-ethyli-1-hexyl cs 171 39 9
n=propyl-]lsg-butyl 72 3 2 n-octyl 171 39 1
lso-propyl-sec-buty! 72 4 3 l-nonyl CS 405 89 1
n-propyl-n-pentyl1C8 171 4 1 n-decy! C10 989 211 . 1
Ethyl-n-hexy]l 171 8 1 n-dodecyl Cl2 6045 1238 1
Di-n-butyl 171 5 1
Di-sec-butyl 171 3 1
Di-iso-buty! 171 3 1
Methyl-~-n-heptyl 171 21 1
Di-n-pentyl Cl0 989 12 1
Di-n-hexy} Cl2 6045 36 1
Di-n-hepty!l Cly 38322 153 1

A = Inferred Isomers when only mass spectrometry ls used.
B = Inferred Isomers when the number of methy! radicals is known from NMR data.

(1) The total size of the problem space Is the number of topologically possible molecular structures
generated within valence conslderations alone.

(2) The number of plausiblestructures is the number of molecular structures Inthe totalspace which
also meet a priori conditions of chemical stability. Theapriorirules have no effect with
formulas containing a slingle non-carbon, non-hydrogen atom.

(3) The number of structures generated is the number of molecular structures actually generated by the
program as candidate explanations of the experimental d ata. Pruning has been achieved by using the
planning information from the Planning program.
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