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1 NOTATION.

a)

b)

c)

d)

e)

f)

g)

Let S be a sequence of symbols. |S| wil | be used to denote the total
number of symbols in S and so we observe, for example, [xy x z |= 4.

We say xcy in the case where x is a subsequence of y and we say "x i s
equivalent to y* if x can be obtained from y by a simple change of
alphabet; we denote this equivalence by ‘&’.
(e.g. xyexyyx, xyzx=1231)

P(A) is used to denote the set of sequences uhich are permutations of
an alphabet A. Cardinal ity of P(A)uil | be (JA])!. Also, P’ (A,n)i s
is the set of permutations of all sub-alphabets of A of size n { where
n <]A}l). Clearly, P(A)=P" (A, |A}).

I f A i s an alphabet then Q{A)={ x |x¢cA” AVy. (yeP(A) 2 yex}} where A’
is the set of sequences over alphabet A. For example, abcacba ¢Q{abc}.
Also, Q’(A,n) is taken to be the set {x|xeA” aVy. (yeP(A,n) > yex)}.
So, for example, zyxwxyz € Q' {wxyz,2).

Now, the LENGTHS of the shortest sequences in Q(A) andQ’ (A,n} depend
only on the SIZE of the alphabet A. Hence, take M{n) to be the length
of the shortest sequence in G{123...n}) and M (n,m) to be the length
of the shortest sequence in Q{123 ...n ml.

So, for example, M{l)=1,M2)=83 a nd M (n,1)=n .

S(n) denotes the n-th symbol of sequence S.

S(n:m) denotes that cont iguous subsequence of sequence S which is the
symbols from position number n in S to position number m.

#(S,x) denotes the number of ocurrences of the symbol x in sequence S.

“CPAF X" is just an abbreviation for “Consider the Permutations of the
current Alphabet of the Form X". The greek letters uhich appear in X.
denote arbitrary sequences of symbols.

For examp | e, if the alphabet under discussion were abcde, the command
“CPAF bac" would mean “Consider Permutations of abcde which start with
b and end with ¢".
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2 SOME EASY OBSERVATIONS.

2.1

2.6

a_-

M(1)=1.

M (n,2)$2n-1 since if A is an alphabet of length n, then the
sequence AA(2:2n) is a member of Q7 (A,2).

M (n,2) 2 2n-1 since if A is an alphabet of 8lze n, S is a member of
0’ (A,2) and |S|<2n-1 then at least two of the symbols of A {x and y,
say) only appear once in S; hence 1 of the sequences “xy” and ‘yx’
are not subsequences of S.

M {n,m)2{m. (2n-m+1)/2) {n2m, of course)
This result is more easily remembered as

M,mlzn + n-1 t n-2t.oewe t n-mel .
Suppose A is an alphabet of size n and S is a sequence from Q” (A, m)
of minimum length (i.e. |S|{=M"(n,m)). It is noted in(2.4)that
M (n,1)=n so take m22, Segment S as TxU uhere the sequences T,U and
the symbol x are chosen so that x does not appear in T but all the
other symbols of A do. Clearly, |T|2{n-1). Now note that al |
permutations of subalphabets of A of size m which start with x are
subsequences of  xu. Hence all permutations of subalphabets of A\x
of size {m-1) are subsequences of U (A\x is A without x and
|A\x|={(n-1) ). [Ul2 M (n-1,m-1), therefore, and so M (n,m) (which
is simply |S]) is at least (n-1} t 1 t M (n-1,m-1), This recurrence
relation is readily solved to give the result.

M{n}2(n. (n+1)/2).

Simple corol lary of 2.6’ using Mi{n)=M’ (n,n).
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2.8

2.9

2.10

2.11

2.12

M (n,m) s(m.(n-1}) +1)

Given an alphabet, A, of size n , the following construction gives an
element of Q" (A,m) of length mx(n-1)+1 :-

Generate m permutations of the ‘alphabet Al, A2, A3, . . . Am such that
Al (n)=A2(1), A2(n}=A2(1) etc. Now, B = Al A2(2:n) A3(2:n)...Am(2:n)
is in @” (A,m) since if C is any permutation of any subalphabet of A
of size. m, C(j) is either in the j-th component of B or IS the last
symbol of the {j-1}th component (for j>1).

M(n)<{n.n-n+l)

A simple corollary of 2.8.

M (n, 3) ={3n-2) (n23).

From 2.6 we get II'(n,3)2(3n-3).

From 2.8 we get M (n,3)1<(3n-2}).

Suppose the lower value is obtained for an alphabet A {]A]=n) and S
is a sequence of length 3n-3 which is in Q" (n,3). Now no symbo! can
appear only once in S for then we would have
|512(2.M(n-1,2)+1)=(4n-5) which is a contradiction for n23. Hence
there must be at least 3 symbols which occur just 2 times each for a
total of 6 times. However M(3)=7 so there must be some permutation of
these three symbols which is not a subsequence of S, This
contradiction gives us the result.

Members of Q(1 2 3) of Length 7.

The fol lowing is an exhaustive Ilist of minimum solutions for a 3
symbol alphabet. We consider, of course, only equivalence classes
(with respect to the operator =),

1231213 1231231 1231321
1232123 1232132
1213121 1213212

¥ScQ(A). JaecA. #(S,al2]A]|.

Use induction on the alphabet size. The case [Al=1lis trivial so
suppose the result holds for all alphabets of size less than n, [A|=n
and SeQ(A). Segment S as TxU where sequences T,U and symbol x are
chosen so that x does not appear in T but every other symbo/| of A
does. Use A\x to denote A minus symbol x, and ue get UeQ{A\x), Now
|A\x] = n-1 and so we can find y such that #{U,y)2(n-1). Clearly
#(S,yl)2n,
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2.13

2.14

2.15

2.16

¥SeQ” (A,m}. Card({ a | acA A #(5,a)zm }) 2 (n-m+1)

Let A be any alphabet, m be any integer such that |A|2m and S be some
member of Q’ (A,m). Select sequence B - a permutation of A such that
the symbols of B are in order of decreasing frequency in S.

Now take sequence S’ to be the sequence formed by deleting those
symbols from S which are in B(l:in-m). S’ is a member of
QB {n-m+l:n)) and so some symbol must appear at least m times in 7
and hence in S.

Therefore, #(S,B(1)) 2 #(S,B(2)) 2 .....2 #(S5,B(n-m+l)) 2 m which

gives the quoted result.

M (n,m) 2 mln-m)+M(m)

A corollary of 2.13 .

M{4)=12."

Take A to be the alphabet (sequence) 1234.

123412314213 ¢€Q(A) and so M(4)<12 .

Suppose S e¢0(A) and |S]|<l12,

Compute the least integer j such that S{1:j) contains each symbol
of A. Note j24 and S(j) is not in S{1: j-1).

Considering permutations of A which start with S(j), we get that
IS} 2 3 t #(5,8(j)) t M(3) = 18 t #(5,8(j)).

Using |S|<l12ue get j=& and #(S5,5(j))=1.

Therefore, S(4) appears only at position 4 of S. Now consider the
permutations of A that end with S(4) and get that 42M(3) which
is a contradiction.

From this contradiction we see that M(4)212.

V A . ¥xeA, 3S¢Q(A). #(S,x) =1

Suppose we are given an alphabet A and x is some symbol of A. We
take the subalphabet A\x and find some member T from Q(A/x) .
Clearly TxTe¢Q(A) and also #(TxT,x)=l.

This is quite a useful result to keep in mind when pondering what
properties members of Q(A) might have.
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iii)

M{5)=18.

ImEEZIDE

Take A to be the alphabet (sequence) 12345

1234512341523145213 ¢ Q(A)
so we have M{5)<19 .

Suppose SeQ(A) and |S]<19 .

Break up Sas Ty U (where T and U are segments of S and
Yy is a single symbol) such that Ty is the shortest initial
segment of S which is in 07(A,2) so |Ty|2M(5,2)=3.
Choose x in T such that xy is not a subsequence of T (this
is possible otherwise S was not segmented as prescribed).

Considering members of P(A) starting with xy, get
-1S123 tM@B)t #U,x)t #U,y) =16 t #WU,x) t #WUU,y).

Now, supposing x does not appear in U, consider subsequences

of S that end with x and derive the contradiction
s|2M(4) +2+11(3) =21.

Conclude #{U,x)21 (and similarly #(U,y)21).

Reconciling inequalities, we get #(U,x)=1, #(U,y)=1,|T|=8,
[Ul=8 and |S|=18.

In U, x and y appear just once each and so one sequence of

xy and yx , call it Z, is not a subsequence of U.
Consider, then, permutations of A of the form & and get
[T 2 M(3) t #(T,x) t #(T,y) 2 9 -- a contradiction!

We therefore conclude that M{(5)218.

From i) and i i) deduce M(5) =19,



M(B)=28 and M(7)=33,

i) Take A to be the alphabet (sequence) 123456

1234561234516234156231456213
is in Q(A) so we have M{B)<28 .

The proof of M(B)228 is given as Appendix 1 because it is.
long and uninformative.

These two facts give the result M{B) =28,

ii) Take A to be the alphabet 1234567.

12345671234561
1

617
672

4
7 1
is in @Q(A) so we have M(7)

S
5672314567213

Inwn

3
4
39

M(7)239( proved as appendix 2 } and so we have M(7)=39,



Lemma:

Lemma:

Minimum Length Solutions for Alphabets of Size 4.

Let A be the alphabet abcd.
We wish to enumerate the equivalence classes in Q(A)
of the minimum length {iel2). Suppose Se¢Q(A) and |S]=12.

YpeA. #(S,p)22

peA A #(S,p)=B is absurd.

Suppose  peA a #{S,p)=1  We have that S has the form UpV.
CPAFap to get |[UI2M(3)=7; CPAF pa to get |V|2M{(3)=7 .
We immediately have the contradiction |S|=|UpV|2 15.

Ip. #(S,p)=2
Suppose not. In view of above lemma, VpeA.#(S,p)23 which
is a violation of the result 2.12 (page 3).

Supposing #(S,p)=2, choose T,U,V such that S =TpUpV.
CPAF pa to get |UV]27; CPAF ap to get |TU|27.

N o w |U|=]UJ+(|S|-12) = (|U|+]T|+|U}+|V]+2)-12 2 4.
Also |T|= |S]-2-|U]-|V] £ 3 and similarly |V|s3.

Suppose |T|<3. ‘Thus 3xeA. -~(xeT)a~(x=p).

CPAF xpa to give |[V]|2M(2)+#(V,x)=3+#(V,x). So #(V,x)=8.
CPAF apx to give the contradiction |T|2M(2)=3.

Hence |T]=3 and similarly |[V|=3 giving JU|=4.

Suppose qeA and ~{q=p) A #(T, q)=8.

CPAF gpa to get #(V,q)=8. Hence by a lemma above, #(U,q)22.
CPAF qxp to get the contradiction |U|2M(2)+#(U, q) 25,

Hence V q, qecA>(g=p v #(T,q)=#(V,q)=1).

From this discussion we get that there are representatives of
all the equivalence classes of the form
abcdUdYV where|U|=4,|V|=3, ad, beV, ceV.

CPAF ad we get abcU is in Qlabc) and is of min. length.
Using result (2.11) we get 5 possibilities for Uy namely:
(1) abac (2} abca (3} acba (4) babc (5) bach.

Similarly UV is in Q{a bc) and is of minimum length.
Performing a small amount of hand checking and using 2.11
again we get that there are exactly 8 equivalence classes:-

abecd abca dbac abcd acba dbca abcd bacbh dabce
abcd abca dbca abcd acba dcab abcd bacb dacb
abcd abca dcba abcd acba dcba abcd bacb dcab
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An n® -2n +4 Construction for Alphabet of size n.

== L2 3 2 2 2 % -} EETSEZTTEIRERIT EUAR ZIZSITEST SR EBWER ==

Given an alphabet sequence, A, of length at least three, it

is asserted that the following recipe gives a sequence in G(A),

Set the sequence variable B «A{2:n);

Write(A):

DO (n-2) TIRES {Hrite(A{l));Urite{B(l:n-2));
B « (B{n-1)B{l:n-2)}; 3 ;

Write(A(l)); MWrite(B(1));

The total number of symbols wuritten = n+ (n-2) % (1+n-2} +2
= n%-2n+4

We now verify that the sequence produced is indeed in Q(A).

First note that the operation "B «B(n-1})B(1:n-2)" simply
rotates the sequence of n-l1 symbols in B.

Next note that the first symbol of A (we will call it a)is
written exactly n times, Letting C be the result of the above
construction, we segment C as follows:

C =aJaKalLa... aYaZab where the (n-1) sequences
J,K,L,...Y,Z do not contain the symbol a.
For convenience we will use call J,K,L,.....Y,Z units and will
refer to them as UI1l, UL2], ... Uln-11,

Now J contains all symbols A{2:n) but K,L,...Y,Z each contain
just n-2 of the symbols of A{2:n). However the symbol of A{2:n)
that does not appear in some unit Ulk] is both the last symbol
of Ulk-1] and follows the a that follows U[k]l in C.

Let P be a permutation of A. We will show that P must be a
subsequence of C.

Suppose a appears in the jth position of P. We first show that
the string P{l:j) (simply a if j=1}) can be matched to the
the head of C aJaKal...U[j-11a . Trivially true if j=1.

If j>1 then P(1l) is in J, clearly. Also if jsk>1 then P(k} can
be matched to UIk] if it is in that unit or else the last
symbol of Ulk-11.

Similarly the n-j symbols of P(j+l:n) can be matched to
UljlaUlj+lla...alln-11ab . If j<ksnt h e n Plklwill either
match some thingin Ulk-1] or the symbol which follows the a
which follows Ulk-11.



7. A More General n®~2n+4 Construction,
e B WMERN TEEREREN L i 11111} DUSEBETSENNEESR

It is asserted that the follouing algorithm, regardless of which
internal choices are made, also produces a member of Q(A) of length n2-2n+4.
The proof. of membership in Q(A) follows by the same method used in proving the
validity of the simpler ‘program’. It is also readily seen that the previous
construction is a special case of this more general one.

SUBROUTINE SR1:
Write the symbol [x];
Write the symbol [yl;

SUBROUT I NE SR2:
SR1;
Write in. any order the [n-3] symbols of A which do not include
[x) or [yl or [2].
00 yez AND set z to the last symbol written.

SUBROUTINE SR3: .
DO SR2 k-21 TINES;
SR1;

SUBROUTINE SR4:
DO SR2 in-31 TIMES;
SR1;
Wr i te in any order the [n-2] symbols of A which are not [x],[yl;
Wri te the symbol [x];

MAIN ROUTINE:
Write down the alphabet (A);
DO EITHER {x¢A(l};y ¢ any symbol of A(2:n-1);z¢A(n);}
OR {xe AQ); y «All);zeAln);};
DO EITHER SR3 OR SR4;

SYMBOL COUNT.

If M symbols are written each time a certain routine is obeyed
then we say that the SYMBOL COUNT for that routine is M,

Symbol Count for SRl= 2 ;

Symbol Count for SR2 = n-l;

Symbol Count for SR3 =(n-2)%(n-1)4+2 =n® -3n +4;

Symbol Count for SR4 =(n-3)%(n-1)+(n+l)=n® -3n +4.

Hence Symbol Count for total algorithm sn®- 2n + 4 .

Note that no distinct sequences produced by this algorithm are
equivalent since al | such begin uith a copy of the alphabet.

3
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Note also that every sequence so produced ends with some permutation
of the alphabet.

Given an alphabet A, the reversat of any sequence which is a member of
Q(A) is also a member of Q{A)}. It should be noted that the the reverse of any
sequence generated according to this construction is equivalent to some other
sequence given by the construction.

10
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8. Constructing Elements of Q7 (A,m).

Section 6 contained a simple construction for generating elements of
Q(A){for given alphabet A of size n>2) which were of length n®-2n+4 . This
algorithm is now modified to generate members of Q° (A,m) (where 2<msn) of

length mn-2m+4.

Set the sequence variable B ¢ A(n-m+2:n);
Write(A);
D0 m-2 TIRES UritelA{l:n-m+l});
Write( B{l:m-2) };
B «B(m-1)B(1:m-2);
Write( A(l:n-m+l) )3
Write( B(1) );

The tc—)}al number of symbols written is easily seen to be
nt (m2) {n-m+l t m-2) t {n-m+l) t 1 = mn-2mt4

Just as this algorithm is a modification of the one in section 6, the
proof of the correctness of the construction is an extension of the previous

proof,

This construction gives an upper bound on M {n,m) for n2m>2 of mn-2m+&
and so using this knowledge, the proposition 2.14 and the various values of
M(4),M(5),M(B)&M(7) we already know, We compute the neu results:-

M (n,4) = 4n-4
M (n,5) = Sn-B
M (n,6) = Bn-8

M (n,7) = 7n-18

11
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9. Discussion,

The construction of section 7-gives many sequences of the desired
length. It gives all nine equivalence classes of sequences in Q(a b c d) of
length 12, 128 classes in Q{a b c d e) which may or may not be all of them,
and 32,400 classes from Q(abcdef). It does NOT get al | the sequences of

Q(a b c d ef) since all the ones produced start with one copy of the
alphabet however the following sequences from OQ{ab c def}:
abcdebfdcabedcfbadecbdfacebd
abcdeafdcbaedcfabdecafdbcead
(among others known) DO NOT! In fact, the second of these examples does not

even end with a permutation of the alphabet.
An easy to derive lower bound on the number of classes i s { (n-3}!)%{(n-1).

We now tabulate the known values of the functions Me&M .

m M{m) me-2m+4 M (n, m)

1 1 3 n

2 3 4 2n-1
3 7 7 3n-2
4 12 12 4n-4
5 19 19 Sn-6
6 28 28 Bn-8
7 39 33 7n-10

The fact that the actual values of M(n} exactly match the n®-2n+4
figure for 2 < n £ 7 make tne construction relatively important. It also
suggests the obvious conjecture that M{n} is exactly n®-2n+4 for all n>2,
However, there is another competing conjecture which gives exact fit 8tn=1,2
as wel | as the other known values of M(n) but is more complicated:-

M{n) = n® for n=1
n2-n+l for 2<n<3
n2-2n+4 for 4<n<7
nZ-3n+11 for 8snslS
nZ-men+F (i) for 2" sns 2.2™-1

where F(B)=B A F (n)=n+2%F{n-1).

Of course, knowing whether the value for M{8) is 51 or 52 would help by
eliminating one of these postulates.

12

A



o e

It is surprising that the best louer bound we have on M{n) is n3/2
since it would appear that it is of order n®. This conjecture is readily

stated formally as:- 3
Yk. k<l 2 3N, nsN 2 (M(n)- > k#n®)

It should be noted that just the mechanical checking of the
membership of a sequence (over alphabet A) in Q(A)ie quite time- consuming,
A program is available in ALGOL but (although it includes some means for
pruning the tree of permutations) takes a long time to check that all
permutations of the alphabet are subsequences of the given sequence. The
actual times on a POP18 are 3, 17 and 60 seconds for alphabets of sizes 8, 9
& 10 respectively.
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APPENDIX 1. Proof of M(6)228.

CASE 1.

Take A to be an alphabet of size 6 (|Aj=B),
Moreover, suppose SeQ{(A) and |S|<28 .

Now choose sequences T, V and symbols x,y such that
a) Tx is the shortest head of S that is in G’ (A,2);
b)yY is the shortest tail of S that is in Q7 (A,1};
Choose WeT such that wex A ={uxcT),
We have immediately that |T|218,|V|25 and from consid-
eration of the elements of P(A) of the forms wxx 6 By
get |S|z|T|+1+M(4), |S|2|V|+14M(5), |T|<14, |V|s7, |S|225.
Hence we can segment S as the sequence TxUyY and note
18<|T] 114, 2<|U| 510, 55 |V| <7, 25¢< |S| <27.

Again CPAF wxa and get |UyV|2M(4)+2=14. Hence (using |S|527)
|[T{212 and (using |V|s7)|U]26 . Also CPAF ay again to
deduce |TxU|2M(5)+1=28. Therefore, |S|2208+1+]V]|2 26. and
(using |T]€12)]U|27. Lastly (using |S|s27 and |TxU}|228),|V|<6 .

Suppose #(U,u)=8. Since |yY|< 7 but contains all of A,
there must be 5 symbols of y¥ which appear just once.
Therefore we choose p,q such that p,q,x,w are distinct,
-{pgcyY) and p,q both appear twice in T. We can do this
since only one symbol of Txcan appear only once. Now CPAF
awpq to get [T} 2M3)t #(T,u) t #(T,p) t #(T,q) 21 2 ,

So |T}=12 and #(T,uw)=1. Segment S as LuwMxUyV noting that since
LuMx is in P(A,2) and #(L,u) =8, |M|24. This gives that |L|s7
and #{MxU, =8 . M(5,2)=3 so we pick p,q such that ~{pgel)
and p,q,u distinct, Now CPAF pgwa to get|yV|2M(3)+#(yV,wu) 28,
Thiscontradlctiongives #(U,uw)2l .

Again CPAF wxa and get  |UyV] 2 M{&4)+#(UyV,u) +#(yV,x) 215.
Usel|S|s27 to get |T|slland use|V|s6to get |U]|28.

. Now let teA be such that #{U,t})=8. As above we choose p,q

so that t,p,q are distinct, =(pgeyV) and p,q both appear

at least twice in T. CPAF atpg to deduce the contradiction
[Tx] 2 M(3) t #(Tx, t) t #(Tx,p) t #(Tx,q) 212 ! !

Hence all symbols appear at least once in U.

Yet again CPAF wxa to get [UyY|2M(4)+#(UyV)+#{UyV) 2 16.
As before deduce |T|<18 and|U|23. Al so CPAF ay to
give |TxUl 2 MI+#(TxU,y) 221 andthen |S]=27,[V]=5

W ealso have|T|=18,|U}|=18 a n d Vt. tcA > tel.

The proof is concluded by deriving contradictions in the
various possible cases of equality among w,x,y.

xmy, and so S . TxUxY,
We know #(T,x)21 and #(U,x)21 so CPAF ax and get the
contradictiom 21 = |TxU| 2 M(5) t #(TxU,x) 22 2

14.



CASE 2. X#Y.
CASEZ?2au=y Le. u,x,yall distinct).
CPAF wxay to get [U] 2NMN@)+#U,w)+#(U,x)+#U,y}2 10

Therefore #U,W = #lU,x) = #U,y)=1 .

o Now this gives that one of wx or xw,callitZ, is such that
~(Z ¢ U}, CPAF «Zy and get | T| 2 M(I}+#(T,w)+#(T,x)+#(T,y)
But #(T,w+#(T,y)23 and so T2 11 -- contradiction!!

CASE 2b.u=y.
Find the first symbol of V which is not x 3 call it z.

Note that since yYe¢P(A) a|yV}=|A|, 2 appears just once in V,
CPAF yxaz to deduce |U}2M(3)+#(U,y)+# (U, x)+#(U,2) 2 10,
Immediately we see #{U,x)=#{U,z)= 1 and so one of xz,zx
- {calitZ) is not a subsequence of U.

CPAF  «Zy to get |T| 2 MI3)+#(T,x)+#(T,y)+#(T,2).

‘Use #(T,y)+#(T,z)23 for the contradiction |T|2 11.
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APPENDIX 2. Proof of M(7)239.

Take A to be an alphabet of size 7 (|A|=7).

. Moreover, suppose SeQ(A) and  }5]<39

Choose sequences T,U,l and symbols a,b,¢c such that
a) Ta is the shortest head of S that is in 07 (A,1)
b)cW is the shortest tail of S that is in Q°(A,1)
c}Talb is the shortest head of S that is in G’ (A,2)

We segment S as TaUbVcl and readily prove:
B<|T|<8, ©5<|U|<8, 8<|V|sl8, 65|W|<8, 365|5|<38;
as well as |T[+|U|slS,

Suppose for some p in A, #(V,p)=8.

If p is the symbol b, 1 (6,3)+#(Talb,p) 2 18 >|Talb| so we
can choose q,r,s such that distinct(p,q,r,s)a={grscTalb)
so that -{grsp ¢ TaUbV). CPAF qgrspa we get a contradiction

| cv|24+M(3).

Otherwise p,b are distinct and M (6,3)+#(Tal) 2 17 2|Tal] so
we rechoose q,r,s such that distinct(p,q,r,s)a -~{(grscTal)
which means ={grsp<cTalUbV¥}. As before get a contradiction.

Lemma 1: VxeA. #(V,x) 21 follows from these contradictions.

Suppose peAadistinct(a,p). We know #{T,p)2l and #(Ub,p)21

and #(Y,p)zl and #{cW,p)2l so conclude #(S,p}24. Also we -

have #(V,a)2l and #(cl,a)2l so that #(S,a)23.

We sharpen our i nequa | i ties now. CPAF a« to get | T |s7,]|S]237;

CPAF aba to get |T|+|U}<13; CPAF ab to get |H|<7. Hence
6<|T|s7, 5s|U)s7, 13s|V|<18, 6<|U|s7, 375|5|s38.

Suppose, in fact, #(S,a) =3,
We re-segment S as TadaKal where #(TJKL,a)=B8 a n d Lel.
There is at most one repeated symbol in T since |Ta|<]A|+1.
Let z denote this symbol if it exists else any symbol of T,
Choose p,q such that distinct{p,q,a,2) A =~{pg < T}.

CPAF pgzaa to deduce that some subsequence G of KalL belongs
to Q(Al) where Al is obtained from A by deleting p,q,a,z.
|G|2M(3)=7 so some symbol of G appears at least 3 times.

So we choose y to be such a symbol and note

distinct{a,y) A #(T,y)=1 A #{KalL,y)23.

Now one of py and yp (call it Z} is not a subsequence of T.
CPAF Zzaa to show we can choose x with the properties
distinct{x,y,a) A #(T,x}=1 n #(KalL}23.
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Now, one of the sequences xy and yx is not a subsequence
of T{callitY) and CFAP Yaa to get
|KaL] 2 M(4) + #(KaL,a) + #(KaL,x) + #(KaL,y) 21 9
By symmetry |Tad|218 to give the contradiction |5]219+13+1.
Lemma 2: VYxeA. #(5,x)24 is immediate.

Again CPAF ax to get |T|=6, |S|=38, #(S,a)=4;

Also CPAF ac to deriv e |W|=B, |U]+|V|=23, #(S,c)=4,
Then CPAF aba to get |VYcW| 2 M(S)+#(VcUW,a)+#(Vcl,b) 2 23
which leads to 1B6<|V|<18 a n t i 5s|U]<7.

Suppose that p,g are such that ~{pge¥). We have that
#(Talb, p) +#(Talb,q)23 . Now |TaUb]<15 and so

| TaUb| < M” (5,3)+#(TaUb, p) +#(Talb,q) . Hence we
choose j,k,lsuch that distinct(j,k,!,p,q) A ~{(jkl c Talb).
CPAF jklipga so Jcl]2M(2)+5=8>|cld| -- a contradiction!
T h us VYpeA, YaeA. #(V,p)+#(V,q)23.
In particular, letting zbe the first symbol of ¢l which is not
one of a,b, #{V,al+#(V,b)+#(V,2)2 5 .
CPAF acxz to get |V]| 2M4)+#(V,a)+#(V,b)+#(V,2) 2 1 7
Thus we have new bounds for U,V:- 5<|U|<B, 175]V|<18

We now choose sequence H and symbol d such that

dHcW is the shortest tail of S in Q{A),
By symmetry with the results for U we have that 5s|H|<B
and so we re-segment S as TaUbGdHcH where
|T|=6, 5<|U|<6, 18<|G|<12, b5<|H|s6, |W|=6, |[S|=38,
#(S,a)=4, #(S,c)=4.

Suppose X issuch that x=aax=ca ~{ech).
I1f x#b then CPAF abesa to get

|dHel| 2 M{4)+{#{dHcl, a) +# (dHcl, b) ) +# (dHcl, e) 2 124342

- a contradiction.
If xzd then CPAF aedc to get

|Talb] 2 M{4)+(#(TaUb,c)+#(TaUb,d))+#(Talb,e) 2 12+3+2

- also a contradiction.
The remaining case is x=b=d. Lemma 1 (with #(S,¢)=4) gives
that #{Talb,c)<2 and since there is at most one symbol in Talb
appearing 3 times, we choose p,g{not c or b) so that #(Talb,p) <2
and #(TaUb,q)s2. Since M(3)=7 there is some permutation Z of
c,p,q that is not a subsequence of Tallb. CPAF Zba to get
|[HeW | 2 M(3)+# (Hcl, b} +# (HcW, c) +# (Hcl, p) +# (Hecl, q) 2 741424242 = 1 4 .
- a contradiction.
From these 3 contradictions we get (xeAax=anx=c)> #(G,x)21.
Now suppose -{aeG}. Choose p,q,r so that distinct{a,p,q,r) and
-{pgr c dHcWl). CPAF aapqr. Clearly acl [else |T}2M{4) | and so
#(TaUb,a)22. Hence
|Talb| 2 M(3)+#(Talb,a)+....+#(Talb,r) 2 742424242 = 1 5
From this contradiction we get #(G,a)2l and by symmetry #(G,c)21.

Lemma 3: VxeA. #(G,x)21  follows.
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Suppose xcAaxmaaxwc, #(T,x)=#(U,x)=l, #(Ub,x)21, #(dH,x)21
and #(G,x}21 to yield
Lemma 4: VxeA., (x#a A xmuc) > #(S, x)25,

Suppos e distinctla,b,c). -

We first choose z to be the first symbol of W which is not a,b.
b-aanb#c so we have beG, bedH giving #{(GdH, b) 22,

z#a A z#¢ so we have z¢G, zedH giving #(GdH, z) 22,

Also amc so aedH and we have aeG giving #(GdH, a) 22.

CPAF abaz to derive |GdH|2 M(4)+#(GdH, a)+#(GdH,b)+#(GdH,z) 2 1 8 .
We get from this that |U]=5 and also  #{GdH,b) = 2 = #(GdH, 2).
This then gives that #(5,z)=5 and #(S,b)=5 |

Let p,q,r be the 3 symbols of the A which are not a,b,c,z.
#(S,a) + #(S,b) t #(S,c) + #(S,z) = 4444545« 1 8
so #(S,p)+ #(S,q) + #(S,r) = 28.
Since no symbol appears twice in Talb, can choose a permutation
Z of pgr so that ~{ZcTalb),
CPAF Zx_ to get 25=|GdHcl|2M(4) +(28-6)#26 - a contradiction,
Simi larly  ‘distinct(a,d,c)’ glves a contradiction.

Lemma 5: -~distinct(a,b,c) ‘A ~distinct(a,d,c).

In view of lemma 5, two important cases are a=c and -~{a=c).

CASE 1. a=c,

Suppose first that acl. Clearly |U|=6 and |TaUb|=14.
Letting z be the first symbol of W not a,b CPAF abaz to
g e t|GdH| 2 12+#{GdH, a) +# (GdH, b) +# (GdH, 2} 217,
But |GdH|=17 so we see #{(GdH,b) = 2 = #(GdH, z).
Thus #(S,a)+#(S,b)+#(S,z) =14,
Now choose p,q,r,s such that pqrsabz is a permutation of A and
#(S,p)2#(S,q)2#(S,r)2#(S,8). Now since some symbol appears
at least 7 times in S, #(S,p}27 a n d #(S,q)+#(S,r)+#(S,s)<17.
Hence #(S,s)<5 and so #(S,p)+#(S,q)+#(S,r)218.
Now each of p,q,r appears exactly twice in TaUb and so

i) #(GdHal, p) +# (GdHall, q) +# (GaHal,r) 2 1 3

ii) since M(3)s7 there is a permutation of  pgr

(cal 1'itZ) such that =~(Z < Taub).

CPAF Za to get 24 =|GdHall|2 M(4)+13 = 25,
This contradiction gives us #(U,a)=8.

Again letting z be the first symbol of W not a,b we have
#{(GdH,a)22, #{(GdH,b)22, #(Gdh,z)22 so CPAF abaz to
deduce |GdH|218 and hence |[U]=5 a n d #(S,b)=#(S,2z)=5
Similarly, #(S,d}=5 a n d |H]|=5.

|Gl=12 a n d #(G,a) =#(G,b)=2 so the other 5 symbols appear
a total of 8 times in G. Hence choose p,q so that ={pg<G)
and distinct(a,b,p,q). ~-(abpgqeTalbG) so CPAF abpqa

to derive a contradiction |dHal|27 +3%2+ 1 = 14,

18
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CASE 2. ~{a=c).
We have asb and c¢wd so Lemma Sglves both bs¢ and d-c,
Hence S looks | ike TaUbGaHbW with |T|=8,5<|U|<6,18<|G|s12,
S5<|H|<6, |W|=B, #(G,a)=H#(C,b)=l, H(T,b)=#(U,a)=l.
Clearly #{(TUH,a) = 8 = #(UHW,b)-

We can write the alphabet in order of decreasing frequency in
S as pgrstab where al | except a,b occur at least 5 times and
#(S,p)27. Hence, as p,q,r,s,t appear a total of 38 times
#(S5,1)=5 and #(5,8)<B and #(S,p)+#(S,q)+#{S,r)2 109.

CASE 2a: |U]=5 .

Some permutation, Z, of pqgr will not be a subsequence of Talb
so CPAF Za to get |GaHbW|2 12+18-6 = 25,

This gives us that #(S,p)+#(S,a)+#(S,r) =19 an d #(S, s)=6.
We. then deduce #(S,p)=7,#(S,q)=#(S,r)= 6.

Now if z denotes the last symbol of T ' then CPAF za to get
3 2 = |aUbGaHbW| 2 M(B) + #(S,2)- 1 o r #(5,z)s5

But zma so #(5,2z)25 so we deduce t-t.

Similarly the first symbol of W is t.

Recall that =(Z ¢ TaUb), #(G,a)=#(G,b)=l and note #(G, t)=l.
CPAF Zabax to deduce that ab < G.

CPAF Ztba to deduce that tb c G,

Similarly deduce that -ate G.

i.e. a precedes t precedes b (in G).

Suppose t is not the last symbol of U. We find y,z such that
~{yzt ¢ Talb) and so -~{yztab c TalbGaH). CPAF yztab for
the contradiction by which we can conclude U{5)=t.

We have that S has the form T’ tal’ ftbGaHbtW” where T't-T,
U ft=U a n d tW'=d  (this defines T’, U’, f, W).
Clearly f=a, f=b,f=t and so #(S, f}26.
Now ={tfc TalUb) so CPAF tfaab to get |G|27+3+#(G, ).
Suppose #(G,f)=1. From #(S, f126 deduce #(H, f)=2,
Now one of tf,ft is not in G = call it Z.
CPAF able to get |aHbl|27+1+2+2+3=15 - a contradictions
Hence we have #(G,f)=2 and |G|=12 so |H]|=5.

Now let the last symbol of T' be g and suppose bxg,
~{gb c Tal) and =(tacG) s o ={gbta c TaUbG).
CPAF gbtaa to get a contradiction,

Hence the last symbol of T is b.

Now ={bfc T tal”) but we have =(tac bG) so -=(bfta < TaUbG).
CPAF bftaa to get 12 =|Hbl|2 7+1+14242 = 13,
This last contradiction dispenses with CASE 2a.
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CASE 2b: [H|=5 .
The elimination of this case is similar to CASE 2a.

CASE 2c: [U|#5 A |H|=5. -
We have so far that S = TaUbGaHbd w i t h |T|=|U|=|H|=]|W|=6
|G|=18, #(G,a)=#(C,b)=1, #(TUH,a) = #(UHd,b) = B.

Suppose first that #(S,s)=5.

Without loss of generality suppose 8 precedes t in G.
-{abts ¢ TaUbGa). Moreover i f any p, g or r precedes s inH
then CPAF abtsa to get |HbW|>7+1+1+4=13 ~ a contradiction.
Hence only t may precede sinH.

Similarly only 8 may follow t in Ul

Now CPAF atasb to get |G|2M(7)+#(G, a)+#(G,b) +#(G, ) +#(G, t) =11,
The contradiction serves to give us #(S,s)#5.

Hence #(S,8)=6 and #(S,p)=7, #(S5,q)=#(S,r) =6,

Letting--.x be the duplicated symbol in U and y the dupl icatetd
symbol in H, #U,x)=2, #(H,y) =2,
If x-y then #{S,x)27 so x-p and thus #(G,x)=l,

One of yt, ty {cal it Z) is not a subsequence of G.
CPAF abZx to get|HoW|27+1+14243wlé~ contradiction.
Else ifyspthen #(S,ylsb (note yma, yrb, yot) an d #(G,y)=l
One of yt, ty {eal it Z) is not a subsequence of G.

CPAF abZx to get |HoW|27+1+1+2+43=14 - contradiction.
Elsexeyay-p so x#p and #(S,x}=B.

One of xt,tx (callitZ)is not a subsequence of G.

CPAF oZab to get |TaU|27+1+1+2+3=14 - contradiction.

This trio of contradictions completely eliminates CASE 2Z2c.

CASES 2a,2b,2c all provided contradictions as did CASE 1
so the assumption that |S|<39 is proved impossible.

Q.E.D.
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