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Introduction

In this paper we consider the problem of comparing the power of

several features used in programming languages. For example, it is

intuitively obvious to any programmer that recursion cannot, in general,

be replaced by iteration with variables alone, but recursion can always

be replaced by a pushdown stack. This indicates that a pushdown stack

is at least as powerful as recursion, and that recursion is more powerful

than iteration. Thus, from the iteration-vs-recursion standpoint we

would say that ALGOL and PL/l are more powerful than FORTRAN. The

question is whether an intuitive notion of this kind can be understood

in a formal-way, and possibly elaborated upon to obtain a better under-

standing of programming features and to enable us to compare their power.

Unfortunately, the problem is not so simple. Consider, for example,

the programming language of flowcharts, which contain ideal integer

variables, i.e., their values can be arbitrarily large. .The operations

allowed in the flowchart are incrementing and decrementing variables by

one, and testing to see if the value of a variable is zero. Such a

simple language with just three variables can calculate all the "computable"

functions, that is, all the partial recursive functions over the natural

numbers. Thus if we add recursion or a pushdown stack to such a language,

the power of the language will not be increased.

This suggests that in order to carry out such a study, we must

isolate in some way the effect of the programming features, whose power

we wish to compare, from the values being computed by the program. For

this purpose we consider for each programming language a class of program

schemas; a program schema may use the control features of the language

2



,--
I

L.-

L

-
c

I--

L -

but the basic operations (constants, f'uncticm, and predicates) are

used only as symbols without being specified.

Related work has been done previously, among others, by Paterson and

Hewitt [1970], Garland and Luckham [1971], Constable and Gries [197'2],

Plaisted [1972] and Chandra and Manna [1972]. The classes of schemas

considered in these papers are not identical to ours, but the differences

are not significant. Details of the results presented in this paper

can be found in Chandra's  thesis [1973].

Part I. The Class of Program Schemas

A program schema is a program in which the data domain is not

specified. In addition, the constants are indicated simply by the

symbols “1’“p”. t the functions by fl,f2,=..  , and the predicates

bY Pl'P2J l 9 l Thus a program schema may be thought of as representing

a family of real programs. A real program of the family is obtained by

providing an interpretation for the symbols of the program schema, i.e.,

specifying a data domain and specifying data elements, functions and

predicates over the domain for the symbols ai , fi and pi , respectively.

In our program schemas we use two kinds of variables: data

variables, denoted by yljy2,... , and boolean variables, denoted by

ye-p l l l Boolean variables can have value either true or false.

Data variables, on the other hand, have values from the data domain

that is specified along with an interpretation for the schema. Corres-

pondingly, we distinguish between two types of terms: data terms and

boolean terms. A data term T can be built up using the data variables

'i
of the schema and the individual constants a

i'
and applying the
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function symbols f
i to them. The value of a data term for a given

interpretation is always a data element. A boolean term a

atomic formula or a negated atomic formula, where an atomic
-.

is a boolean value (true or false), a boolean variable z
i

is an

formula

, or a

predicate test of the form ~$9 . ...7
k) . Under any interpretation J

the value of a is a boolean value, true or false.

1. Simple Algal-like Schemas

The first class of schemas we consider is the class of Algal-like

schemas which--can be constructed from statements of the following form

(we use standard Algol-like notations):

( >i start statement START(a)

(ii) halt statement HALT(r)

(iii) loop statement LOOP

( >iv assignment statements Yi *'

or z +ai

( 1V test statement if a then goto Ll else goto L- - - - -  2.

Li and L2 here are labels.
I

In addition we may use begin . . . end

for grouping statements.

4
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The start statement, START(a) , initializes all data variables y:
I

to the value a and all boolean variables to true . The halt statement,

mLT('d > outputs the data value of the term z . The loop statement,

LOOP , causes the schema to loop forever.

We use @() to denote the class of all simple Algol-like schemas.

2. Augmented Algal-like Schemas

We will also consider Algol-like schemas augmented with features

designed to make the schemas more powerful.

( >a Counters

c-

I

--.
A counter is a variable whose value is always a non-negative integer.

Counters are denoted by c1,c2,... . All counters used by a schema are

initialized to zero by the start statement. The statements allowed

on an arbitrary counter c are:

(1) c +c+l

(2) __if c = 0 then goto L- - 1 else begin c- - * c-l; goto L2 end.

L

i

b--

We use c(c) to denote the class of Algol-like schemas with

counters (it includes the subclass of schemas with no counters),

C(lc) to denote the class of schemas with at most 1 counter, and

@(2c) to denote the class with at most 2 counters.

(b) Pushdown Stack

A pushdown stack is a last-in first-out store in which a pair of

values of both types (data, boolean) can be stacked. Pushdown stacks

are denoted by s1's2'*"  l

All pushdown stacks used by a schema are

initialized to be empty by the start statement. A schema with a stack
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can "push" a data value and a boolean value into the stack, and it

can "pop" them (if the stack is non-empty).

The statements allowed on an arbitrary pushdown stack s are:

(1) puSh(S>YJ  4 . .

(2) -if s = A then goto Ll

else begin pop(s,y,z); goto L2 end.

Here, y denotes an arbitrary data variable, z a boolean variable,

and A the empty stack. The statement " push(s,y,z) " adds the current

values of the variables y,z on top of the stack s . The statement

0 PoP(s,Y,z) " does the opposite: the one data and one boolean value

at the top-of the stack s are assigned to the variables y and z ,

respectively, and these two values are removed (popped) from the stack.

We use p,(s) to denote the class of Algol-like schemas with

pushdown stacks, and similarly for @(ls) and @(2s) .

(c) Queues

A queue is a first-in first-out store. Queues are denoted by

q1�qp�*  l
All queues used by a schema are initialized to be empty

by the start statement. A schema with a queue can "add" values at one

end, and "remove" them from the other. The statements allowed on an

arbitrary queue q are:

(1) adabY 4

(2) -if q = A then goto Ll

else begin remove(q,y,z); goto L2 end .- -

The statement " add(q,y,z) rl adds the current values of the variable

Y9 z at one end of the queue. The statement " remove(q,y,z) " does the

6
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following:--_. the one data and one boolean value at the end of the queue

are assigned to the variables y and z , respectively, and these two

values are removed from the queue.
. .

We use C(q) to denote the class of Algal-like schemas with queues.

e (d) Arrays

t

L
--r

/

L-

An array is a semi-infinite sequence of "locations" (numbered

%L2, l �* 1, each of which can take on a pair of values: one data value

and one boolean value. Arrays are denoted by Al+.=. . The start

statement, START(a) J initializes all locations in arrays to the data

value a and the boolean value true . A location can be accessed by

L. subscripting the array with a counter. The statements allowed on an

2 arbitrary array A are:

P (1) ACCI +- (Y, 4

L (2) (Y>z>  + AhI l

We use @(A) to denote the class of schemas with arrays. Note

that the use of an array implies the use of counters, that is, schemas

in @(A) do have an arbitrary number of counters.

The class of Algal-like schemas with any or all these features

(counters, stacks, queues, arrays) is denoted by @(s,q,A) .

5. Recursive Schemas

A recursive schema consists of a set of recursive  definitions  of

the following form:

Fl(%a,. l .,true,true,...) where- -

F1(Y1~21) <= if a,(?,, ;,,I;;) then ~,(f~,~~,i?)  else Ti(fl> i$,F)
.

7



where
‘i represents a vector of data variables, q. a vet tar of boolea.~~

J
variables, and e = (F1,...,I'n)  is a vector of "defined function::".

-

i

Each defined function Fi may take both data values and boolean values

as arguments but, for simplicity, we assume that it always returns just

-?--

Ic-

L.

one data value. ai(Yi' 'its) is a boolean term and ~(y~&,?) and

zl(yi,"i,F)  are data terms that may use the variables in yi and i
i' and

the defined functions ? along with the constant symbols a19a2,... , the

function symbols fl,f2,. . . , and the predicate symbols pl,p2,... .

The value of the schema for any given interpretation is the value

of F
1

withal1 its data arguments set to the value of the tndiv-idual

L.
constant a , and all its boolean arguments set to true. During

computation, all arguments are passed by value, i.e., the innermost

L
L

function calls are evaluated first. Note that there are no "global"

i variables, and function calls cannot have any side effects, they simply

i. return values.

i% i
i

We use G(R) to denote the class of all recursive schemas.

m

4. Equality

We also consider schemas in which every boolean term G! may have

. the form "1= r2 or ?l# 72 in addition to the earlier possibilities.

When equality is allowed in a class a*..) , we denote the

augmented class by @(...,=) . Thus, we use @(=) to denote the class

L
of Algol-like schemas with equality, G(c,=) to denote the class of

Algal-like schemas with counters and equality, @(R,=) to denote the

b class of recursive schemas with equality, etc.

.
8
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5m Example

Any two schemas S and ST are said to be equivalent if for every

interpretation of S and

loop forever), or both halt

Consider the following

s

S’ ,*
J either both schemas diverge (i.e.,

with-.the same output.

recursive schema

then

so: F(a) where

F(Y) <= rf P(Y) then Y else f(y,F(g(y))) l
- -

Note that if we have an interpretation of So for which

p(g"(a)) = true for some n 10 , and

.
p(gl(a)) = false for all i < n ,
--.

4b

Below we exhibit some Algol-like schemas that are equivalent to So .

L
To simplify the programs we use an extended Algal-like language, using

regular while . ..do . . . statements, goto statements and if . . . then . . . else . . .

statements. All these statements can be expressed easily in terms of

our primitive statements. We allow also the statement c3 t c, which

..
ct

can be replaced by legal statements for

counter.

For clarity, we add a few comments in the schemas below. Since

L L

counters by adding one additional

c -

boolean variables play no role in this example, we ignore their presence

in the comments.

the interpretation includes an assignment to all constant,
function and predicate symbols occurring in S or in S* .



(a) A simple schema
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sl: START(a);

while I P(Y,) do yl +- g(y,);

[comment:
yL = e;"(a) 3

IJ: if P(Y4) t&--l HAwY1)

else begin y2 + a; y4PP * g(yq); Y3 + Y4 endi

{comment: in the i-th loop (1 ,< i 5 n)

y2 = e;"b)l Y3 = 2(a), ~4 = &a)]

whiie I p(y-> do begin y2 +- g(y,>; Y- +-- g(y3) end;5 m- 5
{comment: in the i-th loop (1 5 i 5 n)

--. y2 = g"-$), y3 = gn(a>, y4 = 2(a)]

yl +- f(Y2,Yl) ;

got0 L .

(b) A schema with counters

s2: START(a);

while I p(y,) do begin yl t- g(y,); cl + cl+1 end;m-

(comment: y1 = gn(a), cl = n]

L: if Cl = 0 then IIALT(yl)

else begin y2 + a; cl t- ~~-1; c,, + cl end.;
c-

while c2 # 0 do begin y2 * g(y,>; c2 + c2-1 end;m-

{comment: in the i-th loop (1 5 i 5 n)

n-i
y2=g a,y=( > n-i]

Yl + f(Y2>Y1);

got0 L .

10
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(c) A schema with a pushdown stack

s,: START (a) ;

while IP(Y~) do begin push(s,~l+9; yl + g(yl) end;- -

{comment: Y,=c?(~, s=(a,s(a>,...,gn-l(a>)l
. .

L: if s = A then HALT(y1) else ~~op(s,y~,z);

[comment: in the i-th loop (1 5 i 5 n)

n-i
Y2 = 65 ( >a , s = (a,&~), . . .,gn-'-I(a)))

y1 +-- f(Y%,Yl) ;

got0 L .

(d) A schema with an array

SJ$: START(a);

while I P(Y,) do begin Ab 1 + (yp);  c + c+l; y1 + g(q) end;m-

[comment: yl = g"(a), AIO] =a, A[l] =g(a), . . .

A[n-l] =g"-'(a), c = n)

L: if c = 0 then HALT(yl)

else begin c + c-l;- - (y2,z) +A[c] end;

(comment: in the i-th loop (1 < i 5 n >-

Y%
= en-“(a), c z n--i]

Yl + f(YpY1) ;

got0 L .

-

c

11
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(e) A schema with equality

s5: START(a) ;

while
-l P(Y,)  do Y1 +-- g(y,>  l

Y

y2 + Yl;

. .

[comment: Y1 = Y2 = &a> ]

IL: if y2 = a then HALT(y,) else y3 + a;

while dY3) # Y2 do
y3 +- dY+ ;

y2 + yij;

(comment: *In the i-th loop (1 L i ,< n)

y2 = Y3 = gnei(a) }

-- Yl + f(Y29y1);

goto L.

Part II. On the Power of Classes of Schemas

Let Cl and @
2 be two classes of schemas. We say that

% is more powerf'ul than G2 (notation*
l

schema in G9
L there is an<uivalent

% -2)

s c h e m a

if for every

% -and G2 are equally powerful (notation:

and G2 > G

@I - G2) if

_ 1 J and

cc> Gl is strict1y more powrf'ul than G2 (notation-*
if Gl >@

@1 x2> .,

- 2
but @1+ (3  l

1. The Comparison Diagram

We now consider the interrelations between the classes of schemas

we have defined.

12
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Intuitively, anything that can be done iteratively can also be

done recursively. In other words, we would expect that @(R) z@() , and

C(R,=) 2 G(=) l That these are indeed true was shown by McCarthy [1962].

Also, as mentioned earlier, one expects that recursion is strictly more

c
powerful than iteration. Paterson and Hewitt [1970] showed that there

-_
are certain recursive schemas for which there are no equivalent simple

Algal-like schemas, i.e., c(R) >@() , and also @(R,=) >G(=) .

c-
Another intuitive notion is that recursion can always be replaced

by a pushdown stack. Thus, if our schemas in G(R) and @(1-s) do

L?- capture the intuitive power of recursion and of a pushdown stack, we

k
t-

i

!

h

would expect--that G(R) 5 &(ls) , and sVimilarly, &(R,-) < c(ls,=) . These

were shown to be true by Hewitt [1970] and by Constable and Cries [1972]. One

should also ask whether a pushdown stack has power strictly greater than

recursion, or whether they are equally powerful. To state this in

another way, we observe that recursion involves the use of an implicit

stacking mechanism. The question is whether or not this implicit stack

really utilizes the full power of a pushdown stack. Chandra [1973]

answered this by showing that @(R) - @(ls) , and that @(I?,=) 5 @(ls,=) .-'J

Paterson [unpublished mcrnor~and~n] and Garland and Luckham [ 1!)'71] showed

that E(c) > @(lc) . Plaisted [ 1'17:' ] proved the surpri::-in!;  rc::ulL that the

addition of just one counter to simple Algal-like  schemas adds no power,

i.e., @(lc) = c!J) ' However, the addition of a second counter adds

L power, i.e., @(2c) > @(lc) ; and after that, the addition of a third,

fourth, fifth counter, etc., does not increase the power.
*
J It can be shown that the power of recursive schemas is not affected

by the addition of features such as: (a) recursive definitions
which consist of simple Algal-like programs with global variables
and local variables as well as recursive calls, or (b) defined
functions which return-not just one data value, but a vector of data
and boolean values.

13
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Constable and Gries [1972] introduced schemas with arrays and

used a problem suggested by Paterson and Hewitt to show that @(A) >S(R) .

Chandra and Manna [1972] observed that the use of equality increases the

power of schemas.

The interrelationships between the various classes of schemas is

shown in Figure 1. In the figure (and all following figures), if there

is an ascending arc (or a chain of such arcs) leading from a class
cl

to a class c2 , and @2 is above @
1

in the figure, it means that

" CT2 is a strictly more powerful class than
?L

If . If two classes,

G and @c) f nre not linked by cln ascending chain of arcs, then tllc
L c-

classes are unrelated, i.e., @L & C:2 and c2 &q l For example,

CA=) $ @(A) 2 and @(A) k @(=) . In other words, there is at least

one schema in @(=) for which there is no equivalent schema in @(A

and vice versa. Details of all the results suggested by Figure 1 ca

be found in Chandra's thesis [1973].

From Figure 1 it is apparent that schemas with arrays and equality

act as a t'maximal" class. In fact, any arbitrary schema with

equality, counters, stacks, queues and arrays can be effectively

a translated into an equi valcnt ::cherna With equnl:i t;y anti. one ;J rat*;L;y  .

Also, one pushdown stack has the same power as recursion, but two ::-Lx ks

are strictly more powerful -- they are together as powerful as arrays.

Even the seemingly "weaker" class with one pushdown stack and one counter

has the same power as arrays. Observe that a queue is a more powerful

feature than a stack; actually, a queue is as powerf'ul as two stacks

(addition of more stacks or queues adds no power).

14
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@(c, =)

@(Cl

i
L.

L

i

w
a4
@(R)

if*(A)

--= @(lc)

-- e(2c)--

=- @(ls)

q .I ::, lc) .:
( q .l./\ ) - c( ::,!(,A)

@(A,=) ,= @(ls,lc,=) E @(2s,=)
- c(1%=)  z @(up) s @(s,q A =)

☺t l

Figure 1
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.Ct is in1~~~re;JLi.r~~; to 1;Lbc I_ 1,11ct vorl,.i('(~;:  01' I~‘~i~~u.r~f:  I .in ar~c->I,li~~r~  wa,y,

as shown in Figure 2. (Note that Figures 1 and 2 are isomorphic; that,

is, they represent the same relationships). This figure can be treated

as a unit cube where the axes are_labeled:

x-axis: "add a stack and delete a counter",

y-axis : "add a counter", and

z-axis: "add equality tests".

C(J.s,-  )

c-
2. Some Proofs

“L.

k-

To illustrate how the results of Figure 1 are proved, we give an

intuitive idea of the proofs for the results indicated in Figure 3.
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Figure 3

In the following we use the result that for any classes @1. , c2 ,

(3
of schemas, if e, SC2 a@, and @1 55 then @1 <5 l This

follows from the fact that if @1 5 c2 2 3 then there is a schema S

in
53

for which there is no equivalent schema in c2 , and hence no

equivalent schema in %
. This implies that ?++l- Since @1 5 5 ,

it follows that @1 <
5

. Similarly we have that if &.I 2 e2 &%

then cl ~3
3

. Thus, to show that @(A) >@(R) >@() ,

@(A) > C(C) > C() , and that C(R) and c(c) are unrelated, it suffices

to prove that @(A) >@(R) X3() f @(A) >@(c) >@() 9 and that C(R)- - - -

arki c?(c) are unrelated, i.e., (O,(R) &C(c) and C(R) i@(c)  l This

follows because

@(> <C(c) j$ @(RI and @() s@(R) imply @() <G(R) )-

@(> < C(R) i @(c> and C() < @(c> iqly C(> < G(c) )- -

@(A) 2 C(c) k @CR) and C(R) < @(A) imply G(R) < @(A) ) and-

@(A) 2 @(R) k C(c) and C(c) < @(A) imply C(c) < @(A) .-

It is trivial that @(A) >@(c) >@() since every schema in @()- -

is in a(c) , and every schema in c(c) is in @(A) . We also have

17
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@(R) 2 a> since every simple Algol-like schema can be translated

into an equivalent recursive schema by associating a defined function

with each statement

shown by simulating

call-by-value ALGOL

return address).

in the Algol-like schema. @(A) _> G(R) can be

a pushdown stack with arrays using standard. .

compilation (booleans are used to represent the

The interesting part is to show that @(R) and c(c) are

c-
L

unrelated, i.e., to exhibit a schema Sl in @(R) for which there

is no equivalent schema in c(c) , and a schema S2 in c(c) for

which there is no equivalent schema in @(R) .

I-
L

L

c.-

L-

(a) Consider the following recursive schema (in @(R) ):

sl: F(a) where

L
'-

F(y) <= if p(y) then y else f(F(g(y)),F(h(y))) .

There is no schema in e(c) equivalent to this. The reason is that

the computation requires storing an arbitrarily large number of

L

c

taporary data values, whereas every schema in d4 has a fixed

number of data variables.

Consider a class of interpretations {I,] having the following

property: for every In , n 2 0 ,

(i) distinct terms yield distinct data elements under In
, and

(ii) P is true only for the terms that contain n occurrences

of the functions g and h applied to a .

c --

(L

The schema Sl on the interpretation In computes the term z,(a) where

To(Y) = Y f and

'i+l(Y) = f(zi(g(Y)),zi(h(Y)))  l

18
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L

For example, Sl under I1 and I2 computes the terms f(g(a),h(a))

EUXI f(f(g(g(a>>,h(g(a>>),f(g(h(a)),h(h(a))))  y respectively= These

terms can also be represented as binary trees as shown below:

( >>a is . .

f

/\a)da)

and

Suppose there is a schema S from @(c) that is equivalent to Sl .

Without loss of generality we assume that S has no symbols other than

a 7 f 9 g, h and P, that the only assignments that use f have the

form Yi +- f(Yj'Yk) 9 and that halt statements have the form HALT(yi)  .

Consider the computation of S under the interpretation In . Since S

is assumed to be equivalent to Sl it computes the term z,(a) which

can be represented as a perfect1y balanced binary tree of height n .

Now we consider the computation of arbitrary binary trees in which each

node corresponds to a distinct value and where in a single step at most

one binary function can be applied. It is well known, and can be proved

readily by induction, that the number of variables #to required to

19
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c

c-

‘L.

compute the term corresponding to such a binary tree T is given by

#( 0) = 1 , and

= if' (#(Tl) =#(T2)) then #(~~)+l. .

else m=(#(Tl)>#(T2))  .

This tells us that n+l variables are required for computing the term

z,(a) l For example, three variables are required to compute z,(a) :

Y1 +- gMa>) ; Y2 + h(g(a)) ; Yl + f(Yl.'Y2) ;

Y2 c gow) ; Y3 * how) ; Y2 +- f(Y2,Y3) ;

Y12- f(Y1'Y2) '

t
Now, if the schema S has, say, m data variables, then for the

L

I
\
i

computation of 7
m under Im ' S must have at lea

(variables -- a contradiction. rl?hus no schema in 3

to s1 l

L (b) Consider the following problem: "given a cons-

.st mtl data

4 is equivalent

tiant a , unary

I

functions f,g , and a predicate p , find an element x of the form

fi(gj(a)) t i,j > 0 , such that p(x) is false. If no such x exists
e

then the schema loops forever". In the following we refer to this

problem as the witch-hunt problem.

It is easy to see that schemas in e(c) can solve this problem.

The following is one such schema:

20
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s*: START(a);

Ll: C2 + cl; yl + a;

L*: c3 + c2; Y2 + Y1;

while c3 # 0 do begin c- + c- - 5 3-l; Y*

if I P(Y,) then HALT(y2);

y1 + dy,>;

.
Ifc2 - -# 0 then begin c2 + ~2-1; goto L2 end;

+ c
c1 1

+l;

got0 Ll l

‘-

The idea is that for a given cl ,
5

= 0,1,2J,...(L1-loop) , we

check the value of p for all possible terms of the formi-

c2
Y2 = f (65c1-c2 a( >> in the following order:

c2 = cl,cl-1, l ..,1,O(L2-loop) .

However, no schema in @(R) can solve the witch-hunt problem.

Intuitively, the reason is that no schema in @(R) can compute all

terms of the form fi(gj(a)) , in any order. For suppose there is a

schema S in @(R) that solves the witch-hunt problem. Then, without

loss of generality we can assume that S has no predicate other than p ,

and that defined functions in S have no boolean arguments. Let n
m

be the largest number of arguments of any defined function in S.

Consider an interpretation Itrue for which the predicate p is true

. for all terms. We also require that distinct terms yield distinct data

elements under Itrue , and we claim that S cannot generate all the

terms on the n+l columns described in Figure 4.

The j-th column, Oljsn , consists of all terms fi(gj(a)) for

all i > 0 . To show this, we divide all terms into 2n+3 sets A , B , C
3 j

21
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Fihrure 4

An

. . .
i

g%>

Bn
l

. . .
fkh))

. . .
f2kn0 >

. . .
f3kn(4 >

4. . .
f (t:�(a))

C

all other

terms

f o r O<j<n. The set Aj consists of the single term gj(a) ,

the se-t B
j

consists of the entire column of terms fi(&) >

for i > 0 , and the set C is the "catch all" consisting

of all other terms. Now, as the schema S must loop on the interpreta-

-
tion Itrue , and there are only finitely many sets, there must be some

defined function Fk that calls itself recursively such that each one

of its argmments is in the same set as in the earlier call. Then, as

the predicate tests are always true, the defined functions called

between such two calls of Fk are repeated in the same order, and with

the arguments from the same sets as before. Hence, there is at least

one column, say j
1' such that no argument of these calls of Fk is

from it. Therefore only finitely many terms from column j, can be
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reached during the computation, i.e., there is at least one term J say
.
5

f k
jl

(a>> , that is never tested.

Now we change the interpretation Itrue slightly to I
. . not sotrue

in which p applied to all terms is true except that p(f
il

(g
j,

(a)))

is false. Then the computation of S on the interpretation I
not sotrue

is the same as the computation on I .
true > 1-e*> S will loop on

Inot so true ' But as S is assumed to solve the witch-hunt problem,

it must halt with output
il j,

f k (a>> -- a contradiction. This proves

that no schema in @(R) can solve the witch-hunt problem.

It is interesting to note, however, that the witch-hunt problem
--_

can indeed by solved by some Algal-like schemas with equality and no

COUtlte~S, i.e., by schemas in @(=) (see Chandra [1973]).

3. Number of Variables and Depth of Data Terms

One can investigate f'urther  the effect of the number of data

variables on the power of schemas. It can be shown, for example, that

forevery n, n>O:*-I

( >a @(Rt n var) 2 @(n var)

@h 1 var) & @(n var)

( >C @CR9 n var) $ @(n+l var) .

This implies the relations shown in Figure 5. Recall that if there is

an ascending arc leading from any class @
1 to another class c2

it means that
% <e2'

*
f Here, " n var " indicates that the schema has at most

variables (in Algol-like schemas) or at most
n data

for defined functions (in, recursive schemas).
n data arguments
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Simple Algol-like

( no. of variables)

0 var

Figure 5

Recursive

( no. of variables)

(a) The result that @(R, n var) ~@(n var) follows by the standard

process of translating a simple Algol-like schema into an equivalent

recursive schema. (b) The recursive schema S
1

above is in

@(R, 1 var) J but there -is no schema in c(n var) , for any n > 0 ,

which is equival.ent to S
1 l

(c) To show that there jt; ~1. schema in
I

@(n+l var) which is not equivalent to any schema in @(R, n var) we

consider the following problem.

"Find an element x of the form fi(gj(x)) , i?O and j<n,

such that p(x) is false." We refer to this problem as the restricted

witch-hunt problem. The following schema S 3 in @(n+l var) solves the

problem.



S 7: START(a);
J

y2 + g(y1); Y; + dY,>; l *-; Yn+l + dY,);

L: if 1 P(Y,) then I-M2JJ(yl) else yl + f(Q;
. .

if -G(Y,) then HALT else y2 + f(y2);

if lP(y,,,) then HAJwYn+l) else Yn+l + f(Y,+,>;

got0 L .

c- Our earlier proof shows, however , that there is no schema in @(R, n var)

L
which solves the problem, and therefore there is no schema in @(R, n var)

which is equivalent to S-j l

--.

There is no need to investigate how the number of boolean variables

affects the power of the schemas , since it can be shown that boolean

variables do not add any inherent power to Algol-like schemas or to

recursive schemas (with or without equality).*-i

We can further consider how the depth of data terms affects the

power of schemas. The depth 171 of a data term z is defined as

follows: aI Ii =o, y.I I1 = 0 , and If (7i 1) "*"n )I -l+max(171i,g~~,~~ni)  .

Trivially,w ~$0 var, 0 depth) z c(n var , 0 depth) <@(O var, 1 depth)

for all n . It can be shown that for every n > 0 and d > 0 , we

have:

(a) @(n var, d+l depth) & @(n-U var, 1 depth) , and

(b) @(n+l var, d depth) $ @(O var, d+l depth) l

*
-/ Note, however, that owing to the particular way we introduce

pushdown stacks, queues and arrays, at least one boolean variable
is required to make use of these features.

E/ Here " d depth "
at most d .

indicates that the schemas use data terms of depth
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(b) The second result can be proved by observing that the following

schema S4 in $0 var, d+l depth) is not equivalent to any

schema in @(n+l var, d depth) :

s4: START(a);

HALT(f(f;
b),f;b),  l l l >f~+p@))) ☺

where
--d
fi(a) means fi applied d times to the constant a .

These results imply the relations described in Fig"ure 6. Note that the

figure indicates, for example, that @(3 var
t 2 depth) and

@(2 var, 3 d.epth) are unrelated.
-.

(a) The first result can be proved by using the restricted witch-hunt

problem.

Y

0 1

0 depth

Figure 6
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4. Discussion

It is reasonable to ask what it is about the various features

we have discussed that makes one class of schemas more powerful than

another. An observation of the &guments involved in proving the

interrelationships shown in Figures 1 and 2 suggest three intuitive

factors that determine the power of the various features.

(a) The amount of data space (x-axis of Figure 2 -- "add a stack

and delete a counter"). Simple Algol-like schemas, and even those

with counters and equality, have a fixed amount of data space. This

limitation is shown by the fact that these schemas just cannot compute

-e_
certain terms which are too large. The additions of a data variable

to simple Algol-like schemas increases the power, as may be expected.

Recursive schemas act as if they had an unbounded amount of data space

available to them, as do schemas with stacks, queues or arrays.

(b) The control capability (y-axis of Figure 2 -- “add a counter").

The control capability of a schema signifies the ability of the schema

to decide what to do next. Boolean variables and counters are examples

of features that help in making such decisions. Boolean variables

however add no inherent power, while two counters add as much control

power as one might want. A pushdown stack provides, in addition to an

: unlimited amount of data space, some control capability because a stack

can simulate a counter, but it does not have as much control capability

as two counters. A queue, on the other hand, provides in addition to

unlimited data space, as much control capability as two counters.
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One can also consider other programming features that provide

control capability. One such example is the boolean stack J
*

which is a

pushdown stack consisting entirely of boolean values (see also Green,

.,Elspas and Levitt [1')71]).

(c) The structure of terms (z-axis of Figure 2 - "add equality").

In our discussion we observed that the addition of terms containing

equality increases the power of schemas. This illustrates that if we

enrich the structure of terms allowed we may increase the power of

schemas. On the other hand, if we restrict the structure of terms,

such as by limiting the depth of data terms, we may decrease the power.

-/* A boolean stack is strictly more powerful than one counter but
strictly less powerful than a pushdown stack or two counters.
boolean stacks, however,

Two
are just as powerful as two counters (as

is also one boolean queue).
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