STANFORD ARTIFICIAL INTELLIGENCE
~ MEMO AIM-185

STAN-CS-73-333

ON THE POWER OF PROGRAMMING FEATURES

{

- BY

ASHOK K. CHANDRA

ZOHAR MANNA

SUPPORTED BY
NASA CONTRACT NSR 05-020-500

AND
~ ADVANCED RESEARCH PROJECTS AGENCY

ARPA ORDER NO. 457

JANUARY 1973

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UN IVERS ITY




STANFORD ARTI FI CI AL | NTELLI GENCE LABORATORY January 1973
VEMD ATM-185

COVPUTER SCI ENCE DEPARTMENT
REPORT STAN-CS- 73- 333

ON THE PONER OF PROGRAMM NG FEATURES
by

Ashok K. Chandra
Zohar Manna

ABSTRACT: W consi der the power of several progranmm ng features such
as counters, pushdown stacks, queues, arrays, recursion and
equality. In this study program schemas are used as the nodel
for conputation. The relations between the powers of these
features is completely described by a conparison diagram

This research was supported in part by the Advanced Research Projects
Agency of the Office of the Secretary of Defense under Contract No.
SD-18%, and by NASA contract NSR 05-020-500.

The views and concl usions contained in this docunment are those of the
aut hor and should not be interpreted as necessarily representing the

official policies, either expressed or inplied, of the Advanced Research
Projects Agency or the U S Government.

Reproduced in the USA  Available fromthe National Technical Informnation
Service, Springfield, Virginia 22151.



[ ntroduction

In this paper we consider the problem of conparing the power of
several features used in programming |anguages. For exanple, it is
intuitively obvious to any progranmer that recursion cannot, in general
be replaced by iteration with variables alone, but recursion can al ways
be replaced by a pushdown stack. This indicates that a pushdown stack
is at l|east as powerful as recursion, and that recursion is nore powerfu
than iteration. Thus, fromthe iteration-vs-recursion standpoint we
woul d say that ALGoL and PL/1 are nore powerful than FORTRAN.  The
question is whether an intuitive notion of this kind can be understood
in a formal-way, and possibly el aborated upon to obtain a better under-
standing of progranmng features and to enable us to conpare their power.

Unfortunately, the problemis not so sinple. Consider, for exanple,
the programming |anguage of flowcharts, which contain ideal integer
variables, i.e., their values can be arbitrarily large. .The operations
allowed in the flowhart are increnenting and decrenenting variables by
one, and testing to see if the value of a variable is zero. Such a
sinple language with just three variables can calculate all the "conputable"
functions, that is, all the partial recursive functions over the natura
nunbers. Thus if we add recursion or a pushdown stack to such a | anguage,
the power of the language will not be increased.

This suggests that in order to carry out such a study, we nust
isolate in sone way the effect of the programm ng features, whose power
we wish to conpare, from the values being conputed by the program  For
this purpose we consider for each progranm ng | anguage a class of program

schemas; a program schema may use the control features of the |anguage




but the basic operations (constants, functions, and predicates) are
used only as synbols w thout being specified.

Rel ated work has been done previously, among others, by Paterson and
Hewi tt [1970], Garland and ILuckham [1971], Constable and Gies [1972],
Pl ai sted [1972] and Chandra and Manna [1972]. The cl asses of schemas
considered in these papers are not identical to ours, but the differences
are not significant. Details of the results presented in this paper

can be found in Chandra's thesis [1973].

Part |. The O ass of Program Schemas

A program schema is a programin which the data domain is not

specified. In addition, the constants are indicated sinmply by the

synbol s 815805+ e e s the functions by f and the predicates

l,fe,'-n y
by PPy .9 . Thus a program schema may be thought of as representing

a famly of real programs. A real programof the famly is obtained by

providing an interpretation for the synbols of the programschema, i.e.,

specifying a data domain and specifying data el ements, functions and
predi cates over the domain for the synbols a; , Ty and P; respectively.
In our program schemas we use two kinds of variables: data

variables, denoted by VTR YRR and bool ean variabl es, denoted by

Bool ean vari abl es can have value either true or fal se.

Zl)Zg) e o
Data variables, on the other hand, have values from the data domain

that is specified along with an interpretation for the schema. Corres-
pondi ngly, we distinguish between two types of terms: data terns and

bool ean terns. A data termt can be built up using the data variables

Y5 of the schema and the individual constants a; . and applying the



A

function synbols fi to them The value of a data termfor a given

interpretation is always a data element. A poolean terma s an

atomc formula or a negated atomc formula, where an atomc forml a

i's a boolean value (true or false), a boolean variable z. . or a
I ’
predicate test of the form p(Tl,. T ) . Under any interpretation
k )

the value of a is a boolean value, +trye or false.

1. Sinpl e Algol-like Schemas

The first class of schemas we consider is the class of Algol-like
schemas which--can be constructed from statements of the following form

(we use standard Al gol-like notations):

(i) start statenent START( a)
(ii) halt statenent HALT (1)
(iii) loop statenent LOOP

(iv) assignment statements y. -1

o z ~«
(v) test statenent if a_then goto L el se goto L2 .

L and L, here are labels. |n addition we may use begin . . . end

for grouping statenents.



The start statement, START(a) , initializes all data variables Yy
to the value a and all boolean variables to true . The halt statement,
HALT(T) , outputs the data value of the termt . The loop statenent,
LOOP , causes the schema to loop forever.

W use ¢() to denote the class of all sinple Al gol-like schenas.

2. Augnent ed Algol-like Schemas

W will also consider Al gol-like schemas augnmented with features

designed to make the schemas nore powerful.

(a) Counters
A counter is a variable whose value is always a non-negative integer.

Counters are denoted by c Al counters used by a schema are

l,cg,...
initialized to zero by the start statement. The statements all owed
on an arbitrary counter ¢ are:

(1) € «c+l

(2) if ¢ = 0_then goto Ll else begin ¢ « c-1; goto L, end.
W use ¢(c) to denote the class of Algol-like schemas with
counters (it includes the subclass of schemas with no counters),

¢{lc) to denote the class of schemas with at nost 1 counter, and

¢(2c) to denote the class with at nobst 2 counters.

(b) Pushdown Stack

A pushdown stack is a last-in first-out store in which a pair of

val ues of both types (data, boolean) can be stacked. Pushdown stacks

are denoted by Al pushdown stacks used by a schema are

initialized to be enpty by the start statement. A schema with a stack



can "push" a data value and a bool ean value into the stack, and it
can "pop" them (if the stack isnon-empty).
The statenments allowed on an arbitrary pushdown stack s are:
(1) push(s,y, 2)
(2) if s = Athen goto L,

el se .begi n pop(s,y,z); goto L, end

Here, y denotes an arbitrary data variable, z a bool ean variabl e,

and A the enpty stack. The statenent " push(s,y,z) " adds the current

val ues of the variables y,z on top of the stack s . The statement

" pop(s,y,z) " does the opposite: the one data and one bool ean val ue

at the top-of the stack s are assigned to the variables y and z ,

respectively, and these two values are renoved (popped) fromthe stack.
W use ~(s) to denote the class of Al gol-like schemas with

pushdown stacks, and simlarly for ¢(1s) and C(2s) .

(c) Queues

A queue is a first-in first-out store. Queues are denoted by
CEPL YRR Al queues used by a schema are initialized to be enpty
by the start statement. A schema with a queue can "add" val ues at one
end, and "renove" them from the other. The statenents allowed on an
arbitrary queue q are:

(1) add(a,y, =)

(2) if q= A then goto L;

el se begin renove(q,y, z);_goto L, end .
The statement " add(q,y,z) " adds the current values of the variable

y,z at one end of the queue. The statement " renove(q,y,z) " does the



following: the one data and one bool ean val ue at the end of the queue

are assigned to the variables y and z , respectively, and these two
values are removed from the queue.

W use C(q) to denote the class of Algol-like schemas with queues.

(d) Arays

An array is a sem-infinite sequence of "locations" (numbered
0,1,2,.. ), each of which can take on a pair of values: one data val ue
and one bool ean value. Arrays are denoted by Al’AE"" . The start
statenent, START(a) , initializes all locations in arrays to the data
value a and the boolean value true . A location can be accessed by
subscripting the array with a counter. The statements allowed on an
arbitrary array A are:

(1) Alel ~ (v, 2)

(2) (y,2) « Alc]

W use @A) to denote the class of schemas with arrays. Note
that the use of an array inplies the use of counters, that is, schenas
in @A) do have an arbitrary nunber of counters.

The class of Algol-like schemas with any or all these features

(counters, stacks, queues, arrays) is denoted by C(s,q,A) .

3. Recur si ve Schemas

A recursive schema consists of a set of recursivedefinitionsof
the followng form

Fl(a,a, ... true,true,...) where

Fn(9,,2,) <= if @ (3 ,2 ,F) then T, (3,,2,,F) else LCAENS ) I



gy

wher e §i represents a vector of data variables, g_j a vec tor of boolcan
variables, and ¥ = (Fl, sl ) is a vector of "defined function::".
Each defined function F. may take both data values and bool ean val ues
as argunents but, for sinplicity, we assune that it always returns just
one data value. o (y,, z,,F) is a boolean term and 7, (¥,,2,,F) and
T:;_(j;fi,ii,f') are data terms that may use the variables in 5;'1 and Ei' and
the defined functions F along with the constant synbols 815855 -+« the
function synbols f,,f,,.. . , and the predicate synbols P1sPps -+

The value of the schenma for any given interpretation is the value
of F1 withall its data argunments set to the value of the individual
constant a , and all its boolean argunents set to true. During
conputation, all arguments are passed by value, i.e., the innernost
function calls are evaluated first. Note that there are no "gl obal"
variables, and function calls cannot have any side effects, they sinply

return val ues.

W use C(R) to denote the class of all recursive schemss.

4, Equal ity

W al so consider schemas in which every bool ean terma nmay have
the form T, =T, OF 74 £ T, in addition to the earlier possibilities.

When equality is allowed in a class ¢(...), we denote the
augnented class by ¢(...,=) . Thus, we use (=) to denote the class
of Algol-like schemas with equality, ¢(c,=)to denote the class of
Algol-like schemas with counters and equality, ¢(Rr,=) to denote the

class of recursive schemas with equality, etc.




5. Exanple
Any two schenmas S and s* are said to be equivalent if for every
interpretation of § and S ,f/ either both schemas diverge (i.e.
| oop forever), or both halt with the same output.
Consi der the follow ng recursive schema
S,: F(a) where
F(y) < if p(v) then v else f(¥,F(s(y)))

Note that if we have an interpretation of 8, for which

p(g"(a)) = true for some n >0, and

false for all i <n

p(g*(2))

t hen
F(a) = £(a,f(g(a), £(g°(a), . - -, (" 1 (a),6%(a)) - - )

Bel ow we exhibit some Algol-like schemas that are equivalent to Sy -

To sinplify the programs we use an extended Algol-like | anguage, using

regular while. ..do. . . statements, goto statements and if .. . then. . . else. .

statements. Al these statements can be expressed easily in terms of
our primtive statenents. W allow also the statement c, < c, which
can be replaced by legal statenents for counters by adding one additiona
counter.

For clarity, we add a few comments in the schemas below  Since
bool ean variables play no role in this exanple, we ignore their presence

in the coments.

*/ . . . .
~/ i.e., the interpretation includes an assignment to all constant,

function and predicate synmbols occurring in s or in 8*.



(a) A sinmple schenma

Sl:

START(a) ;
while | p(y;) do v, = &(¥yy);

[coment: y, = g'(a) }

: if p(yh) then HALT(yl)

else begin v, = a ), - &(y,); vz < v, end;
{coment: in the i-th loop (1 <i < n)
o . i
v, = & (a), v = g7(a), ¥, = g (a)}

whiie - p(y:) do begin v, = &(y,)s v < &(y;) ends

{coment: in the i-th loop (1 <i <n)
Yo = gn-l(a): y5 = gn(a))yh:gl(a)}
vy = £(¥,579) 5

got0 L .

(b) A schema with counters

S2:

START(a) ;
while = p(yl) do begin v, < g(yl); ¢y - cl+l end;
(coment : v, = gn(a), ¢, = n}

i f = 0 then H.ALT(yl)

1
el se begin A cl—l; C, = ¢ end. ;

while c, # 0 do begin y, - &(y,); ¢, = ¢,-1 end;

{coment: in the i-th loop (1 <i < n)
y2=gn-l(a’)) Cl=n-i]
v, = fypsvy)s

got0 L .

10



(c) A schema with a pushdown stack
s,.  START (a) ;
while - p(yy) do begin push(s,y;,2); yl < e(y,) end;
{comment: y, =g"(a), s =(a,8(a),...,e" " (a)))
L:if s = Athen HALT(yl) el se _P_q_p_(s,ye,z);
[coment: in the i-th loop (1 <i <n)
- -i-1

o= (@), s - (ae(a), o ool (8))

goto L .

(d) A schema with an array
Sy,: START(a);
while | p(y;) do_begin Alcl«=(y,2)5c-ctlsy, —g(y)end;
[ conment : ¥, = g"(a), AIQ =a, A[1]=g(a), . . .
Aln-1] =¢"Y(a), ¢ = n}
L: if ¢ =0 then HALT(yl)
else begin ¢ ~ c-1; (v,,2) ~ Ale] end;
(comment: in the i-th loop (1 <i < n)
Yo -¢"%a), ¢ = n-i}
¥y« T(¥syy) 3

gotO L .

11



(e) A schema With equality

SS: START(a)
while ~p(y)doy, « &(y,),
: n
[ comment : Y=V, =8 (a) )
L:ify, _ a then HALT(yl) el se v, = &
M g(yB) % yg @_O :y“j - g(y}) ;
Yp < Vi3
(Comment: in the i-th loop (1 <i < n)
_ _ nh-i
Vo =¥ =& “(a)]}

goto L
Part I1. On the Power of O asses of Schemas
Let ¢, and 62 be two classes of schemas. W say that
(a) C, is nore powerfyl than ¢ - ,
_l._—'p 2 (notati on* Gy 2C,) if for every
schema in Cé there is an equivalent s ¢ h e ma
'l 2
(b) ¢, and ¢ ion: :
a1 C, _are equally powerful (notation: e, = ¢ i f
%g%am%a%,wd

(c) € yis strictl nore powerfui than G, (notation- e, >¢,)

if c 2

1. The Conparison Di agram
W now consider the interrelations between the classes of schemas

we have defined.

12



Intuitively, anything that can be done iteratively can also be
done recursively. In other words, we would expect that ¢(R) >¢c(), and
C(R,=) > ¢(=) .That these are indeed true was shown by MCarthy [1962].
Al'so, as nentioned earlier, one expects that recursion is strictly more
powerful than iteration. Paterson and Hewitt [1970] showed that there
are certain recursive schemas for which there are no equivalent sinple
Al gal -1i ke schemas, i.e., ¢(R)>¢(), and also ¢(R,=) >(=) .
Another intuitive notion is that recursion can always be repl aced
by a pushdown stack. Thus, if our schemas in GR) and ¢(1s) do
capture the intuitive power of recursion and of a pushdown stack, we
woul d expect that C(R) < &(1s) , and similarly, ¢(R,=) < C(1s,=) .  These
were shown to be true by Hewitt [1970] and by Constable and Cries [1972]. (e
shoul d al so ask whether a pushdown stack has power strictly greater than
recursion, or whether they are equally powerful. To state this in
another way, we observe that recursion involves the use of an inplicit
stacking mechanism  The question is whether or not this inplicit stack
really utilizes the full power of a pushdown stack. Chandra [1973]
answered this by showing that ¢(R) = ¢(1s) , and that ¢(Rr,=) = c(ls,:).ﬁf
Pat erson [unpublished memorandun] and Garland and Luckham [ 1971] showed
that C¢{c) > ¢(lc) . Plaisted [ 1972 | proved the surpricing resull that the
addition of just one counter to sinple Algol-like Schemas adds no power,
i.e., C(lc) = ¢() . However, the addition of a second counter adds
power, i.e., ¢(2c) > ¢(ic) ; and after that, the addition of a third,

fourth, fifth counter, etc., does not increase the power.

Y It can be shown that the power of recursive schemas is not affected
by the addition of features such as: (a) recursive definitions
whi ch consist of sinple Algol-like prograns W th gl obal variables
and local variables as well as recursive calls, or (b) defined

functions which return-not just one data value, but a vector of data
and bool ean val ues.

13




Constable and Gies [1972] introduced schemas with arrays and

used a problem suggested by Paterson and Hewitt to show that @A) >¢(Rr) .
Chandra and Manna [1972] observed that the use of equality increases the
power of schemas.

The interrelationships between the various classes of schemas is
shown in Figure 1. In the figure (and all following figures), if there
is an ascending arc (or a chain of such arcs) leading froma class e,
to a class ¢,

2
"y is a strictly nmore powerful class than cqy " If two classes,

, and Cp is above al in the figure, it neans that

¢, and @',1 >, nre not linked by an ascendi ng chain of arcs, then the
classes are unrelated, i.e., ¢, k¢, and ¢, éal.For exanpl e,
(=)  c(A) , and @A) 2 &(=) . In other words, there is at |east
one schema in ¢(=) for which there is no equivalent schema in @A) ,
and vice versa. Details of all the results suggested by Figure 1 can
be found in Chandrats thesis [1973].

FromFigure 1 it is apparent that schemas with arrays and equality
act as a "maximal" cl ass. In fact, any arbitrary schema wth
equality, counters, stacks, queues and arrays can be effectively
translated into an equj valent schema Wth egquali Ly and one array.
Al'so, one pushdown stack has the same power as recursion, but two siac ke
are strictly nore powerful -- they are together as powerful as arrays.
Even the seemingly "weaker" class with one pushdown stack and one counter
has the sanme power as arrays. (hserve that a queue is a nore powerful
feature than a stack; actually, a queue is as powerful as two stacks

(addition of nore stacks or queues adds no power).

1h



- (e, =) C(R, =)
-
cfc) > 2(R)
b-
i
{
L () = C(lc)
cle) - e(zc)
C(R) = C(1s)
. (A) (1 s, le) = C(rg) C(1q) L) e s,q,0)

and Similarly, when we add cqualitly bo cach claoye

(=) = C(lc,=)

les) = efze,-)

C(R,=) = C(1s,=)

QA=) = C1s,1e,5) = o(2s,s) = Clle,=) = C(14,=) = ¢(s,q,4,) .

Figure 1

15



It is inleresling to labe L the vertices ol Mipure linanobher way,

as shown in Figure 2. (Note that ¥igures 1 and 2 are isonorphic; that,

is, they represent the same relationships). This figure can be treated

as a unit cube where the axes are_labeled:

X-axis: "add a stack and delete a counter",

y-axis : "add a counter", and

z-axis: M"add equality tests".

@(S}\é, )

d

¢(2c)

2. Some Proofs

(1ls,lc, =)

e(ls,:)
N
- ~
¢(1lc, =) NG
I AN
e(1s)
1)
Mipure 2

To illustrate how the results of Figure 1 are proved, we give an

intuitive idea of the proofs for the results indicated in Figure 3.

16



c(A)

c(c) C(R)

()

Figure 3

In the following we use the result that for any classes Co Gy

Cy Of schemas, if ¢ <¢, £C;_and ¢ <Cs_then ¢ <Cs.This
follows fromthe fact that if @15@2é65 then there is a schema S

in Csy for which there is no equivalent schema in ¢, , and hence no

equi val ent schema in Cqy This inplies that %gcl . Since ¢y <G5

it follows that Cp <Cy Simlarly we have thatlcl?_@gé@5

and C >Cy t hen Cp >Cs Thus, to show that @A) >¢(R) >¢() ,

1 )
@A) > C(c)>c(), and that ¢(R) and c(c) are unrelated, it suffices

to prove that ¢(A) >C(R) >c() , @A) >c(c) >¢(), and that C(R)
and ¢(c) are unrelated, i.e., (O (R 2c(c) and &(R) £ c(c).This
fol l ows because

() <cle) £ C(R) and ¢() <¢(R) imply ¢&() <C(R) ,

() < C¢(R) g cle) and ¢() < ¢(c) imply &() < ¢(c) ,

C(A) > ¢lc) £ ¢(R) and C(R) < @A) imply &(R) < @A) , and

&(A) > C(R) £ c(c) and C(c) < ¢&(A) imply C(c) < @A)

It is trivial that @A) _>c(c) >¢() since every schema in ¢()

isin ¢(c), and every schema in ¢(c) isin @A) . W also have

17



¢(R) > ¢() since every sinple Algol-like schema can be trans|ated
into an equival ent recursive schema by associating a defined function
with each statenent in the Algol-like schema. ¢(A) > C(R) can be
shown by sinulating a pushdown stack with arrays using standard
cal | - by-val ue AIGOL conpilation (bool eans are used to represent the
return address).

The interesting part is to show that ¢(R) and ¢(c) are
unrel ated, i.e., to exhibit a schema s, in ¢(R) for which there

1

i's no equivalent schema in ¢(c), and a schema S, in ¢(c) for

which there is no equival ent schema in ¢(R) .

(a) Consider the follow ng recursive schema (in ¢(R)):
s.: F(a) where

F(y) <= if p(y) _then y else f(F(g(y)),F(h(y)))
There is no schema in ¢(c) equivalent to this. The reason is that
the conputation requires storing an arbitrarily |arge nunber of
temporary data val ues, Whereas every schema in ¢(c) has a fixed
nunber of data variables.

Consi der a class of interpretations {In} having the follow ng
property: for every I, n >0,

(1) distinct terms yield distinct data el ements under | and

n )
(ii) p s true only for the terms that contain n oOccurrences

of the functions g and h applied to a .

The schema 8, on the interpretation |, conputes the term z,(a) where
T5(y) = Y  end

71 (0) = 2, (8(3)),7 (B()))

18



For exanpl e, 8, under I, and I, conputes the terms f(g(a),h(a))
and f(f(g(g(a)),h(g(a))),f(g(h(a)),h(h(a)))) , respectively. These

terms can also be represented as binary trees as shown bel ow

v (a) + f(a(a),n(a)) is

f and

N

g(a) h(a)

T

o(a) : f(f(e(s(a)),h(e(a))),f(g(n(a));n(h(a)))) is

f

f/ \f

g(g(a)) n(g(a)) g(h(a)) h(h(a))

Suppose there is a schemm S from ¢(c) that is equivalent to 8, -
Wthout |oss of generality we assune that S has no synbols other than
a,f ,g,h and p, that the only assignments that use f have the
form y, - f(yj,yk) , and that halt statements have the forn1HA1m(yi).
Consi der the conputation of S under the interpretation I, Since S
is assumed to be equivalent to Sy it computes the termz,(a) which
can be represented as a perfectly balanced binary tree of height n .
Now we consider the conputation of arbitrary binary trees in which each
node corresponds to a distinct value and where in a single step at nost
one binary function can be applied. It is well known, and can be proved

readily by induction, that the nunber of variables #(T) required to

19



r— r....--. r' —— r

R

D

conpute the termcorresponding to such a binary tree T jg gi ven by

#( ) =1, and

# = if (_#(Tl) =#(T2)) t hen #('I‘l)+1

@ @ else ma.x(#(Tl),#(Tg)) .

This tells us that n+l variables are required for conputing the term

rn(a) . For example, three variables are required to conpute z,(a)
v; < &lela)) 5 v2 - hleg(a)) 5 y; = £lypy,) s
Vo m8(a)) 5 ys - B(B(a)) 5 v, < £(yys)
vy £(ypy,)

Now, if the schema S has, say, m data variables, then for the

conmput ation of Tm under | . Snust have at least m1 data
variables -- a contradiction. Thus no schema in 2(c) s equi val ent
to Sy -

(b) Consider the following problem "given a consuwant a , unary
functions f,g , and a predicate p , find an el ement x of the form
t'(ed(a)) , 1,3 > 0, such that p(x) is false. |f no such x exists
then the schena loops forever". |n the following we refer to this

probl em as the witch-hunt problem

It is easy to see that schemas in ¢(c) can solve this problem

The followng is one such schena:

20



r—

S,:  START(a);

Ll: Cy = s Yy - a;

L2:c5o—02; y2 - yl;

whi | e ¢ # 0 do begin e - 05-1; Yo = f(ye) end;
if 1 2(yy) then HALT(y,);
vy < &ly)s

if ¢, £.0 then begin c, - c,-1; goto L2 end;

2

cl - Cl+l;

got O Ll.

The idea is that for a given ¢y = 0,1,2,3,...(L, -loop) , We

1
check the vatue of p for all possible ternms of the form

¢ c,-C

Y2 = fg(gl 2(a)) in the following order: ¢ = epey-l, 0 .., 1, QL2-1o0p)

2

However, no schema in ¢(Rr) can solve the wtch-hunt problem
Intuitively, the reason is that no schema in ¢(R) can conpute all
terms of the form fi(g‘j(a)) , In any order. For suppose there is a
schema S in ¢(R) that solves the witch-hunt problem Then, wit hout
| oss of generality we can assume that S has no predicate other than p ,

and that defined functions in S have no bool ean arguments. Let n

be the |argest number of argunents of any defined function in S

Consi der an interpretation | tye fOr Which the predicate p is true

~for all terms. W also require that distinct terns yield distinct data

el enents under Tirue + @nd we claimthat S cannot generate all the
ternms on the n+1 colums described in Figure L.
The j-th colum, 0 <3 <n, consists of all terms £ (gJ(a)) for

all i >0 . To showthis, we divide all terms into 2n+3 sets A . B
J )

21

C



0 1 2 n
a g(a) ¢%(a) C g"(a) all other
terns
B, B, B, B,
o) | fee@) | [eeP@n | - |2ea)
O] I EETONY I PR I PO
Pl [Pee)| [P oo 2@
" d@f e |t | et
\ Figure k
for O<j<n. The set A; consists of the single termgj(a) |

the se-t B, eonsists of the entire colum of terns (g3 (a) )
for i >0, and the set Cis the "catch all" consisting

of all other terms. Now, as the schema S nust |oop on the interpreta-

tion I and there are only finitely many sets, there must be sone

true
defined function Fk that calls itself recursively such that each one

of its argmments iS in the same set as in the earlier call. Thep, as
the predicate tests are always true, the defined functions called
between such two calls of Fk are repeated in the sane order, and with
the argunents fromthe sane sets as before. Hence, there is at |east
one colum, say jl' such that no argument of these calls of Fk is

fromit. Therefore only finitely many terms from col um J; can be

22



= r

—

T

reached during the conputation, i.e., there is at least one term gy

1

1, 91 :
f (g “(a)) , that is never tested.

Now we change the interpretation I slightly to
Y P true 9 y InOt so true

in which p applied to all ternms is true except that p(fl (g ~(a)))
is false. Then the conputation of S on the interpretation lnot .
SO True

Is the same as the conputation on |tme , i.e., Swill loop on

| But as S is assuned to solve the witch-hunt problem

not so true -
- - o9

it nust halt with output £ “(g “(a)) -- a contradiction. This proves
that no schema in ¢(R) can solve the wtch-hunt problem

It is interesting to note, however, that the witch-hunt problem

can i ndeed byi‘sol ved by some Algal-like schemas with equality and no

counters, i.€., by schemas in ¢(=) (see Chandra [1973]).

3. Nunber of Variables and Depth of Data Terns

One can investigate further the effect of the nunber of data
variables on the power of schemas. |t can be shown, for exanple, that

*
for every N, n >0 :-/

(a) C(R, n var) > ¢(n var)
() (R, 1 var) £ ¢(n var)
(¢) C(R, n var) ) c(nt+tl var)

This inplies the relations shown in Figure 5. Recall that if there is
an ascending arcleading from any class ¢, to another class c,

it nmeans that ey <Ch

*

Y Here, " n var " indicates that the schema has at most p data
variables (in Algol-like schemas) or at mpst p gata argunents
for defined functions (in, recursive schemas).

23



L
i
3
Sinple A gol-like 3 Recursi ve
(no. of variables) o (no. of variables)

<Y

0 var

Figure 5

(a) The result that ¢(R, n var) >¢(n var) follows by the standard
process of translating a sinple Al gol-like schema into an equival ent
recursive schem. (b) The recursive schenma S:L above is in
¢(R, 1 var) , but there is no schema in (n var) , for any n > 0,
which is equivulent to o (c) To show that there is a schema in
¢{n+tl var) which is not equivalent to any schema in ¢(R, n var) we
consi der the follow ng problem

"Find an element x of the form fi(gj(x)) , 1>0 and j<n,

such that p(x) is false." W refer to this problemas the restricted

witch-hunt problem  The following schem S5 in ¢(ntl var) solves the

probl em

2L



83: START( a) ;

)3

Lt 32 — ply))_then HALT(y,) elsey, < f£(y));

Vo = 8ly)s vy —elyp)s - s vy - ey,

if - p(y,) then HALI(y,) else y, — £(y,);

if —~p(v,,,) then HALI(y ) else y .. « £(y,,.);
gotO L .

Qur earlier proof shows, however, that there is no schema in (R, n var)
which solves the problem and therefore there is no schema in ¢(R, n var)
which is equivalent to sj

There is no need to investi gate how the nunber of bool ean vari abl es
affects the power of the schemas, since it can be shown that bool ean
variabl es do not add any inherent power to Algol-like schemas or to

recursive schemas (with or without equality).f/

W can further consider how the depth of data terns affects the
power of schemas. The depth |t| of a data termt s defined as
follows: |ay =0, y, =0, and EACTIRN Y =l+max{]'rli,...,lrnl} :
Trivially, x/ ¢(o var, o depth) = ¢(n var 0 depth) <c(o var, 1 depth)
for all n. It can be shown that for every n >0 and d >0, we
have:

(a) C¢{n var, d+1 depth) % C(n+1 var, 1 depth) , and

(b) ¢(n+1 var, d depth) 4 c(o var, d+1 depth)

Y Note, however, that owing to the particular way we introduce

pushdown stacks, queues and arrays, at |east one bool ean variabl e
is required to make use of these features.

x*/ Here " d depth " indicates that the schemas use data ternms of depth
at nmost d .

25



These results inply the relations described in rigure 6. Note that the

figure indicates, for example, that (3 var ' 5 depth) and

¢(2 var, 3 depth) are unrel ated.

(a) The first result can be proVed by using the restricted witch-hunt
probl em

(b) The second result can be proved by observing that the follow ng
schema S, in ¢(ovar, 4+1 depth) is not equivalent to any
schema in ¢@(n+1 var, d depth)

S): START(a);

HALD(2(£5(2), £3(a),. »15,(2)))

“‘d . .
wher e fi(a) means £, applied d tinmes to the constant a .

26



4, Di scussi on
It is reasonable to ask what it is about the various features
we have discussed that makes one class of schemas nore powerful than

another. An observation of the &rguments involved in proving the

interrel ationships shown in Figures 1 and 2 suggest three intuitive

factors that determne the power of the various features.

(a) The amount of data space (x-axis of Figure 2 -- "add a stack

C and delete a counter"). Sinple Al gol-like schemas, and even those
with counters and equality, have a fixed anount of data space. This
limtation is shown by the fact that these schemas just cannot conpute

o certain terns which are too large. The additions of a data variable
to sinple Algol-like schemas increases the power, as may be expected.
Recursive schemas act as if they had an unbounded amount of data space

L available to them as do schemas with stacks, queues or arrays.

(b) The control capability (y-axis of Figure 2 -- "add a counter").

The control capability of a schema signifies the ability of the schema

to decide what to do next. Boolean variables and counters are exanples

—

of features that help in making such decisions. Boolean variables
( however add no inherent power, while two counters add as much contro
power as one mght want. A pushdown stack provides, in addition to an

-unlimted amount of data space, sone control capability because a stack

can sinulate a counter, but it does not have as nuch control capability
as two counters. A queue, on the other hand, provides in addition to

unlimted data space, as nuch control capability as two counters.

27



(One can al so consider other programm ng features that provide

control capability. One such exanple is the bool ean stack<f/wmich is a
pushdown stack consisting entirely of boolean values (see also Geen,

El spas and Levitt [1971]).

o (c) The structure of terms (z-axis of Figure 2 - "add equality").

In our discussion we observed that the addition of terms containing

equality increases the power of schemas. This illustrates that if we
C enrich the structure of terns allowed we may increase the power of

schemas. On the other hand, if we restrict the structure of terns,

such as by limting the depth of data terns, we may decrease the power.

r

o A

Y A bool ean stack is strictly nore powerful than one counter but
strictly less powerful than a pushdown stack or two counters. Two
bool ean stacks, however, are just as powerful as two counters (as
I's also one bool ean queue).

28



——

— o

Ref er ences

CHANDRA [1973]. A. K. Chandra, "On the properties and applications
of program schemas," Ph.D. Thesis, Conputer Science Dept.,
Stanford University, Report No. Cs-336, Al-188 (February 1373).

CHANDRA and MANNA [1972].

A X. Chandra and Z. Manna, "Program schemas
with equality,"”

in Proceedings of the Fourth Annual ACM Synposi um
on the Theory of Conputing, Denver, Colorado, (Miy 1972), pp. 52- 64.

CONSTABLE and CGRIES [1972]. R. L. Constable and D. Gies, "On classes

of program schemata," S| AM Journal on Conputing, Vol. 1, No. 1
(March 1972), pp. 66-118.

GARLAND and LUCKHAM [1971]. S§.J. Garland and D. C. Luckham, "Program

schenes, recursion schenes, and formal |anguages," UCLA report,
No. ENe-7154, (June 1971).

GREEN, ELSPAS and LEVITT [ 1971]. M W. Green, B. Elspas and K N. Levitt,

"Transl ati on of recursive schemas into | abel -stack fl owchart schenss,"

prelimnary draft, Stanford Research Institute, Menlo Park, California,
(June 1971).

HEWTT [ 1970]. C Hewitt, ™"More conparative schematology," Artificial

Intelligence Meno No. 207, Project Mac, M.I.T., Canbridge, Mass.,
(August 1970).

LUCKHAM, PARK and PATERSON [1970].
M s. Paterson,

D. C. Luckham, D. M. R Park and
"On formalized conmputer prograns,” Journal of
Conputer and Systems Science, Vol. 4, No. 3, (June 1970), pp. 220-2k9.

McCARTHY [1962]. J .McCarthy, "Towards a nathematical science of

conputation," Proc. | FIP, 1962, pp. 21-3k.

PATERSON and HEWTT [1970]. M S. Paterson and C. E. Hewitt, "Conparative

schematology," in Record of Project MAC Conference on concurrent

systens and parallel conputation, ACM New York, (Decenber 1970),
pp. 119-128.

PLAI STED [1972]. D. Plaisted, "Program schemas with counters,"

Proceedi ngs of the Fourth Annual ACM Synposium on the Theory of
Conputing, Denver, Colorado (May 1972), pp. 44-51.

STRONG [1971]. H. R. Strong, Jr., "Translating recursion equations into

flowcharts,” Journal of Computer and System Sciences, Vol. 5, No. 3,

(June 1971), pp. 254-285.
20



