
STANFORD ARTIFICIAL INTELLIGENCE LABORATORY
MEMOAIM -191
STAN-CS-73-341

A HEURISTIC APPROACHTO PROGRAM VERIFICATION

BY

SHMUEL M. KATZANDZOHARMANNA
WEIZMANN INSTITUTEOFSCIENCE

SUPPORTED BY

ADVANCED RESEARCH PROJECTS AGENCY

ARPA ORDER NO. 457

MARCH,1973

COMPUTER SCIENCE DEPARTMENT

School of Humanities and Sciences

STANFORD UNIVERSITY

b

L-

L

v-

L

STANFORD ARTIFICIAL INTELLICENCI? T,AI%OKATORY
MEMO AIM-191

COMPUTER SCIENCE DEPARTMENT
REPORT NO. CS-341

Abstract:

A HEURISTIC APPROACH TO PROGRAM VERIFICATION

b

Shmuel M. Katz and Zohar Manna
-. Applied Mathematics Department

Weizmann Institute of Science

We present various heuristic techniques for use in
proving the correctness of computer programs. The
techniques are designed to obtain automatically the
"inductive assertions" attached to the loops of the
program which previously required human "understanding"
of the program's performance. We distinguish between
two general approaches: one in which we obtain the
inductive assertion by analyzing predicates which are
known to be true at the entrances and exits of the loop
(top-down approach), and another in which we generate
the inductive assertion directly from the statements
of the loop (bottom-up approach).

This research was supported by the Advanced Research Projects Agency
of the Department of Defense under Contract SD-183.

The views and conclusions contained in this document are those of the
authors and should not be interpreted as necessarily representing the
official policies, either expressed or implied, of the Advanced Re-
search Projects Agency or the U.S. Government.

Reproduced in the USA. Available from the National Technical Information
Service, Springfield, Virginia 22151.

t

c

i
‘i---

L
i

L

A HEURISTIC APPROACH TO PROGRAM VERIFICATION

bY

SHMUEL M. KATZ and ZOHAR MANNA
Applied Mathematics Department

Weizmann Institute of Science

Rehovot , I srae l .

Abstract . We present various heuristic techniques for use

in proving the correctness of computer programs. The tech-

niques are des igned to obta in automatica l ly the “ induct ive

a s s e r t i o n s ” attached to the loops of the program which pre-

viously required human “understanding” of the program’s per-

formance. We distinguish between two general approaches:

one in which we obtain the inductive assertion by analyzing

predicates which are known to be true at the entrances and

exits of the loop (top-down approach), and another in which we

generate the induct ive assert ion d irect ly f rom the s tatements

. o f the loop (bot tom-up approach).

I . Introduction

The des irabi l i ty o f proving that a g iven program is

correcthas been noted repeatedly in the computer l iterature.

F l o y d [1967] has provided a proof method for showing partial

c o r r e c t n e s s o f i t e r a t i v e (f l o w c h a r t) p r o g r a m s , t h a t i s , i t

shows that if the program terminates, a given input -output

r e l a t i o n i s s a t i s f i e d . The method involves cutting each loop

2.

L

L

k--

L
L

of the program, attaching to each cutpoint an “ induct ive

assert ion” (which i s a p r e d i c a t e i n f i r s t - o r d e r p r e d i c a t e

c a l c u l u s) , and construct ing ver i f i cat ion condit ions for each

path f rom one assert ion to another (or back to i t se l f) . The

p r o g r a m i s p a r t i a l l y c o r r e c t i f a l l t h e v e r i f i c a t i o n c o n d i -

t i o n s a r e v a l i d . Elements of these techniques have been

shown amenable to mechanization. K i n g [1969], for example ,

has actual ly wri t ten a ‘ver i f ier ’ program which , g iven the

proper induct ive assert ions for programs wri t ten in a

s i m p l i f i e d A l g o l - l i k e l a n g u a g e , c a n p r o v e p a r t i a l c o r r e c t -

ness. Thus, i t i s f a i r l y c l e a r t h a t t h e p a r t s o f t h i s m e t h o d

which involve generat ing ver i f i cat ion condit ions f rom induc-

t ive assert ions and then proving or d isproving their val id i ty

is a diff icult but programmable problem. However, as King

p u t s i t , f i n d i n g a s e t o f a s s e r t i o n s t o ‘ c u t ’ e a c h l o o p o f

the program’tiepends on our deep understanding of the program’s

per formance and requires some sophist i cated inte l lec tual

. endeavor”.

In this paper we show some general heuristic techniques

for automatical ly f inding a set of inductive assertions w h i c h

wi l l a l low proving part ia l correctness o f a g iven program.

More prec ise ly , we are given a flowchart program with input

v a r i a b l e s ‘;T (which are not changed during execution), program

variables 7 (used as temporary s torage dur ing the execut ion

of the program), a n d o u t p u t v a r i a b l e s r (which are assigned

values only at the end o f the execut ion) . In addition, we are

given “ input predicate” G-l 9 which puts restr i c t ions on the

t

i

i
L

3.

input var iables , and “output predice” $(x,‘z) , w h i c h

indicates the desired relation between the input and output

v a r i a b l e s . Given a set o f cutpo ints which cut a l l the loops ,

our task is to at tach an appropr iate induct ive assert ion Q i
t o e a c h cutpoint i .

We distinguish between two general approaches:

(a) top-down approach in which we obtain the inductive asser-

tion inside a loop by analyzing the predicates which are known

to be t rue at the entrances and ex i ts o f the loop , and

(b) bottom-up approach in which we generate the inductive

assert ion o f a loop d irect ly f rom the s tatements o f the loop .

For “toy” examples , having only a s ingle loop , i t i s general ly

clear that the top-down approach is the natural method to use.

However, t h i s i s d e f i n i t e l y n o t t h e c a s e f o r r e a l (n o n - t r i v i a l)

programs with more complex loop structure. In this case s o m e

bottom-up techniques were found indispensible. Most commonly
s we have found it necessary to combine the two techniques, w i t h

the bottom-up methods dominant.

Preliminary attempts to attack the problem of f inding asser-

tions have been made by Floyd [private communication], and

Cooper [1971]. Heurist i c ru les bas ica l ly s imi lar to some o f

our top-down rules have been discovered independently by

Wegbre i t [1973]. E l s p a s , e t . a l . [1972], u s e d “ d i f f e r e n c e

r-

i

4.

equations” derived from the program’s statements which is ,

in essence , a bottom-up approach.

We handle programs with arrays separately, s ince

generat ing assert ions involv ing quant i f i cat ion over the indices

o f arrays requires spec ia l t reatment . Thus in Section II we

discuss heur is t i c techniques for f lowchart programs without

arrays, while in Section III we extend the treatment to programs

with arrays. In Section IV (conclusion) we discuss open problems

and poss ib le impl icat ions o f our techniques . Related problems

where these approaches seem applicable include proving termination

of programs, and discovering the input and output assertions of

a program.

Our emphasis in this paper is on the exposition of the

rules themselves and we are purposely somewhat vague on other

problems, such as correct ly locat ing the cutpo ints or order ing

t h e a p p l i c a t i o n o f t h e r u l e s . Though we do not enter into

d e t a i l s , we assume that whenever possible we conduct immediate

tests on the consistency (with known information) of a new

component for an assertion as soon as it is generated, and that

algebraic simplif ications and manipulations are done whenever

necessary.

I I . Heuristics for Programs without Arrays

A. Top-down approach. We begin by l isting the top-down rules,

which may be divided intotwo c lasses : entry rules and ex i t ru les .

5.

1. Entrv rules. These rules are intui t ive ly obvious ,

L-

b

L-

c
-

but provide valuable informat ion in a surprising number of cases.

rule Enl. Any conjunct* in the input predicate 4m may be

added to any Q . It need not be proven since the input variables

are not changed inside the program.

r u l e En2. Any predicate known to be true upon first reaching

a cutpoint i s h o u l d b e t r i e d i n Q i l

2. E x i t r u l e s . For s impl ic i ty in the s tatement o f

t h e s e rules,= assume that a cutpoint is at tached to the arc

immediate ly be fore an ex i t test o f the loop . Thus we may consider

an exit from a loop to be of the form

- - - - -- --I

It--- -
F

- - -

t
Qi

w h e r e t .1 i s t h e e x i t t e s t , pi is some conjunct o f a predicate

k n o w n t o b e t r u e w h e n t h e e x i t t e s t f i r s t h o l d s , i i s t h e

cutpoint o n t h e a r c l e a d i n g i n t o t h e e x i t t e s t , a n d Qi i s t h e

assertion which we wish to discover. We attempt to extract

* I f a p r e d i c a t e i s e x p r e s s e d a s a c o n j u n c t i o n A,AA,A...AA~ ,

t h e n e a c h Ai is a conjunct o f the predicate .

L
_ .

-

\

-

L

6.

l -

L-

c
i

cs

L

t-

-

information from p- a n d ti in order to f ind an assert ion
1

f o r t h e cutpoint i . . T h e e x i t r u l e s w i l l l e a d t o a

predicate K w h i c h i s g u a r a n t e e d o n l y t o s a t i s f y

% AR~pi ;

we then must show that the R o b t a i n e d i s i n d e e d a v a l i d

assert ion .

rule Exl . If p. i s n o t i d e n t i c a l t o t .1 1'
l e t R be pi

i t s e l f o

r u l e Ex2. (t r a n s i t i v i t y) Although this rule could be appl icable

to a wider c lass o f operators and re lat ions , we restr i c t the

treatment to inequal i t ies . S u p p o s e pi h a s t h e f o r m a,Aa, and

3 h a s t h e f o r m b,Bb, , where
“j

and b.
3

are any terms and

A,B a r e e q u a l i t y o r i n e q u a l i t y r e l a t i o n s . I f one o f the
aj

‘ S

is identical to one of the b. ‘s ,
3

t ry to f ind an appropr iate

i n e q u a l i t y o r e q u a l i t y r e l a t i o n R so that ti A R ~ pi bcic\illeS

t r u e . F o r e x a m p l e , i f t i i s x < Y2 a n d p . i s x <
1

(Y,+W,

-
then we let R be y2 G Cy1+U2 since 2

X < y2 A Y2 s (Y,+l) =

x < (y1+l12 i s t r u e .

We may extend rule Ex2 and use in our search for R any

c o n j u n c t a t t a c h e d t o cutpoint i which has somehow been

p r e v i o u s l y v e r i f i e d (i . e . , i t i s t rue upon entry to the loop , and

is invar iant go ing around the loop , but does not yet imply the

e x i t p r e d i c a t e pi). For example, i f t h e c o n j u n c t y:, = y3+x2

-
c

-

L--

i

L
L

7.

h a s b e e n p r e v i o u s l y v e r i f i e d a t cutpoint i , and t i i s t h e

test y3 = 1 , while pi is Yl < x, ? then we may try R

being Yl < Y2 2 since y2 = y3’x2 A y = 1 A y
3 1 < Yp = Y, < x2 ’

A n o t h e r p o s s i b l e e x t e n s i o n o f r u l e Ex2 is to search for

a d d i t i o n a l i n f o r m a t i o n o n t h e v a r i a b l e s i n t h e e x i t t e s t . W e

seek informat ion which a long with ti would imply stronger

r e s t r i c t i o n s o n t h e e x i t v a l u e s o f t h o s e v a r i a b l e s . For example,

suppose ti is y1 2 X , we know that Y1 (x u p o n f i r s t

r e a c h i n g i (i . e . , t h e l o o p i s e x e c u t e d a t l e a s t o n c e) , a n d y1

is incremented by 1 at each pass through the loop . Then we

let t* be y, = x Since y, >, x A y -1 < X 3 y
1

= x
1

in the

i n t e g e r s . Thus, rather than looking for R s a t i s f y i n g

Yl ‘-xARI>Pi, i t s u f f i c e s t o f i n d a n R s a t i s f y i n g

Yl =xARspi.

r u l e Ex3. I f rule Exl fa i ls , a natural “weaker” attempt c o u l d

b e t o l e t R be ti 3 pi . This ru le i s somet imes o f pract i ca l

use ; however,
d

i t says very l i t t le about the computat ion taking

p l a c e i n t h e l o o p . Our strategy would give this rule a low

p r i o r i t y , try ing other rules with s tronger resul tant c la ims

f i r s t .

I t i s poss ib le to cont inue and des ign rules for obta ining

R f o r s p e c i f i c f o r m s o f pi , but s ince our a im is to expla in

the general tone o f these techniques , we wi l l not go into

f u r t h e r d e t a i l s i n t h i s d i r e c t i o n .

b
8.

B. Bottom-up Approach.-

Al I of the r u l e s g i v e n ;~hove htvc in common that they

cxpcct to be provided with sonio in format ion on e i ther what

conditions were true upon entering the loop or what conditions

were expected to hold upon completing the loop (or both).

However, it is possible t o produce conjuncts o f t h e a s s e r t i o n Q

L
without cons ider ing predicates a lready establ ished e lsewhere in

the program, In order to accompl ish th is goal we shal l l ook

L- f o r a p r e d i c a t e w h i c h i s a n i n v a r i a n t o f t h e l o o p L , i . e . ,

it remains true upon repeated executions of the loop.

Clear ly , a n y c o n j u n c t i n the induct ive assert ion o f a loop

m u s t be an invariant of the l o o p . However, in the top-down rules

this i s usual ly the last fact which is establ ished about a

L p e r s p e c t i v e a s s e r t i o n . In the pure bottom-up approach, asserCons

which ar ise “natural ly” from the computations in the loop are

d i r e c t l y g e n e r a t e d - - and only afterward checked for relevance

t o t h e o v e r a l l p r o o f .

e Most invariants may be traced back to the fact that at any

stage of the computation, those assignment statements which .-f rn

on the same paths through the loop have been executed an

identical number of t imes, and this is a ‘constant ’ which may

be used to re late the var iables i terated .

F o r a n a s s i g n m e n t s t a t e m e n t yi +- f(T,a we let , iv Cn)

denote the value of y.
1

after n executions of the statement,

c-

c.

b

L

I
L

9.

(0)w h i l e yi i n d i c a t e s t h e “ i n i t i a l ” v a l u e o f y.
1

u p o n f i r s t

r e a c h i n g a g i v e n cutpoint of the loop.

Our technique for f inding invar iants involves construct ing

an “ o p e r a t o r t a b l e ” in which we record useful information for

each operator. Among the entries for an operator are its

def in i t ion (us ing “weaker” operators) , a descr ipt ion o f a general

c o m p u t a t i o n a f t e r n i t e r a t i o n s , and other common identities

w h i c h f a c i l i t a t e simplications. For example , f or + our

table wi l l inc lude the fact that for an ass ignment s tatement o f

the form yi + yi+k , i n g e n e r a l i,w = yy). + y k(j-l)
j=l

where k(j -l) i s t h e v a l u e o f k b e f o r e t h e j - t h i t e r a t i o n

of the assignment statement. Important ident i t ies are a lso noted
n

i n c l u d i n g t h a t f o r a c o n s t a n t c , 1 c = can , and that
i = l

n
c i = n (n+l)

i = l ----2-- l

Rules for producing invar iants l inking

variables which receive assignments on different paths through

the loop are present ly be ing deve loped . Here we present rules
- only for the simple case of variables changed only on the same

paths through the loop.

r u l e I l . (invariant) To construct an invariant, given a group

of assignments* (y , ,..., y,) + (f&y) ,..., fll(z,y)), w e c o n s i d e r

* The above notation implies that the value of fi(Z,Y) i s

assigned to y.
1

for all i ‘.s simultaneously.

c-

i

i

10.

those var iables Yj 9 l<jcR, which are not changed

elsewhere in the loop. Using the operator table we express the

value o f each
‘j

a f t e r n i t e r a t i o n s , i . e . (n>
Yj l We then

attempt to f ind a factor common to two expressions in order to

obtain a usable relationship between y(n)
i and (n>

yk ’ The
r e l a t i o n o b t a i n e d a f t e r s u b s t i t u t i n g t h e i n i t i a l v a l u e s o f

yi and yk a t cutpoint A for y(O) and yk’)
1 9

and removing the superscr ipt (n)

r e s p e c t i v e l y ,

i s an invar iant o f the loop .

I t a l s o h o l d s f o r t h e i n i t i a l v a l u e s o f t h e v a r i a b l e s a t A

a n d t h u s m a y b e tided to Q, .

F o r e x a m p l e , i f y1 and Y, are changed only in the

assignments (Y, ,y,) 4 (Y
(1

yin
= yl(0) + x. 7 Y(i-l;t:‘nYJ ~~n)+s~y~z~O) i:s:“i” :Y?) then

i=l ‘3
. .
i=l

Therefore, f o r x#O,
y,‘“’ NY (0)

1 n
= c

y,(i-l) YL”)-Y2(0)=:
X i = l

.
5

Assuming we know that the in i t ia l va lues o f y
and Y2 upon

- f i r s t r e a c h i n g t h e cutpoint a r e r,(O) = 1 and’ yz(‘) = 0 , we

obtain the invar iant S(y,-1) = x’y
2 l

If the assignments

were (Y, 9Y,) 4 (2my, ,y,/2) then y,‘“) = y1(‘)* Ff 2 and
i=l

Y!“’ = y2(')- i (i) .
i=l

Simpl i fy ing 9 we obtain

Y,‘“’ = r,(O). zn and y,‘nI = y(Ol 1
2

.-
.n ? there fore

i
L

4..

‘L

i

11.

r,‘“’ y(o)

P

=

2n=;;iir l

Thus given that (0)y1 = 1 and y2(‘) = x
2

(x f 0) we get that y1 l y2 = .x is an invariant .

rule 12 . W h e n e v e r i,(n) may be expressed in terms of only

y(O) and n i ei 9 .
l 9

,(n>
i = f(yiO) ,n) , and the value of

y(o)
i a t t h e cutpoint A is known to be m , then replac ing

y(o)
i by i ts va lue and removing superscr ipt (n) , we may obtain

the invar iant 3n[n >, 0 A yi = f(m,n)] . V a r i a b l e s i t e r a t e d

simultaneously may be quantified by the same n . For example,

in the second example o f 11 , 3n[n 2 0 A y1 = Zn A y2 = x/zn]

is an invar iant o f the loop .

Our heuristic rules are all relevant to programs having an

arbitrary number of loops, and an arbitrary complex ‘topologv’/ 1

although, o f course,they w i l l y i e l d v a l i d i n d u c t i v e a s s e r t i o n s

more often and more immediately in a simple program.

One of the problems in applying the rules is deciding

what order is preferable. I n p a r t i c u l a r , it has been found

that many terms of the assertion may be obtained both by the

bottom-up rules and by repeated use of the top-down rules.

However, usually one method will yield the result immediately,

whi le cons iderable e f for t i s expended i f the other method is

a p p l i e d f i r s t . Experience shows that there is a need for

interaction between the top-down and bottom-up approachpq

--

--

12.

For example, we may use established invariants to deduce the

r e l a t i o n R in the top-down rule Ex2, and on the other hand,

we may direct the search for particular invariants based on

variables or operators which appear in p
i l

cI . Examples. We demonstrate the rules l isted so far on a

few examples.

I
I

L

L

L

i

Example 1: Integer square root. The program in Figure 1

computes z = 1,&j f o r e v e r y n a t u r a l n u m b e r x . T h a t i s , t h e

f i n a l v a l u e o f z i s t h e l a r g e s t i n t e g e r k such that k ,< & .

We show partial correctness for 0 (xl :x20 a n d $(x,z) :

z2 c x A x < (z+1)2 . Clear ly , y: sxAx< (~~+l)~ i s

required to be t rue a f ter ex i t f rom the loop . We f i rst t ry the

top-down approach. By rule Exl we attempt adding the conjunct

y; c x to Q . T h e v e r i f i c a t i o n c o n d i t i o n x >, 0 2 y: c x i s ,

i n f a c t , t r u e f o r t h e i n i t i a l v a l u e o f y1 at the cutpoint ,

i . e . , Y1 = 0 . For the moment we do not attempt to verify that

- i t i s a n i n v a r i a n t o f t h e l o o p . Considering the second conjunct

o f t h e p r e d i c a t e , x < (y,+l) 2 , an attempt to apply Exl fa i ls

b e c a u s e t h i s r e l a t i o n i s n o t t r u e f o r t h e v a l u e s o f t h e v a r i a b l e s

when the cutpoint is f irst reached. S i n c e t h e e x i t t e s t y2 3 x

and the predicate x < (Y1+112 b o t h c o n t a i n x , w e a p p l y r u l e

Ex2. W e f i n d t h a t y, < (~~+l)~ i s t h e d e s i r e d r e l a t i o n s i n c e

y2 > x A y2 s (y1+1)2 1 x < (y +1)2
1 i s a val id s tatement .

Y2
6 (y1+l12 i s s a t i s f i e d f o r t h e i n i t i a l v a l u e s o f t h e v a r i a b l e s .

13.

- - -4$(x): x 2 0
r

(Y, ,Y29&) 4 (‘,‘,l)

&-+-Yz +y3

Q

-- y; < X A X < (y,+l) 2
r 3

z 4 Y1

@(x,z): z2 C X A X < (z+l)’

Figure 1. Integer Square-Root Program.

14.

However, an attempt to prove the val id i ty o f

Q : Y; g x A Y2 s (Ylf112 does not yet succeed.

At th is po int we try to use the bottom-up approach, i . e .

-

c

L

t r y t o f i n d i n v a r i a n t s . We note that the assignments along one

pass of the loop may be combined into the single group of

assignments (y,9Y29Y3) 4 1(y +l,y +y +2,y +2) . From the
2 3 3

operator table we obtain the equations

(1) y b-0
1

= yl(w n
+ c 1 = 0-l-n = n

i=O

b-
(2) ,tn = y2(o) + f (y,(i-l)+2)

n
2

= 1+2n +
i = l c

y(i-l)
i=l 3

L

. (3) y w
n

+
i 3

= y3(o)
c 2 = 1+2n .

i = l

',

h

We may use equation (3) to substitute for yCiel) in
3

e q u a t i o n (2)) and s impl i fy to

L (2’) Y,‘“’ = 1+2n + Jl [1+3(i-l)] = l+zn-tn + a(n-l>n =
= 2

L
= 1+2n+n2 = (l+rl)2 .

In the simplif ication above known facts about the summation

operator (obta ined f rom the operator tab le) are used .

L Since ,(nl = n
1

? we obtain

-

I -
F
?P

y w
3

1:]+2y(“)
1

A Y,’)n = (l+y1(“))2

for every n , i.e., y = 1+2y A y
3 1 2

= (l+y)2
1

are invar iants

-
of the loop and should be added to the tr ia l Q .

Q becomes

B YyAY
3

= 2y +l A y = (y,+1)2
1 2

Y which will prove the

part ia l correctness o f the program.

c

i

Example 2: Div is ion within to lerance . The program of Figure 2

d i v i d e s x 1 bY x, within to lerance x
3 l

W e t r y f i r s t t o

f i n d i n v a r i a n t s . Considering the assignments

(Y , ,Y,) * (Y,/2,Y3/2) 9 w e o b t a i n t h e e q u a t i o n s 2y (nl = y,(O) . 1
z

L
.,
i

,Cn>
L

(>a n d y3n -' y3(o) . 1
(1

n l

Therefore 2 = ' ygn

2 F2 --ii = YT l Since
2

3

y(0) = x2 and y(O) '

2 4 3 =z
at the cutpoint , we obta in

zy(nLx n
2 2*Y:) . T h u s 2y, = x2-y

3
i s t h e f i r s t c o n j u n c t

in the trial Q . Next we consider the assignments

(Y, 9Y41 +- (Y,+Y2 ,y,+y,/2) l In order to be able to find a common

f a c t o r i n t h e e q u a t i o n s f o r 1y (n> and ,Cn)
4

w e f i r s t e l i m i n a t e

y2 by us ing the a lready establ ished invar iant

y2 .= xz*y3/2 , o b t a i n i n g (Y,,Y,) + (Yl+x2*Y i&Y +Y m
3

we get 1

y b)
= yl(*)

n yCiel)

f ⌧

c

3- -
2 i=l 2

and 4,In) = yiol

3
l Now

n yCimll

3
4

+ c
i=l 2 l

Eliminating the commOn term
n ,li-1)

1 3
i=l

9
2

t h e r e s u l t i s

> x * \ x h, x w A N

>

L

- expression becomes ,(n)
4 = Y,(~)/x~ . T h e r e f o r e y

4
= y /x

1 2

i s a d d e d a s a c o n j u n c t t o t h e t r i a l Q .

Since no further information can be gained from the

i n v a r i a n t r u l e s , we turn to the top-down rules. We have

yl+ G x1/x2 A x1/x2 - x3 < y4 true upon exit from the loop.

Trying Exl on y, G x /x
12’

the conjunct can be seen to hold

i n i t i a l l y a t t h e cutpoint b y c a s e s , s i n c e i f x1 < x2/2 then

y4 i s i n i t i a l l y 0 at the cutpoint and by 4 we have

0 G XI/X2 , while if x1 2 x2/2 , then l/2 c x1/x
2 and Y,

i s l / 2 a t t h e c u t p o i n t . Thus by Exl we may add y, c x,/x 2
to Q . The second conjunct, x1/x2 - x3 < y

4 ’
on the other

hand,does n o t h o l d i n i t i a l l y s o w e t r y Ex2. The necessary

' t r a n s i t i v e ' re lat ion is found to be
xl lx2 - Y, g Y, s ince

e
Y3 < x 3 A x1/x

2
-Y, kY4H+

2 -x3<y 4 l

We note that

⌧l�⌧2
- Y, c Y, h o l d s f o r t h e i n i t i a l v a l u e s a t t h e cutpoint

so we add it to Q . Q is now y, = x29,/2 A y
4

= y/x2 A

Yt+ G x1/x2 A XI/X2 - y, -4 Y
.4

which will prove the program

partially correct.

Example 3. Hardware (integer) d iv is ion . The program of

Figure 3 i s a s imulat ion o f how integer d iv is ion might be carr ied

-
L

k-

---- ()(a: X1 2 0 A X2 > 0

\

,p1:y2 = x,-y, A

A)5=X2* 2n A

L
2 2

: x1 = Yip2 + y+* CY, “Yl<
a m

(2
14 + (Y, PY,) (Y2’Y3) + (Y,+LYp2)

, .
I 1

< HALT J

L sure 3. Hardware (Integer) Division Program.

A

yl>oAy,>o A

Y1 s Y2

c-

-

-

c
-

-
c

L

Irr
C

I

-

CL

out by a computer. T h e ' d i v i s i o n b y 2, r e p r e s e n t s a

' s h i f t - r i g h t , , andtie ' m u l t i p l i c a t i o n b y 2 ' a ' s h i f t - l e f t ' .

Although the second loop of this example is similar to the

program of Example 2, we br ing i t in order to i l lustrate how

programs with more than one loop may be handled, and how

complications which could arise from integer division may be

so lved with the a id o f the invar iant rule . Our strategy is to

obtain a maximum amount of information from the first loop,

which will be true upon entrance to the second loop. Then top-

down rules can be used conveniently for the second loop.

I n t h e - f i r s t l o o p w e a t t e m p t t o l i n k y2 and Y3 '

obtaining y,'") = ~~02~ a n d yCn) = 192n w h i c h l e a d s t o t h e3

i n v a r i a n t y, = x2*y3 b y r u l e I l . By rule 12 we also have the

conjunct gn[n >, 0 A y2 = x2 dn A y3 = zn] . We now consider

top-down rules. S i n c e y 1 2 0 A y, > 0 h o l d s i n i t i a l l y , i t i s

added by rule En2 to Q, , which thus becomes the valid invariant

y2
= X2 ‘y3 A gn[n >, 0 A y, = X2 dn A y3 = zn] A y, >, 0 A y, > 0 .

A l l t h i s i n f o r m a t i o n , a s w e l l a s
Yl g y2

i s a p r e d i c a t e p1
e

t rue upon f i rs t reaching the second loop . R e c a l l t h a t f o r t h e

entrance ru les we cons ider the predicates t rue upon f i rs t

. reaching the cutpoint i . Thus the information in p1 must be

'moved' a l o n g t h e p a t h s t o cutpoint 2 .

Y,
> 0 A y2 = X2 ‘y3 A 3nIr-l >, 0 A y2 = x,02~ A y, = zn] are

unchanged by e i ther path to 2 , w h i l e y
1

might be changed

but Yl a 0 can be seen to remain true by inspection. I f t h e

L

20.

r ight path is taken,
Yl g y, i s s t r e n g t h e n e d t o y1 < Y:! ’

w h i l e t h e l e f t p a t h m a y b e u s e d o n l y i f y1 = yZ . In th is case

Yl i s s e t t o z e r o , a n d s i n c e Y2 ’ 0 is known, in e i ther case

Yl < y, a t cutpoint 2 . A t t h i s p o i n t , a l l the necessary

assert ions for handl ing the second loop are a lready g iven

e x p l i c i t l y i n t h e e n t r y a n d e x i t p r e d i c a t e s . Using rule En2

we obtain Q, : y
2 = x2*y 3 A 3Il[n >, 0 A y2 = X2*2n A y

3
= 2n] A

Yl bOAy2>0AY
1 < y2 ’

while from Exl we add

x1 = Y4*x2+Yl to Q, . T h i s Q
2 wil l be a good induct ive

assert ion .

T h e r u l e i n v o l v i n g n , obtained by 12, is necessary here

in order to guarantee that the conjunct y2 = X2-Y, i s v a l i d ,

b e c a u s e o f t h e ‘ s h i f t - r i g h t ’ d i v i s i o n . We clearly could have

obta ined some o f the conjuncts in Q b y o t h e r r u l e s . F o r

e x a m p l e , Y, < Y, could have been obtained by rule Ex2 (because

p2 c o n t a i n s y1 < x 2 Y Y2=x2’Y3 i s a n i n v a r i a n t , a n d y3 = 1

i s t h e e x i t t e s t) , o r x, = Y4 ‘x2+Y 1
b y r u l e I l .

k

1
L

L
L

21.

I I I . Heurist i cs for Arrays

The problem of f inding assert ions involv ing arrays i s

quite d i f ferent f rom that o f f inding assert ions for s imple

var iables because an array assert ion general ly wi l l be an

e n t i r e f a m i l y o f c l a i m s . This is the reason most assertions

about arrays wi l l involve quant i f iers . A l l r u l e s i n S e c t i o n I I

cant inue , o f c o u r s e , t o b e a p p l i c a b l e f o r t h o s e v a r i a b l e s n o t

in arrays . In addit ion , rules Enl , En2, Exl and Ex3 may be

used for assert ions with arrays .

Underlying the heuristics which follow is the assumption

that arrays in a program are used “proper ly , ‘ , i . e . , t o t r e a t a

large number of variables in a uniform manner, and not just as

a c o l l e c t i o n o f u n r e l a t e d v a r i a b l e s f u l f i l l i n g d i f f e r e n t r o l e s

in the program. The further assumption is usually made that an

assertion about an array will be of the form

vj [<j - i n d e x > 2 < j - a r r a y >] o r 3j [< j - i n d e x > A < j - a r r a y >] ,

d

where <j -index> is a c la im on the indices o f the array and

<j -array> is the claim which is made about the array elements

themselves. We often separate the two problems of f inding the

<j -index> and of f inding the <j - a r r a y > .

As in Sect ion I I , we distinguish between the top-down and

bottom-up approaches.

In order to apply some o f the array rules i t i s convenient

t o f i r s t d e t e r m i n e t h e “ o n e - p a s s ” a s s e r t i o n , i . e . , t h e c l a i m

-1

22.

i
-

-
c

which can be made about the effect on the arrays of one circuit

through the loop. T h i s c l a i m i s o f t e n n o t d i f f i c u l t t o

e s t a b l i s h , in part i cular for loops which do not contain other

loops s ince then the c i rcui t through the loop i s a s imple

sequence of statements. The assertion can be most easily

established by the known technique of “backward substitution”,

moving backwards around the loop past each assignment statement.

c-
A. Top-down rules. As noted above, a l l previous top-down

r u l e s , e x c e p t f o r t h e t r a n s i t ivity rule Ex2 (w h i c h i n v o l v e s

b

ik-

F L

L

c
i

I
L

L

i

i

i n e q u a l i t i e s) , a r e d i r e c t l y a p p l i c a b l e f o r a r r a y s . In the rules

l i s t e d b e l o w , p d e n o t e s a n a s s e r t i o n w i t h q u a n t i f i c a t i o n

concerning an array which is t rue a f ter ex i t f rom the loop , whi le

P’ i s a n a s s e r t i o n l i k e p , but true upon entrance to the

l o o p . Q d e n o t e s t h e d e s i r e d l o o p a s s e r t i o n . Rules Al , A2, a n d

A4 at tempt to e i ther t ransform or create assert ions p and

P’ h a v i n g a f o r m w h i c h w i l l f a c i l i t a t e g e n e r a t i n g Q b y r u l e A 3 .

- rule Al . L e t p b e a c l a i m a b o u t a s p e c i f i c e l e m e n t o f a n

array , say S[c] (a n d t h u s n o t n e c e s s a r i l y i n c l u d i n g

q u a n t i f i e r s) . We rewrite it as 3j [c 6 j c c A <j-array>] ,

where <j-array> is p with j in place of c . S i m i l a r l y ,

ifa p’ as above is true upon entrance to the loop, we rewrite

i t a s Vj [c c j G c 3 <j-array>] .

The underlying principle here is that a claim whose

<j-index> is made smaller by the loop probably has an existential

7

L

L-

L

f
1

t

23.

quant i f ier (we are “ l o o k i n g f o r s o m e t h i n g ”) , w h i l e i f t h e

<j-index> is extended to cover more elements by the loop, the

claim probably has a universal quantifier (we want something to

be true for a larger part o f the array) . Thus we may check the

feas ib i l i ty o f the resul t ing assert ion by determining whether

the <j -array> is in fact expanded or contracted in the loop .

This pr inc ip le i s a lso used in the bottom-up rules .

rule AZ. Given a p , we examine the definitions of the

o p e r a t o r s a n d r e l a t i o n s i n p and whatever information is known

about the array upon f i rs t reaching the loop . U s i n g t h i s i n f o r -

mation we produce the <j -index> for a p’ which must be true

upon entrance to the loop, and has a <j -array> i d e n t i c a l t o

P l
F o r e x a m p l e , i f p i s 3jIl c j c 3 A A[j] =

max(Nll,* l l AnI>) and we know only that A i s d e f i n e d u p o n

entrance to the loop , by the rule we require a <j - i n d e x > such

t h a t A[jJ = max(A[l],...,A[n]) m u s t b e t r u e . B y t h e d e f i n i t i o n

of max we can determine that the maximum element must belong
-

to the array . T h u s 3j [l < j i n A A[j] = max(A[l] ,... ,A[n])]

is the paral le l assert ion upon entrance to the loop .

In some cases o f a p r e d i c a t e p w i t h u n i v e r s a l q u a n t i f i e r s
f

the corresponding in i t ia l c la im may require a <j -index> which

is empty (so that the overal l c la im is vacuously true) . For example,

if p is \dj [1 c j < n 13 A[j] c A[j+lJ] , and we have not

sor ted A b e f o r e t h e l o o p , p’ might be

.-
L

t

I
i

L

24.

vj[l c j < 1 3 A[j] < A[j+l]] .

Rule A2 is the only example in this paper of a rule which

enables us to project “backwards” to f ind the minimal condi -

t ions tiich must hold upon entrance to a given loop. Such

rules should be useful not only to a id in d iscover ing the

c o r r e c t a s s e r t i o n f o r t h e l o o p i n q u e s t i o n , b u t a l s o t o c a r r y

information backwards for loops earlier in the program. Thus

further invest igat ion o f th is general technique is warranted .

rule A3. If =p contains a term r as a boundary of the

i n d i c e s , and we have determined that for some term s , s = r

upon exit from the loop (by any of the rules in Section II) , we

l e t Q b e t h e p r e d i c a t e o b t a i n e d b y s u b s t i t u t i n g s f o r s o m e

appearances of r in p .

S i m i l a r l y , i f p’ c o n t a i n s a t e r m r , a n d s = r upon

entrance to the loop , l e t Q b e t h e p r e d i c a t e o b t a i n e d b y

s u b s t i t u t i n g s for some appearances of r in p’ .

F o r Bcample, i f p i s tri[l < i c m =) A[i.] c A[m]] , and

R = m i s t h e e x i t t e s t o f t h e l o o p , w e c o u l d t r y l e t t i n g Q

be. either vi[l G i c k 3 A[i] c A[m]] ,

Vi[l G i < m z=, A[i] Q A[R]] or Vi[l c i rk R 3 A[i] G A[R]] .

Obviously, i f in format ion is known about both p and p’ ,

the application of A3 can often be directed by matching the

resul ts o f var ious subst i tut ions unt i l the entrance and ex i t

c l a i m s a r e i d e n t i c a l . Thus, i f t h e r e a r e s e v e r a l p o s s i b i l i t i e s

25.

f o r s u b s t i t i o n , we may decide for which appearances of terms in

P or P’ t o s u b s t i t u t e .

We would l ike to be able to a lso use the transi t iv i ty rule Ex2

f o r a n a r r a y a s s e r t i o n w i t h q u a n t i f i c a t i o n (s p e c i f i c a l l y , a p w i t h

an inequal i ty as i ts <j -array>) . This requires establ ishing that

for each pair of terms compared, we may find a third term such that

there wi l l be two new inequal i t ies , t rue upon ex i t f rom the loop 9

w h i c h w i l l i m p l y t h e o r i g i n a l i n e q u a l i t y (a s i n Ex2).

rule A4. Given a p with universal quant i f ier and an inequal i ty

inc luding arrays as i ts <j -array> , we use the “one-pass” assertion

to f ind a term which contains the two needed inequal i t ies for a parti-

cular v a l u e o f j (i . e . , f o r a s i n g l e p a i r o f v a l u e s f r o m p). Then

i

r

let each new inequality be the <j -array> for a claim having the

<j-index> of p . The other top-down rules may then be used separately
L

on each of th.e new inequal i ty c la ims to obta in the loop assert ion .

For example, given p:Vi[l < i < m ==, A[i] c B[i]] , we might

discover a C [k] s u c h t h a t A[k] c C[k] AC[k] cB[k] forsome k ,

and assume Vi[l c i c m 3 A[i] c C[i]] A Vi[l c i c m 3 C[i] r; B[i]]

is true upon exit from the loop. T h e n , i f , for example, J? = m and

j = 1 upon ex i t f rom the loop , A3 used along with other information

c o u l d r e s u l t i n Vi[l < i C R 3 A[i] < c[i]] A

\di[j G i 6 m 3 C[i] c B[i]] a s t h e l o o p a s s e r t i o n .

B. Bottom-up approach. In order to ident i fy which heur ist i cs to

use, we must differentiate between two methods of computation:

a) I f t h e e x i t t e s t h a s t h e v a r i a b l e i compared with a term

w h i c h i s n o t c h a n g e d i n s i d e ,L , and i is incremented

-

c
-

L-

L
L

L
L
L
i

26.

m o n o t o n i c a l l y i n s i d e L , then it is assumed to be a counter

contro l l ing the loop in an “ i terat ive go ing up” c o m p u t a t i o n .

(b) I f t h e v a r i a b l e i is compared with a term which does

not change in the l o o p , and is dccrcmcnted m o n o t o n i c a l l y i n s i d e

L t then i i s a counter contro l l ing the loop in an

“ i terat ive go ing down” c o m p u t a t i o n .

In the rules be low we assume a l l l oops have the index i ,

and let i, d e n o t e t h e v a l u e o f i when i t f i rs t reaches the

cutpoint o f t h e l o o p , w h i l e i, d e n o t e s t h e v a l u e o f i u p o n

exi t f rom the loop . A s i n S e c t i o n I I , we assume that the

cutpoint i s l o c a t e d i m m e d i a t e l y b e f o r e t h e e x i t t e s t .

W e f i r s t l i s t t h e r u l e s f o r f i n d i n g t h e <j - index> .

ru le Xl . If i i s a counter (incremented by 1) in a

“going-up” i terat ion and is a lso the var iable which appears i n

the index of array elements receiving assignments, then try

assert ions o f the forms vj PO 6 j < i 3 <j-array>] or

3j [i < j < i, h <j-array>] in the induct ive assert ion . These

wi l l a lso be the form o f the predicate p w h i c h i s t r u e a f t e r

ex i t f rom the loop .

If i, is known, say i, = c upon entrance to the loop,

t h e n t h e c s h o u l d b e s u b s t i t u t e d f o r i, i n Q and p .

S i m i l a r l y , i f i, = d u p o n e x i t f r o m t h e l o o p , d s h o u l d

b e s u b s t i t u t e d f o r i, .
C

27. ’

rule X2. I f i i s a c o u n t e r (d e c r e m e n t e d b y 1) in a

“going-down” i terat ion and is a lso the var iable which appears

in the index of array elements. receiving assignments, try

assert ions o f the forms

‘Jj [i < j c i(, 3 <j-array>] or 3 [iI < j < i A <j-array>] .

L
t

L

As in rule Xl , p w i l l a l s o h a v e t h e a b o v e f o r m a n d i, o r
.
5 should be e l iminated i f poss ib le .

rule X3. Discover whether X l a n d X 2 f a i l o n l y b e c a u s e i i s

assigned a function WI rather than merely incremented or

d e c r e m e n t e d b y 1 i n t h e l o o p . I f s o , t r y t o f i n d t h e s e t o f

e lements which i assumes during the loop (using rule 12).

The assertion will have the same form as in Xl or X2, except that

the <j -index> wil l inc lude the 12 invariant . For example , i f

i 4- ii-7 in the loop , and i i s i n i t i a l l y z e r o , t h e n t h e

a s s e r t i o n i s

vj@ g j < i A 3I’l[Il 3 0 A j = 7n] I> <j-array>} .

The fol lowing two conditions are used to decide which of

the bottom-up <j -array> rules to apply assuming that the

<j -index> has already been determined.

(a) Al l ass ignments in the loop are to array e lements

with indices not spec i f ied by the < j - index> before execut ing

the loop . That i s , once we have included an element of the array

28.

L

c-

in the assert ion a f ter some c i rcui t , we will make no more assign-

ments to that element in subsequent circuits around the loop.

For example, the program segment

a t l e f t c o u l d b e p a r t o f a

"bubble-sort" program. The "one-

pass" a s s e r t i o n i s c l e a r l y

S [i - 1] c S [i] , but i f the form

of the assert ion be fore execut ing

t h e l o o p i s

Q : Vj [2 < j < i 3 <j-array>]

t h e l o o p v i o l a t e s c o n d i t i o n (a)

b e c a u s e Sri-11 may receive an

a s s i g n m e n t a n d i - l i s a lready

in the domain of the <j - index> .

(b) T h e "one-pass" assert ion can be wri t ten as a s ingle

conjunct . Furthermore th is conjunct i s va l id for a l l array

s elements whose indices are added to the domain of the <j-index>

by one c i rcui t through the loop . Thus i f the "one-pass"

a s s e r t i o n i s WI = S[i+l) A S [i + l] c S[i+Z] and i and i + l

are added to the <j-index> by the loop , t h e c o n d i t i o n (b) i s

not fu l f i l led because i t cannot be expressed by an appropr iate

s ingle conjunct .

29.

r u l e Rl. I f both (a) and (b) are true the “one-pass” a s s e r t i o n

i t s e l f i s t a k e n a s t h e <j -array> . Of course, the quant i f ied

v a r i a b l e o f the <j -index> must be substituted for the actual

array index which appears in the loop. For example, if we have

f o u n d t h e a s s e r t i o n t o b e vj [l G j < i 2 < j - a r r a y >] and in

the loop we have only A[i] +- 0 and then i +- i+l , t h e “ o n e - p a s s ”

a s s e r t i o n i s A[i] = 0 , and (a) and (b) hold . Thus we obtain

trj[l (j < i 3 A[j] = 0] a s t h e l o o p a s s e r t i o n .

The following rule is based on the fact that we have already

establ ished the des ired form o f the <j - i n d e x > p a r t o f t h e

a s s e r t i o n . We want to be able to write one conjunct, say

Vj [l c j < i ~3, <j-array>] , where the <j -array> w i l l b e a

statement about (only) the array elements with indices lcj<i

and not contain any addit ional restr i c t ions on the indices .

r u l e R2. (general izat ion) I f (a) i s t r u e , b u t (b) i s n o t ,

check whether (b) fa i l s only because the assert ion i s not a

-s ingle conjunct . I f s o , t h e < j - a r r a y > p a r t s o f a l l t h e c o n -

juncts in the assert ion are searched to f ind the s trongest s ingle

conjunct which is t rue for a l l array e lements spec i f ied by the

known <j - index> . This conjunct becomes the <j -array> . For

example, given a one-pass assertion

Vj[l c j < n 3 A[j-l] < A[j]] A A[n-1] -G A[n] and a required

Q of the form vj [l G j < n+l 3 <j-array>] , the correc t

< j - a r r a y > b y t h i s r u l e i s A[j-l] < A[j] .

1

30.

t-

c.

c

L

rule R3. I f (b) i s t r u e , b u t (a) i s n o t , t a k e t h e “ o n e - p a s s ”

assert ion as the <j -array> and cons ider the e f fec t o f an

addit ional pass through the loop on th is predicate . Then apply

t h e g e n e r a l i z a t i o n r u l e R2 to the resul t . For example, for

the segment of the bubble-sort program introduced above, the

one-pass assert ion y ie lds

Vj[2 5 j < i 2 S[j-l] c S[j]] .

One c ircui t wi l l change this to :

Vj[Z c j < i-l 3 S[j-l] (S[j]] A s[id] g Sri.1 A s[i-l] g s[i] .

G e n e r a l i z i n g t h i s p r e d i c a t e b y R2 i s a r e l a t i v e l y d i f f i c u l t

step 9 not yet complete ly invest igated . The general izat ion

procedure would be expected to recognize that no predicate

comparing each element with its neighbor is possible, since no

information is avai lable about the re lat ion between S[i-21 and

S [i - 1] . Then the transi t iv i ty o f the inequal i ty would y ie ld

that vj [l < j < i 3 S[jJ c S[i]] is the strongest claim which
a

can be made about the entire segment.

e-

‘b

-

c

e

i

i
h

L

31.

Example 4. Minimum of an Array. The program in Figure 4

will find the minimum of an array A using an array S in

an unusual way. (T h e u p p e r h a l f o f t h e a r r a y i s s e t t o A ,

and the computation takes place in the lower half , using only

comparisons.) F o r t h e f i r s t l o o p , top-down rules give no

informat ion , so we use bottom-up rules. By Xl , we wi l l t ry

the assert ion vj[l r: j < k 3 < j - a r r a y >] (because k, = 1 ,

and we have a "going-up" iteration). The "one-pass" assert ion

i s c l e a r l y S[n+k] = WI 3 and condit ions (a) and (b) are

f u l f i l l e d . Thus by rule Rl we obtain Q, : vj[l c j < k 3 S[n+j] =

ACj13 . S i n c e u p o n e x i t f r o m t h e l o o p k = n+2 , we have

P : vj[l c j c: n+l 2 S[n+j] = A[j]] . B y r u l e En2, p is added

to Q, l
We try rule Exl on JI' , b u t S[l] is undefined on

e n t r a n c e t o t h e l o o p , s o t h e r u l e f a i l s .

U s i n g a r r a y t o p - d o w n r u l e s , w e f i r s t r e w r i t e $' a s

3j[l c j < 1 A S [j] = min(A[l],...,A[n])] b y r u l e A l . U s i n g

AZ, we would l ike to reta in the < j - a r r a y > p a r t i n a n a s s e r t i o n

e true on entrance to the loop. By the definition of min we know

that one of the elements is the minimum, and the p we have

at the entrance to the loop s tates that A has been copied to

t h e u p p e r h a l f o f S . Thus we obtain

gj[n+l c j c 2n+l A S[j] = min(A[l],...,A[n])] a s t h e i n i t i a l

assertion which must be true. Since the assignment before the

l o o p i m p l i e s t h a t i = n upon entrance to the loop , a poss ib le

subst i tut ion by A3 is

IL

I

32.

P:Vj[l&jsn+l 2
S[n+j]=A[j]]- - - -

! $?S[l] = min(A[l],.,.,A[n+l])

Q,- -

n>,O.

Q /,- - - - _,

---- -------I

' -.- -*-- -----
'S[i]

t

I
+ S[Zi] S[i]

- - - - - - -
* S[Zi+lJ

_ ---_I__ - -

I - -

- - l

--

I_ --
Figure 4. Program for Finding the Minimum of an Array

I

33.

9 : gj[i+l < j c 2i+l A S [j] = min(AIl],...,A[n])] .

cc-

Since i = 0 upon ex i t f rom the loop , t h i s q becomes

i d e n t i c a l t o $' . (Any o f the other poss ib le subst i -

t u t i o n s o f i for n will fail to match I/.J’ .) Thus we let

Q2 b e qAp. The second conjunct is not needed to prove

v 9 but can be reta ined to provide the addit ional in format ion

that the upper hal f o f S is unchanged by the second loop, and

c o n t a i n s A .

Example P a r t i t i o n P r o g r a m . The program of Figure 5,

.- due to Hoare, wi l l . f ind a part i t ion o f the e lements o f a

L real array S . We would l ike to show that i t i s part ia l ly

correct with respect to $: n >, 0 and

VJ : vavb{O G a < i A j <b<nxS[a]cS[b])Aj<i. W e
--

L use the bot tom-up approach , seeking a Q1 f o r t h e l a r g e o u t e r

l o o p . Thus we consider one pass through the loop. (It should

e be noted that the invar iants we wi l l f ind at cutpoints 2 and 3
-

'L dur ing the " l inear" p a s s a r e n o t n e c e s s a r i l y t h e d e s i r e d Q2

or Q3 for the overa l l execut ion o f the program.) T h e f i r s t

inner loop y ie lds immediate ly by rules Xl and Rl, the invar iant

Pl : vk[i, < k < i-2 S[k] < r] . Thus upon exit from the f irst

inner loop p1 A S[i] 2 r i s t r u e . S i m i l a r l y , a f ter the second

inner loop, we obtain p2 : vR[j, 2 R > j 2 S[&] > r] A S[j] c r

by X2 and RI. There i s no poss ib i l i ty that the second l o o p c o u l d

d i s t u r b t h e c l a i m o f p1 , because there are no assignment

t-

c-

L

L

L

L

Q m-----I
1 T

9: \daVb iOda<ihj<b~n~S[a],<S[b]}--
hj<i T

bi+i+l

L (WI, WI1 f Wjl,Wl)
3

,
I

(i,j) f (i+l,j-1)

Figure 5. Partition Program

L

c

I

35.

‘c

-

L

statements to the array in the loop. Moving PI A P2 A

S[i] 2 r A S[j] < r t h r o u g h the t w o p o s s i b i l i t i e s f o r t h e t e s t

i<j, i f w e r e a c h p o i n t A , the assertion is unchanged

whi le at po int B we have

1
Pl

: vk[i, g k < i-l 2 S[k] < r] A S[i-11 c r and

t
p2 : vR[j, 2 R > j+l 3 S[R] > r] A S[j+l] 2 r .

Rules Xl and X2 indicate that we require

P: :
*

vk[iO c k < i 2 < k - a r r a y >] and p2 :vt[joaR>jD

<R-array>] . Thus by R2 we seek weaker array assertions about

the ent i re range o f k a n d R w h i c h w i l l f u l f i l l t h e s e f o r m s .

The weakest assertion made about an element in p
1

o r p '
1

i s

that S[i-1] 6 r . Thus we let p: be vk[io c k < i => S[k] 6 r] .

S i m i l a r l y p,* is VRIjo 2 R > j 5) S[R] 2 r] . Since i0 is

i n i t i a l l y 0 , w h i l e j0 i s i n i t i a l l y n , we assume a Q,

assert ion o f the form vk[O c k < i 3 S[k] c r] A

VR[n 2 R > j 3 S[R] 2 r] . B y r u l e E n 2 , Q, and Q, w i l l b e

g i v e n t h e a s s e r t i o n o f Q, , and ver i fy ing these assert ions

wi l l show the program part ia l ly correct . We clearly could have

used the trans i t iv i ty ru le here , but for th is example , the amount

of work required is about the same.

c-

36.

IV. Conclusion

Clearly , the rules and examples given in this paper are

far f rom being a general system for f inding induct ive asser-

L

CL

L

-_

I,

i

L-

t i o n s . More and better ru les are needed , part i cu lar ly ,

f o r a r r a y a s s e r t i o n s , which tend to be complex and unwieldy.

In addition, before the rules can be incorporated into a

practical framework, we must order their application. That

i s , at each step we must provide more exact criteria for

deciding which rule to apply and on which cutpoint of the

program. The order in which the rules are presented in each

s u b c l a s s d o e s i m p l i c i t l y p r o v i d e a p a r t i a l specification. Thus

we present ly would try to apply Exl , and only i f i t fa i led try

Ex2, e t c . Moreover, we general ly would try to gather in for -

mat ion on s imple var iables us ing the rules o f Sect ion I I

be fore at tempt ing to t reat array assert ions .

The more basic (and open) questions are (a) whether to

attempt top-down or bottom-up techniques f irst for a given loop,

e and (b) which loop of a program should be treated f irst. Although

we experimented with various orderings in the examples in this

paper 9 we have tentatively formulated a more f ixed approach.

Our present inc l inat ion i s to f i rs t use top-down rules f rom

the (physica l) beginning o f the program. (Since in general

there is more than one outer loop, usual ly only entrance rules

are applicable .) Then we use bottom-up rules for the same loop,

c

1
I
I

i

37.

to create a p t r u e a f t e r e x i t f r o m t h e f i r s t l o o p c o n t a i n i n g

as much information as possible. We continue with the next

outer loop in a similar manner. I f , however , we are stymied and

unable to f ind a loop assert ion , we start with top-down rules

from the end of the program, and try to work backwards towards

the beginning.

A more sophisticated approach would require a weighted

evaluation function capable of making a very cursory scan of

the program. This function would identify loops which seemed

' p r o m i s i n g ' , i . e . l i k e l y t o y i e l d v a l u a b l e i n f o r m a t i o n r a p i d l y ,

a n d a p p l y s e l e c t e d r u l e s f i r s t t o t h e s e l o o p s .

S ince some o f the ru les could cont inue searching for a

p o s s i b l y n o n - e x i s t e n t f o r m o f a s s e r t i o n a l m o s t i n d e f i n i t e l y

(the transi t iv i ty rule , for example) , such rules would have a

"weak" vers ion and a "s trong" vers ion . The "weak" version

would be used in the in i t ia l at tempt to f ind an assert ion , and

would "g ive-up" rapidly i f i t d id not provide an a lmost immediate

' s o l u t i o n . Then other , possibly more appropriate, rules may be

tr ied on the cutpo int . O n l y i f a l l r u l e s f a i l e d t o a d d r e l e v a n t

informat ion , would the "s trong" vers ion be appl ied . This

div is ion is paral le l to the human attempt to f i rst f ind what i s

"obviouslyl' t r u e i n t h e l o o p , and only afterwards bring out

t h e f i n e p o i n t s .

The overall strategy we have adopted in this paper has been

38.

c---

c-

o

to f ind assert ions s trong enough to prove the part ia l correct -

ness in as few steps as poss ib le . Thus, in general, we

attempt to d irect ly produce a near -exact descr ipt ion o f the

operat ion o f a loop , without going through numerous inter-

mediate stages where we are unable to show either validity or

u n s a t i s f i a b i l i t y . I f o u r h e u r i s t i c i s w r o n g , t h i s f a c t w i l l

be revealed re lat ive ly rapidly by generat ing an unsat is f iable

v e r i f i c a t i o n c o n d i t i o n . We then may try a weaker alternative

claim. We feel that this is the approach which should be taken

in order to construct a practical system which could be added

to a program ver i f ier .

We believe that the bottom-up approach may also be used to

solve other problems. For example, in the partition program

(Example 5) , the inductive assertion was actually found without

u s i n g t h e $ g i v e n b y t h e p r o g r a m m e r . I n o n e s i n g l e s t e p $

m a y b e g e n e r a t e d f r o m Q, , and thus we have 'discovered'

what the program does without the use of additional information.

This feature of the bottom-up approach can probably be moste
u s e f u l f o r s t r e n g t h e n i n g a t o o - w e a k a s s e r t i o n , i . e . , r e v e a l i n g

that the program does more than is c la imed in + .

Another apparent appl icat ion is for proving terminat ion

using wel l - founded sets . F o r t e r m i n a t i o n , p r e d i c a t e s Qi and

f u n c t i o n s ui a r e r e q u i r e d , w h e r e ui [a mapping to the well-

founded set) has its domain bounded by Qi and descends each

t ime the loop i s executed . Here again the bottom-up approach

t-

L

I

i

t Ii

i
,
1

t

39.

i s u s e f u l s i n c e n o $ is provided . We have already begun

investigating bottom-up methods for generating both the

Qi ‘S and the Ui 'S which will ensure termination.

The ul t imate goal o f automat ic assert ion generat ion i s

almost certainly unattainable ; thus the optimal system would

involve man-machine interaction. Whenever it was unable to

generate the proper assertion, the machine would supply

detailed questions on problematic relations among variables

and poss ib le fa i lure po ints (incorrect loops) o f the program.

Cl early, a p a r t i a l s p e c i f i c a t i o n o f t h e a s s e r t i o n s , p r o v i d e d

by the programmer, could shorten th is ent i re process .

40.

i

REFERENCES

COOPER [1971]. D. C. Cooper, "Programs for Mechanical Program

V e r i f i c a t i o n " , in Machine Intellig'ence 6, American

t E l s e v i e r , p p . 4 3 - 5 9 (1 9 7 1) .

L

ELSPAS et al. 119721. B. Elspas , M.W. Green, K.N. Levitt and

R.J. Waldinger, "Research in Interact ive Program-

Proving Techniques", SRI, Menlo Park, Cal. (May 1972).

F L O Y D [1967]. R. W. Floyd, "Assigning Meanings to Programs",

'L.

L
r

i n Proc. of a Symposium in Applied Mathematics, Vol . 19

(J . T . Schwartz - ed i tor) , AMS, pp 19-32 (1967). .

KING [1969]. J . King, "A Program Ver i f ier " , Ph .D. Thes is ,

L Carnegie -Mel lon Univers i ty , P i t tsburgh, Pa . (1969) .

L
W E G B R E I T [1973]. B. Wegbreit , "Heuristic Methods for

Mechanically Deriving Inductive Assertions", Unpublished

L memo, Bolt, Beranek and Newman, Inc., Cambridge, Mass. ,

i -
(February 1973).

