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A HEURISTIC APPROACH TO PROGRAM VERIFICATION

bY

SHMUEL M. KATZ and ZOHAR MANNA
Applied Mathematics Department

Weizmann Institute of Science

Rehovot ,  I srae l .

Abstract . We present various heuristic  techniques for use

in proving the correctness of  computer programs. The tech-

niques  are  des igned to  obta in  automatica l ly  the  “ induct ive

a s s e r t i o n s ” attached to the loops of  the program which pre-

viously required human “understanding” of  the program’s per-

formance. We distinguish between two general approaches:

one in which we obtain the inductive assertion by analyzing

predicates which are known to be true at the entrances and

exits of  the loop (top-down approach),  and another in which we

generate  the  induct ive  assert ion  d irect ly  f rom the  s tatements

. o f  the  loop  (bot tom-up approach).

I . Introduction

The des irabi l i ty  o f  proving  that  a  g iven program is

correcthas been noted repeatedly in the computer l iterature.

F l o y d  [1967] has provided a proof method for showing partial

c o r r e c t n e s s  o f  i t e r a t i v e  ( f l o w c h a r t )  p r o g r a m s ,  t h a t  i s ,  i t

shows that if the program terminates, a given input -output

r e l a t i o n  i s  s a t i s f i e d . The method involves cutting each loop
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of the program, attaching  to  each cutpoint an “ induct ive

assert ion”  (which i s  a  p r e d i c a t e  i n  f i r s t - o r d e r  p r e d i c a t e

c a l c u l u s ) , and construct ing  ver i f i cat ion  condit ions  for  each

path  f rom one  assert ion  to  another  (or  back  to  i t se l f ) . The

p r o g r a m  i s  p a r t i a l l y  c o r r e c t  i f  a l l  t h e  v e r i f i c a t i o n  c o n d i -

t i o n s  a r e  v a l i d . Elements of these techniques have been

shown amenable to mechanization. K i n g  [1969], for  example ,

has  actual ly  wri t ten  a  ‘ver i f ier ’  program which ,  g iven the

proper  induct ive  assert ions  for  programs wri t ten  in  a

s i m p l i f i e d  A l g o l - l i k e  l a n g u a g e , c a n  p r o v e  p a r t i a l  c o r r e c t -

ness. Thus, i t  i s  f a i r l y  c l e a r  t h a t  t h e  p a r t s  o f  t h i s  m e t h o d

which  involve  generat ing  ver i f i cat ion  condit ions  f rom induc-

t ive  assert ions  and then proving  or  d isproving  their  val id i ty

is a diff icult  but programmable problem. However, as King

p u t s  i t , f i n d i n g  a  s e t  o f  a s s e r t i o n s  t o  ‘ c u t ’  e a c h  l o o p  o f

the program’tiepends  on our deep understanding of  the program’s

per formance  and requires  some sophist i cated  inte l lec tual

. endeavor”.

In this paper we show some general heuristic techniques

for  automatical ly  f inding a set of  inductive assertions w h i c h

wi l l  a l low proving  part ia l  correctness  o f  a  g iven program.

More  prec ise ly , we are given a flowchart program with input

v a r i a b l e s  ‘;T (which are not changed during execution),  program

variables 7 (used  as  temporary  s torage  dur ing  the  execut ion

of the program), a n d  o u t p u t  v a r i a b l e s  r (which are assigned

values  only  at  the  end o f  the  execut ion) . In addition,  we are

given “ input  predicate” G-l 9 which  puts  restr i c t ions  on  the
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input  var iables ,  and “output  predice” $(x,‘z)  ,  w h i c h

indicates the desired relation between the input and output

v a r i a b l e s . Given a  set  o f  cutpo ints  which  cut  a l l  the  loops ,

our  task  is  to  at tach  an appropr iate  induct ive  assert ion Q i
t o  e a c h  cutpoint i  .

We distinguish between two general approaches:

(a)  top-down approach in which we obtain the inductive asser-

tion inside a loop by analyzing the predicates which are known

to  be  t rue  at  the  entrances  and ex i ts  o f  the  loop ,  and

(b) bottom-up approach in which we generate the inductive

assert ion  o f  a  loop  d irect ly  f rom the  s tatements  o f  the  loop .

For “toy” examples ,  having  only  a  s ingle  loop ,  i t  i s  general ly

clear that the top-down approach is the natural method to use.

However, t h i s  i s  d e f i n i t e l y  n o t  t h e  c a s e  f o r  r e a l  ( n o n - t r i v i a l )

programs with more complex loop structure. In this case s o m e

bottom-up techniques were found indispensible. Most commonly
s we have found it necessary to combine the two techniques, w i t h

the bottom-up methods dominant.

Preliminary attempts to attack the problem of f inding asser-

tions have been made by Floyd [private communication], and

Cooper [1971]. Heurist i c  ru les  bas ica l ly  s imi lar  to  some o f

our top-down rules have been discovered independently by

Wegbre i t  [1973]. E l s p a s ,  e t . a l .  [1972], u s e d  “ d i f f e r e n c e
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equations” derived from the program’s statements which is ,

in  essence , a bottom-up approach.

We handle programs with arrays separately, s ince

generat ing  assert ions  involv ing  quant i f i cat ion  over  the  indices

o f  arrays  requires  spec ia l  t reatment . Thus in Section II we

discuss  heur is t i c  techniques  for  f lowchart  programs without

arrays, while in Section III  we extend the treatment to programs

with arrays. In Section IV (conclusion) we discuss open problems

and poss ib le  impl icat ions  o f  our  techniques . Related problems

where these approaches seem applicable include proving termination

of programs, and discovering the input and output assertions of

a program.

Our emphasis in this paper is  on the exposition of  the

rules themselves and we are purposely somewhat vague on other

problems, such  as  correct ly  locat ing  the  cutpo ints  or  order ing

t h e  a p p l i c a t i o n  o f  t h e  r u l e s . Though we do not enter into

d e t a i l s , we assume that whenever possible we conduct immediate

tests on the consistency (with known information) of  a new

component for an assertion as soon as it  is  generated,  and that

algebraic simplif ications and manipulations are done whenever

necessary.

I I . Heuristics for Programs without Arrays

A. Top-down approach. We begin by l isting the top-down rules,

which may be divided intotwo  c lasses : entry  rules  and ex i t  ru les .
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but provide valuable informat ion in a surprising number of  cases.

rule Enl. Any conjunct* in  the  input  predicate 4m may be

added to any Q . It  need not be proven since the input variables

are not changed inside the program.

r u l e  En2. Any predicate known to be true upon first  reaching

a cutpoint i s h o u l d  b e  t r i e d  i n  Q i  l

2. E x i t  r u l e s . For  s impl ic i ty  in  the  s tatement  o f

t h e s e  rules,= assume that  a  cutpoint is  at tached to  the  arc

immediate ly  be fore  an  ex i t  test  o f  the  loop . Thus we may consider

an exit  from a loop to be of  the form

- - - - -- --I

It--- -
F

- - -

t
Qi

w h e r e  t .1 i s  t h e  e x i t  t e s t ,  pi is  some conjunct  o f  a  predicate

k n o w n  t o  b e  t r u e  w h e n  t h e  e x i t  t e s t  f i r s t  h o l d s ,  i i s  t h e

cutpoint o n  t h e  a r c  l e a d i n g  i n t o  t h e  e x i t  t e s t ,  a n d  Qi i s  t h e

assertion which we wish to discover. We attempt to extract

* I f  a  p r e d i c a t e  i s  e x p r e s s e d  a s  a  c o n j u n c t i o n  A,AA,A...AA~  ,

t h e n  e a c h  Ai is  a  conjunct  o f  the  predicate .
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information from p- a n d  ti in  order  to  f ind  an  assert ion
1

f o r  t h e  cutpoint i .  . T h e  e x i t  r u l e s  w i l l  l e a d  t o  a

predicate K w h i c h  i s  g u a r a n t e e d  o n l y  t o  s a t i s f y

% AR~pi ;

we then must show that the R  o b t a i n e d  i s  i n d e e d  a  v a l i d

assert ion .

rule Exl . If p. i s  n o t  i d e n t i c a l  t o t .1 1'
l e t R be pi

i t s e l f  o

r u l e  Ex2. ( t r a n s i t i v i t y ) Although this  rule  could  be  appl icable

to  a  wider  c lass  o f  operators  and re lat ions ,  we  restr i c t  the

treatment  to  inequal i t ies . S u p p o s e  pi h a s  t h e  f o r m  a,Aa, and

3 h a s  t h e  f o r m  b,Bb, , where
“j

and b.
3

are any terms and

A,B a r e  e q u a l i t y  o r  i n e q u a l i t y  r e l a t i o n s . I f  one  o f  the
aj

‘ S

is identical to one of the b. ‘s ,
3

t ry  to  f ind  an appropr iate

i n e q u a l i t y  o r  e q u a l i t y  r e l a t i o n R so that ti A R ~ pi bcic\illeS

t r u e . F o r  e x a m p l e ,  i f  t i  i s x < Y2 a n d  p . i s x <
1

(Y,+W,

-
then we let R be y2 G Cy1+U2 since 2

X < y2 A Y2 s (Y,+l) =

x < (y1+l12 i s  t r u e .

We may extend rule Ex2 and use in our search for R any

c o n j u n c t  a t t a c h e d  t o  cutpoint i which has somehow been

p r e v i o u s l y  v e r i f i e d  ( i . e . , i t  i s  t rue  upon entry  to  the  loop ,  and

is  invar iant  go ing  around the  loop , but does not yet imply the

e x i t  p r e d i c a t e  pi ). For example, i f  t h e  c o n j u n c t  y:, = y3+x2
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h a s  b e e n  p r e v i o u s l y  v e r i f i e d  a t  cutpoint i , and t i i s  t h e

test y3 = 1 , while pi is Yl < x, ? then we may try R

being Yl < Y2 2 since  y2 = y3’x2  A y = 1 A y
3 1 < Yp = Y, < x2  ’

A n o t h e r  p o s s i b l e  e x t e n s i o n  o f  r u l e  Ex2 is  to search for

a d d i t i o n a l  i n f o r m a t i o n  o n  t h e  v a r i a b l e s  i n  t h e  e x i t  t e s t .  W e

seek informat ion  which  a long  with  ti would imply stronger

r e s t r i c t i o n s  o n  t h e  e x i t  v a l u e s  o f  t h o s e  v a r i a b l e s . For example,

suppose ti is y1 2 X , we know that Y1 ( x u p o n  f i r s t

r e a c h i n g  i  ( i . e . , t h e  l o o p  i s  e x e c u t e d  a t  l e a s t  o n c e ) ,  a n d  y1

is incremented by 1  at  each  pass  through the  loop . Then we

let t* be y, = x Since  y, >, x A y -1 < X 3 y
1

= x
1

in the

i n t e g e r s . Thus, rather  than looking  for R  s a t i s f y i n g

Yl ‘-xARI>Pi, i t  s u f f i c e s  t o  f i n d  a n R  s a t i s f y i n g

Yl =xARspi.

r u l e  Ex3. I f  rule  Exl  fa i ls ,  a  natural  “weaker”  attempt  c o u l d

b e  t o  l e t R be ti 3 pi . This  ru le  i s  somet imes  o f  pract i ca l

use ; however,
d

i t  says  very  l i t t le  about  the  computat ion  taking

p l a c e  i n  t h e  l o o p . Our strategy would give this rule a low

p r i o r i t y , try ing  other  rules  with  s tronger  resul tant  c la ims

f i r s t .

I t  i s  poss ib le  to  cont inue  and des ign  rules  for  obta ining

R  f o r  s p e c i f i c  f o r m s  o f  pi , but  s ince  our  a im is  to  expla in

the  general  tone  o f  these  techniques ,  we  wi l l  not  go  into

f u r t h e r  d e t a i l s  i n  t h i s  d i r e c t i o n .
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B. Bottom-up Approach.-

Al I of the r u l e s  g i v e n ;~hove  htvc in common that they

cxpcct  to be provided with sonio  in format ion  on  e i ther  what

conditions were true upon entering the loop or what conditions

were expected to hold upon completing the loop (or both).

However, it is possible  t o  produce conjuncts  o f  t h e  a s s e r t i o n  Q

L
without  cons ider ing  predicates  a lready  establ ished  e lsewhere  in

the program, In  order  to  accompl ish  th is  goal  we  shal l  l ook

L- f o r  a  p r e d i c a t e  w h i c h  i s  a n  i n v a r i a n t  o f  t h e  l o o p  L  ,  i . e . ,

it  remains true upon repeated executions of  the loop.

Clear ly , a n y  c o n j u n c t  i n  the induct ive  assert ion  o f  a  loop

m u s t  be an invariant of the l o o p . However, in the top-down rules

this  i s  usual ly  the  last  fact  which  is  establ ished about  a

L p e r s p e c t i v e  a s s e r t i o n . In the pure bottom-up approach, asserCons

which ar ise  “natural ly” from the computations in the loop are

d i r e c t l y  g e n e r a t e d  - - and only afterward checked for relevance

t o  t h e  o v e r a l l  p r o o f .

e Most invariants may be traced back to the fact that at any

stage of  the computation, those assignment statements which .-f rn

on the same paths through the loop have been executed an

identical  number of  t imes,  and this is  a ‘constant ’  which may

be  used  to  re late  the  var iables  i terated .

F o r  a n  a s s i g n m e n t  s t a t e m e n t  yi +- f(T,a we let , iv Cn)

denote  the value of y.
1

after n executions of  the statement,
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(0)w h i l e  yi i n d i c a t e s  t h e  “ i n i t i a l ”  v a l u e  o f y.
1

u p o n  f i r s t

r e a c h i n g  a  g i v e n  cutpoint of  the loop.

Our  technique  for  f inding  invar iants  involves  construct ing

an “ o p e r a t o r  t a b l e ” in which we record useful information for

each operator. Among the entries for an operator are its

def in i t ion  (us ing  “weaker”  operators ) ,  a  descr ipt ion  o f  a  general

c o m p u t a t i o n  a f t e r  n i t e r a t i o n s , and other common identities

w h i c h  f a c i l i t a t e  simplications. For  example ,  f or  + our

table  wi l l  inc lude  the  fact  that  for  an  ass ignment  s tatement  o f

the form yi + yi+k , i n  g e n e r a l  i,w = yy). + y k(j-l)
j=l

where k(j -l) i s  t h e  v a l u e  o f k  b e f o r e  t h e  j - t h  i t e r a t i o n

of the assignment statement. Important  ident i t ies  are  a lso  noted
n

i n c l u d i n g  t h a t  f o r  a  c o n s t a n t  c  , 1 c = can , and that
i = l

n
c i = n (n+l)

i = l ----2--  l

Rules  for  producing  invar iants  l inking

variables which receive assignments on different paths through

the  loop  are  present ly  be ing  deve loped . Here we present rules
- only for the simple case of  variables changed only on the same

paths through the loop.

r u l e  I l . ( invariant) To construct an invariant,  given a group

of assignments* (y ,  ,..., y,) + (f&y) ,...,  fll(z,y)), w e  c o n s i d e r

* The above notation implies that the value of fi(Z,Y) i s

assigned to y.
1

for all i ‘.s simultaneously.
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those  var iables Yj 9 l<jcR, which are not changed

elsewhere in the loop. Using the operator table we express the

value  o f  each
‘j

a f t e r  n i t e r a t i o n s ,  i . e . (n>
Yj l We then

attempt to f ind a factor common to two expressions in order to

obtain a usable relationship between y(n)
i and (n>

yk ’ The
r e l a t i o n  o b t a i n e d  a f t e r  s u b s t i t u t i n g  t h e  i n i t i a l  v a l u e s  o f

yi and yk a t  cutpoint A for y(O) and yk’)
1 9

and removing  the  superscr ipt  (n )

r e s p e c t i v e l y ,

i s  an  invar iant  o f  the  loop .

I t  a l s o  h o l d s  f o r  t h e  i n i t i a l  v a l u e s  o f  t h e  v a r i a b l e s  a t  A

a n d  t h u s  m a y  b e  tided to Q, .

F o r  e x a m p l e ,  i f  y1 and Y, are changed only in the

assignments (Y, ,y,) 4 (Y
( 1

yin
= yl(0) + x. 7 Y(i-l;t:‘nYJ  ~~n)+s~y~z~O)  i:s:“i” :Y?) then

i=l ‘3
. .
i=l

Therefore, f o r  x#O,
y,‘“’ NY (0)

1 n
= c

y,(i-l) YL”)-Y2(0)=:
X i = l

.
5

Assuming we know that  the  in i t ia l  va lues  o f  y
and Y2 upon

- f i r s t  r e a c h i n g  t h e  cutpoint a r e r,(O) = 1 and’ yz(‘)  = 0 , we

obtain  the  invar iant S(y,-1) = x’y
2 l

If  the assignments

were (Y, 9Y,) 4 (2my, ,y,/2) then y,‘“) = y1(‘)* Ff 2 and
i=l

Y!“’ = y2(')- i (i) .
i=l

Simpl i fy ing 9 we obtain

Y,‘“’ = r,(O). zn and y,‘nI = y(Ol 1
2

.-
.n ? there fore
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r,‘“’ y(o)

P

=

2n=;;iir l

Thus given that (0)y1 = 1 and y2(‘) = x
2

(x f 0) we get that y1 l y2 = .x is  an invariant .

rule  12 . W h e n e v e r  i,(n) may be expressed in terms of only

y(O) and n i ei 9 .
l 9

,(n>
i = f(yiO) ,n )  , and the value of

y(o)
i a t  t h e  cutpoint A is known to be m , then replac ing

y(o)
i by  i ts  va lue  and removing  superscr ipt  (n )  ,  we  may obtain

the  invar iant 3n[n >, 0 A yi = f(m,n)] . V a r i a b l e s  i t e r a t e d

simultaneously may be quantified by the same n . For example,

in  the  second example  o f  11 , 3n[n 2 0 A y1 = Zn A y2 = x/zn]

is  an  invar iant  o f  the  loop .

Our heuristic  rules are all  relevant to programs having an

arbitrary number of  loops,  and an arbitrary complex ‘topologv’/ 1

although, o f  course,they  w i l l  y i e l d  v a l i d  i n d u c t i v e  a s s e r t i o n s

more often and more immediately in a simple program.

One of  the problems in applying the rules is  deciding

what order is preferable. I n  p a r t i c u l a r , it  has been found

that many terms of the assertion may be obtained both by the

bottom-up rules and by repeated use of  the top-down rules.

However, usually one method will  yield the result immediately,

whi le  cons iderable  e f for t  i s  expended i f  the  other  method  is

a p p l i e d  f i r s t . Experience shows that there is  a need for

interaction between the top-down and bottom-up approachpq
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For example, we may use established invariants to deduce the

r e l a t i o n R in the top-down rule Ex2, and on the other hand,

we may direct the search for particular invariants based on

variables or operators which appear in p
i l

cI . Examples. We demonstrate the rules l isted so far on a

few examples.

I
I

L

L

L

i

Example 1: Integer square root. The program in Figure 1

computes  z  = 1,&j f o r  e v e r y  n a t u r a l  n u m b e r  x  . T h a t  i s ,  t h e

f i n a l  v a l u e  o f  z i s  t h e  l a r g e s t  i n t e g e r k such that k ,< & .

We show partial  correctness for 0 (xl :x20 a n d  $(x,z) :

z2 c x A x < (z+1)2 . Clear ly , y: sxAx< (~~+l)~ i s

required  to  be  t rue  a f ter  ex i t  f rom the  loop . We f i rst  t ry  the

top-down approach. By rule Exl we attempt adding the conjunct

y; c x to Q . T h e  v e r i f i c a t i o n  c o n d i t i o n  x  >, 0 2 y: c x  i s ,

i n  f a c t , t r u e  f o r  t h e  i n i t i a l  v a l u e  o f  y1 at  the  cutpoint ,

i . e . , Y1 = 0 . For the moment we do not attempt to verify that

- i t  i s  a n  i n v a r i a n t  o f  t h e  l o o p . Considering the second conjunct

o f  t h e  p r e d i c a t e ,  x  < (y,+l) 2 , an  attempt  to  apply  Exl  fa i ls

b e c a u s e  t h i s  r e l a t i o n  i s  n o t  t r u e  f o r  t h e  v a l u e s  o f  t h e  v a r i a b l e s

when the  cutpoint is f irst  reached. S i n c e  t h e  e x i t  t e s t  y2 3 x

and the predicate x < (Y1+112 b o t h  c o n t a i n  x  ,  w e  a p p l y  r u l e

Ex2. W e  f i n d  t h a t  y, < (~~+l)~ i s  t h e  d e s i r e d  r e l a t i o n  s i n c e

y2 > x A y2 s (y1+1)2  1 x < (y +1)2
1 i s  a  val id  s tatement .

Y2
6 (y1+l12 i s  s a t i s f i e d  f o r  t h e  i n i t i a l  v a l u e s  o f  t h e  v a r i a b l e s .
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- - -4$(x): x 2 0
r

(Y, ,Y29&) 4 (‘,‘,l)

&-+-Yz  +y3

Q

-- y; < X A X < (y,+l)  2
r 3

z 4 Y1

@(x,z): z2 C X A X < (z+l)’

Figure 1. Integer Square-Root Program.
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However, an attempt  to  prove  the  val id i ty  o f

Q : Y; g x A Y2 s (Ylf112 does not yet succeed.

At  th is  po int  we  try  to  use  the  bottom-up approach,  i . e .

-

c

L

t r y  t o  f i n d  i n v a r i a n t s . We note that the assignments along one

pass of  the loop may be combined into the single group of

assignments (y,9Y29Y3)  4 1(y +l,y +y +2,y +2) . From the
2 3 3

operator table we obtain the equations

(1) y b-0
1

= yl(w n
+ c 1 = 0-l-n = n

i=O

b-
(2) ,tn = y2(o) + f (y,(i-l)+2)

n
2

= 1+2n +
i = l c

y(i-l)
i=l 3

L

. (3) y w
n

+
i 3

= y3(o)
c 2 = 1+2n .

i = l

',

h

We may use equation (3)  to substitute for yCiel) in
3

e q u a t i o n  (2)) and s impl i fy  to

L (2’) Y,‘“’ = 1+2n + Jl [1+3(i-l)] = l+zn-tn + a(n-l>n =
= 2

L
= 1+2n+n2 = (l+rl)2 .

In the simplif ication above known facts about the summation

operator  (obta ined  f rom the  operator  tab le )  are  used .

L Since ,(nl = n
1

? we obtain



-

I -
F
?P

y w
3

1: ]+2y(“)
1

A Y,’ )n = (l+y1(“))2

for every n , i.e., y = 1+2y A y
3 1 2

= (l+y )2
1

are  invar iants

-
of  the  loop  and should  be  added to  the  tr ia l  Q .

Q becomes

B YyAY
3

= 2y +l A y = (y,+1)2
1 2

Y which will  prove the

part ia l  correctness  o f  the  program.

c

i

Example 2: Div is ion  within  to lerance . The program of Figure 2

d i v i d e s  x 1 bY x, within  to lerance x
3 l

W e  t r y  f i r s t  t o

f i n d  i n v a r i a n t s . Considering the assignments

( Y ,  ,Y,) * (Y,/2,Y3/2)  9 w e  o b t a i n  t h e  e q u a t i o n s  2y (nl = y,(O) . 1
z

L
.,
i

,Cn>
L

( >a n d  y3n -' y3(o) . 1
( 1

n l

Therefore 2 = ' ygn

2 F2 --ii = YT l Since
2

3

y(0) = x2 and y(O) '

2 4 3 =z
at  the  cutpoint ,  we  obta in

zy(nLx n
2 2*Y: ) . T h u s  2y, = x2-y

3
i s  t h e  f i r s t  c o n j u n c t

in the trial Q . Next we consider the assignments

(Y, 9Y41 +- (Y,+Y2 ,y,+y,/2)  l In order to be able to find a common

f a c t o r  i n  t h e  e q u a t i o n s  f o r  1y (n> and ,Cn)
4

w e  f i r s t  e l i m i n a t e

y2 by us ing  the  a lready establ ished invar iant

y2 .= xz*y3/2 ,  o b t a i n i n g (Y,,Y,) + (Yl+x2*Y i&Y +Y m
3

we get 1

y b)
= yl(*)

n yCiel)

f ⌧

c

3- -
2 i=l 2

and 4,In) = yiol

3
l Now

n yCimll

3
4

+ c
i=l 2 l

Eliminating the commOn  term
n ,li-1)

1 3
i=l

9
2

t h e  r e s u l t  i s



> x * \ x h, x w A N

>



L

- expression becomes ,(n)
4 = Y,(~)/x~ .  T h e r e f o r e y

4
= y /x

1 2

i s  a d d e d  a s  a  c o n j u n c t  t o  t h e  t r i a l  Q  .

Since no further information can be gained from the

i n v a r i a n t  r u l e s , we turn to the top-down rules. We have

yl+ G x1/x2 A x1/x2 - x3 < y4 true upon exit  from the loop.

Trying Exl on y, G x /x
12’

the conjunct can be seen to hold

i n i t i a l l y  a t  t h e  cutpoint b y  c a s e s , s i n c e  i f  x1 < x2/2 then

y4 i s  i n i t i a l l y 0 at the cutpoint and by 4 we have

0 G XI/X2 , while if x1 2 x2/2 , then l/2 c x1/x
2 and Y,

i s l / 2  a t  t h e  c u t p o i n t . Thus  by  Exl  we may add y, c x,/x 2
to Q . The second conjunct, x1/x2 - x3 < y

4 ’
on the other

hand,does n o t  h o l d  i n i t i a l l y  s o  w e  t r y  Ex2. The necessary

' t r a n s i t i v e ' re lat ion  is  found to  be
xl lx2 - Y, g Y, s ince

e
Y3 < x 3 A x1/x

2
-Y, kY4H+

2 -x3<y 4 l

We note that

⌧l�⌧2
- Y, c Y, h o l d s  f o r  t h e  i n i t i a l  v a l u e s  a t  t h e  cutpoint

so we add it to Q . Q is now y, = x29,/2 A y
4

= y/x2 A

Yt+ G x1/x2 A XI/X2 - y, -4 Y
.4

which will prove the program

partially correct.

Example 3. Hardware  ( integer )  d iv is ion . The program of

Figure  3  i s  a  s imulat ion  o f  how integer  d iv is ion  might  be  carr ied



-
L

k-

---- ()(a: X1 2 0 A X2 > 0

\

,p1:y2 = x,-y, A

A )5=X2* 2n A

L
2 2

: x1 = Yip2 + y+* CY, “Yl<
a m

( 2
14 + (Y, PY,) (Y2’Y3)  + (Y,+LYp2)

, .
I 1

< HALT J

L sure 3. Hardware (Integer) Division Program.

A

yl>oAy,>o  A

Y1 s Y2

c-
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out by a computer. T h e  ' d i v i s i o n  b y  2, r e p r e s e n t s  a

' s h i f t - r i g h t , ,  andtie ' m u l t i p l i c a t i o n  b y  2 '  a  ' s h i f t - l e f t ' .

Although the second loop of  this example is  similar to the

program of Example 2, we  br ing  i t  in  order  to  i l lustrate  how

programs with more than one loop may be handled, and how

complications which could arise from integer division may be

so lved  with  the  a id  o f  the  invar iant  rule .  Our  strategy  is  to

obtain a maximum amount of information from the first loop,

which will  be true upon entrance to the second loop. Then top-

down rules can be used conveniently for the second loop.

I n  t h e - f i r s t  l o o p  w e  a t t e m p t  t o  l i n k  y2 and Y3 '

obtaining y,'") = ~~02~ a n d  yCn) = 192n w h i c h  l e a d s  t o  t h e3

i n v a r i a n t  y, = x2*y3 b y  r u l e  I l . By rule 12 we also have the

conjunct gn[n >, 0 A y2 = x2 dn A y3 = zn] . We now consider

top-down rules. S i n c e  y 1 2 0 A y, > 0 h o l d s  i n i t i a l l y ,  i t  i s

added by rule En2 to Q, , which thus becomes the valid invariant

y2
= X2 ‘y3 A gn[n  >, 0 A y, = X2 dn A y3 = zn] A y, >, 0 A y, > 0 .

A l l  t h i s  i n f o r m a t i o n ,  a s  w e l l  a s
Yl g y2

i s  a  p r e d i c a t e  p1
e

t rue  upon f i rs t  reaching  the  second loop . R e c a l l  t h a t  f o r  t h e

entrance  ru les  we  cons ider  the  predicates  t rue  upon f i rs t

. reaching the cutpoint i . Thus the information in p1 must be

'moved' a l o n g  t h e  p a t h s  t o  cutpoint 2 .

Y,
> 0 A y2 = X2 ‘y3 A 3nIr-l  >, 0 A y2 = x,02~  A y, = zn] are

unchanged by  e i ther  path  to  2  , w h i l e  y
1

might be changed

but Yl a 0 can be seen to remain true by inspection. I f  t h e
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r ight  path  is  taken,
Yl g y, i s  s t r e n g t h e n e d  t o  y1 < Y:! ’

w h i l e  t h e  l e f t  p a t h  m a y  b e  u s e d  o n l y  i f  y1 = yZ . In  th is  case

Yl i s  s e t  t o  z e r o ,  a n d  s i n c e Y2 ’ 0 is known, in  e i ther  case

Yl < y, a t  cutpoint 2 . A t  t h i s  p o i n t , a l l  the  necessary

assert ions  for  handl ing  the  second loop  are  a lready  g iven

e x p l i c i t l y  i n  t h e  e n t r y  a n d  e x i t  p r e d i c a t e s . Using rule En2

we obtain Q, : y
2 = x2*y 3 A 3Il[n >, 0 A y2 = X2*2n  A y

3
= 2n] A

Yl bOAy2>0AY
1 < y2 ’

while from Exl we add

x1 = Y4*x2+Yl to Q, . T h i s  Q
2 wil l  be  a  good induct ive

assert ion .

T h e  r u l e  i n v o l v i n g  n  , obtained by 12, is  necessary here

in  order  to  guarantee  that  the  conjunct  y2 = X2-Y, i s  v a l i d ,

b e c a u s e  o f  t h e  ‘ s h i f t - r i g h t ’  d i v i s i o n . We clearly could have

obta ined  some o f  the  conjuncts  in Q  b y  o t h e r  r u l e s .  F o r

e x a m p l e ,  Y, < Y, could have been obtained by rule Ex2 (because

p2 c o n t a i n s  y1 < x 2 Y Y2=x2’Y3 i s  a n  i n v a r i a n t ,  a n d  y3 = 1

i s  t h e  e x i t  t e s t ) ,  o r  x, = Y4 ‘x2+Y 1
b y  r u l e  I l .
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I I I . Heurist i cs  for  Arrays

The problem of  f inding  assert ions  involv ing  arrays  i s

quite  d i f ferent  f rom that  o f  f inding  assert ions  for  s imple

var iables  because  an array  assert ion  general ly  wi l l  be  an

e n t i r e  f a m i l y  o f  c l a i m s . This is  the reason most assertions

about  arrays  wi l l  involve  quant i f iers . A l l  r u l e s  i n  S e c t i o n  I I

cant inue , o f  c o u r s e , t o  b e  a p p l i c a b l e  f o r  t h o s e  v a r i a b l e s  n o t

in  arrays . In  addit ion ,  rules  Enl , En2, Exl and Ex3 may be

used  for  assert ions  with  arrays .

Underlying the heuristics which follow is the assumption

that  arrays  in  a  program are  used  “proper ly , ‘ ,  i . e . , t o  t r e a t  a

large number of variables in a uniform manner, and not just as

a  c o l l e c t i o n  o f  u n r e l a t e d  v a r i a b l e s  f u l f i l l i n g  d i f f e r e n t  r o l e s

in the program. The further assumption is usually made that an

assertion about an array will  be of  the form

vj [<j - i n d e x >  2 < j - a r r a y > ]  o r 3j [ < j - i n d e x >  A < j - a r r a y > ]  ,

d

where <j -index> is  a  c la im on the  indices  o f  the  array  and

<j -array> is the claim which is made about the array elements

themselves. We often separate the two problems of  f inding the

<j -index> and of f inding the <j - a r r a y >  .

As  in  Sect ion  I I , we distinguish between the top-down and

bottom-up approaches.

In  order  to  apply  some o f  the  array  rules  i t  i s  convenient

t o  f i r s t  d e t e r m i n e  t h e  “ o n e - p a s s ”  a s s e r t i o n ,  i . e . ,  t h e  c l a i m
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c

which can be made about the effect on the arrays of  one circuit

through the loop. T h i s  c l a i m  i s  o f t e n  n o t  d i f f i c u l t  t o

e s t a b l i s h , in  part i cular  for  loops  which  do  not  contain  other

loops  s ince  then the  c i rcui t  through the  loop  i s  a  s imple

sequence of  statements. The assertion can be most easily

established by the known technique of  “backward substitution”,

moving backwards around the loop past each assignment statement.

c-
A. Top-down rules. As noted above, a l l  previous  top-down

r u l e s , e x c e p t  f o r  t h e  t r a n s i t  ivity rule Ex2 ( w h i c h  i n v o l v e s

b

ik-

F L

L

c
i

I
L

L

i

i

i n e q u a l i t i e s ) ,  a r e  d i r e c t l y  a p p l i c a b l e  f o r  a r r a y s . In the rules

l i s t e d  b e l o w , p  d e n o t e s  a n  a s s e r t i o n  w i t h  q u a n t i f i c a t i o n

concerning  an array  which  is  t rue  a f ter  ex i t  f rom the  loop ,  whi le

P’ i s  a n  a s s e r t i o n  l i k e  p  , but true upon entrance to the

l o o p . Q  d e n o t e s  t h e  d e s i r e d  l o o p  a s s e r t i o n . Rules  Al ,  A2, a n d

A4 at tempt  to  e i ther  t ransform or  create  assert ions  p and

P’ h a v i n g  a  f o r m  w h i c h  w i l l  f a c i l i t a t e  g e n e r a t i n g  Q  b y  r u l e  A 3 .

- rule  Al . L e t  p  b e  a  c l a i m  a b o u t  a  s p e c i f i c  e l e m e n t  o f  a n

array ,  say S[c] ( a n d  t h u s  n o t  n e c e s s a r i l y  i n c l u d i n g

q u a n t i f i e r s ) . We rewrite it  as 3j [c 6 j c c A <j-array>] ,

where <j-array> is p with j in place of c . S i m i l a r l y ,

ifa p’ as above is  true upon entrance to the loop,  we rewrite

i t  a s Vj [c c j G c 3 <j-array>] .

The underlying principle here is that a claim whose

<j-index> is made smaller by the loop probably has an existential
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quant i f ier  (we  are “ l o o k i n g  f o r  s o m e t h i n g ” ) ,  w h i l e  i f  t h e

<j-index> is extended to cover more elements by the loop,  the

claim probably has a universal quantifier (we want something to

be  true  for  a  larger  part  o f  the  array) . Thus we may check the

feas ib i l i ty  o f  the  resul t ing  assert ion  by  determining  whether

the <j -array> is  in  fact  expanded or  contracted  in  the  loop .

This  pr inc ip le  i s  a lso  used  in  the  bottom-up rules .

rule AZ. Given a p , we examine the definitions of  the

o p e r a t o r s  a n d  r e l a t i o n s  i n  p and whatever information is known

about  the  array  upon f i rs t  reaching  the  loop . U s i n g  t h i s  i n f o r -

mation we produce the <j -index> for a p’ which must be true

upon entrance to the loop,  and has a <j -array> i d e n t i c a l  t o

P l
F o r  e x a m p l e ,  i f  p  i s 3jIl c j c 3 A A[j] =

max(Nll,*  l  l  AnI> ) and we know only that A  i s  d e f i n e d  u p o n

entrance  to  the  loop , by the rule we require a <j - i n d e x > such

t h a t  A[jJ = max(A[l],...,A[n]) m u s t  b e  t r u e .  B y  t h e  d e f i n i t i o n

of max we can determine that the maximum element must belong
-

to  the  array . T h u s  3j [l < j i n A A[j] = max(A[l]  ,... ,A[n])]

is  the  paral le l  assert ion  upon entrance  to  the  loop .

In  some cases  o f  a  p r e d i c a t e  p  w i t h  u n i v e r s a l  q u a n t i f i e r s
f

the  corresponding  in i t ia l  c la im may require  a <j -index> which

is  empty  (so  that  the  overal l  c la im is  vacuously  true) . For example,

if p is \dj [1 c j < n 13 A[j] c A[j+lJ] , and we have not

sor ted A  b e f o r e  t h e  l o o p ,  p’ might be
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vj[l c j < 1 3 A[j] < A[j+l]] .

Rule A2 is the only example in this paper of  a rule which

enables us to project “backwards” to f ind the minimal condi -

t ions tiich must hold upon entrance to a given loop. Such

rules  should  be  useful  not  only  to  a id  in  d iscover ing  the

c o r r e c t  a s s e r t i o n  f o r  t h e  l o o p  i n  q u e s t i o n ,  b u t  a l s o  t o  c a r r y

information backwards for loops earlier in the program. Thus

further  invest igat ion  o f  th is  general  technique  is  warranted .

rule A3. If  =p contains a term r as a boundary of the

i n d i c e s , and we have determined that for some term s ,  s = r

upon exit  from the loop (by any of  the rules in Section II)  ,  we

l e t  Q  b e  t h e  p r e d i c a t e  o b t a i n e d  b y  s u b s t i t u t i n g s  f o r  s o m e

appearances of r in p .

S i m i l a r l y ,  i f  p’ c o n t a i n s  a  t e r m  r  , a n d  s = r upon

entrance  to  the  loop , l e t  Q  b e  t h e  p r e d i c a t e  o b t a i n e d  b y

s u b s t i t u t i n g s for some appearances of r in p’ .

F o r  Bcample, i f  p  i s tri[l < i c m =) A[ i.] c A[m]] , and

R = m i s  t h e  e x i t  t e s t  o f  t h e  l o o p ,  w e  c o u l d  t r y  l e t t i n g  Q

be. either vi[l G i c k 3 A[i] c A[m]] ,

Vi[l G i < m z=,  A[i] Q A[R]] or Vi[l c i rk R 3 A[i] G A[R]] .

Obviously, i f  in format ion  is  known about  both  p and p’ ,

the application of  A3 can often be directed by matching the

resul ts  o f  var ious  subst i tut ions  unt i l  the  entrance  and ex i t

c l a i m s  a r e  i d e n t i c a l . Thus, i f  t h e r e  a r e  s e v e r a l  p o s s i b i l i t i e s
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f o r  s u b s t i t i o n , we may decide for which appearances of terms in

P or P’ t o  s u b s t i t u t e .

We would  l ike  to  be  able  to  a lso  use  the  transi t iv i ty  rule  Ex2

f o r  a n  a r r a y  a s s e r t i o n  w i t h  q u a n t i f i c a t i o n  ( s p e c i f i c a l l y ,  a  p  w i t h

an inequal i ty  as  i ts <j -array> ) . This  requires  establ ishing  that

for each pair of  terms compared, we may find a third term such that

there  wi l l  be  two  new inequal i t ies ,  t rue  upon ex i t  f rom the  loop 9

w h i c h  w i l l  i m p l y  t h e  o r i g i n a l  i n e q u a l i t y  ( a s  i n  Ex2).

rule A4. Given a p with  universal  quant i f ier  and an inequal i ty

inc luding arrays  as  i ts <j -array> ,  we use the “one-pass” assertion

to f ind a term which contains  the  two  needed inequal i t ies  for  a  parti-

cular v a l u e  o f j  ( i . e . , f o r  a  s i n g l e  p a i r  o f  v a l u e s  f r o m  p  ). Then

i

r

let  each new inequality be the <j -array> for a claim having the

<j-index> of p . The other top-down rules may then be used separately
L

on each of  th.e new inequal i ty  c la ims to  obta in  the  loop  assert ion .

For example, given p:Vi[l < i < m ==, A[i] c B[i]] , we might

discover a C [k] s u c h  t h a t  A[k] c C[k] AC[k] cB[k] forsome  k ,

and assume Vi[l c i c m 3 A[i] c C[i]] A Vi[l c i c m 3 C[i] r; B[i]]

is true upon exit  from the loop. T h e n ,  i f , for example, J? = m and

j = 1 upon ex i t  f rom the  loop , A3 used along with other information

c o u l d  r e s u l t  i n Vi[l < i C R 3 A[i] < c[i]] A

\di[j G i 6 m 3 C[i] c B[i]] a s  t h e  l o o p  a s s e r t i o n .

B. Bottom-up approach. In  order  to  ident i fy  which  heur ist i cs  to

use, we must differentiate between two methods of computation:

a) I f  t h e  e x i t  t e s t  h a s  t h e  v a r i a b l e  i compared with a term

w h i c h  i s  n o t  c h a n g e d  i n s i d e  ,L , and i is incremented
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m o n o t o n i c a l l y  i n s i d e  L  , then it  is  assumed to be a counter

contro l l ing  the  loop  in  an “ i terat ive  go ing  up” c o m p u t a t i o n .

( b )  I f  t h e  v a r i a b l e  i is compared with a term which does

not  change  in  the l o o p , and is dccrcmcnted  m o n o t o n i c a l l y  i n s i d e

L t then i i s  a  counter  contro l l ing  the  loop  in  an

“ i terat ive  go ing  down” c o m p u t a t i o n .

In  the  rules  be low we assume a l l  l oops  have  the  index  i  ,

and let i, d e n o t e  t h e  v a l u e  o f  i when i t  f i rs t  reaches  the

cutpoint  o f  t h e  l o o p ,  w h i l e  i, d e n o t e s  t h e  v a l u e  o f  i  u p o n

exi t  f rom the  loop . A s  i n  S e c t i o n  I I , we assume that the

cutpoint i s  l o c a t e d  i m m e d i a t e l y  b e f o r e  t h e  e x i t  t e s t .

W e  f i r s t  l i s t  t h e  r u l e s  f o r  f i n d i n g  t h e <j - index> .

ru le  Xl . If i i s  a  counter  ( incremented  by  1  ) in  a

“going-up” i terat ion  and is  a lso  the  var iable  which  appears  i n

the index of  array elements receiving assignments,  then try

assert ions  o f  the  forms vj PO 6 j < i 3 <j-array>] or

3j [i < j < i, h <j-array>] in  the  induct ive  assert ion . These

wi l l  a lso  be  the  form o f  the  predicate p  w h i c h  i s  t r u e  a f t e r

ex i t  f rom the  loop .

If i, is known, say i, = c upon entrance to the loop,

t h e n  t h e  c s h o u l d  b e  s u b s t i t u t e d  f o r  i, i n  Q and p .

S i m i l a r l y ,  i f  i, = d  u p o n  e x i t  f r o m  t h e  l o o p , d  s h o u l d

b e  s u b s t i t u t e d  f o r  i, .
C
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rule X2. I f  i  i s  a  c o u n t e r  ( d e c r e m e n t e d  b y  1  ) in a

“going-down” i terat ion  and is  a lso  the  var iable  which  appears

in the index of  array elements.  receiving assignments,  try

assert ions  o f  the  forms

‘Jj [i < j c i(, 3 <j-array>] or 3 [iI < j < i A <j-array>] .

L
t

L

As in  rule  Xl , p  w i l l  a l s o  h a v e  t h e  a b o v e  f o r m  a n d  i, o r
.
5 should  be  e l iminated  i f  poss ib le .

rule X3. Discover whether X l  a n d  X 2  f a i l  o n l y  b e c a u s e  i  i s

assigned a function WI rather than merely incremented or

d e c r e m e n t e d  b y  1  i n  t h e  l o o p . I f  s o , t r y  t o  f i n d  t h e  s e t  o f

e lements  which  i assumes during the loop (using rule 12).

The assertion will  have the same form as in Xl or X2,  except that

the <j -index> wil l  inc lude  the  12  invariant . For  example ,  i f

i 4- ii-7 in  the  loop ,  and i i s  i n i t i a l l y  z e r o ,  t h e n  t h e

a s s e r t i o n  i s

vj@ g j < i A 3I’l[Il 3 0 A j = 7n] I> <j-array>}  .

The fol lowing two conditions are used to decide which of

the bottom-up <j -array> rules to apply assuming that the

<j -index> has already been determined.

(a )  Al l  ass ignments  in  the  loop  are  to  array  e lements

with  indices  not  spec i f ied  by  the  < j - index> before  execut ing

the  loop . That  i s , once we have included an element of the array
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in  the  assert ion  a f ter  some c i rcui t , we will make no more assign-

ments to that element in subsequent circuits around the loop.

For example, the program segment

a t  l e f t  c o u l d  b e  p a r t  o f  a

"bubble-sort"  program. The "one-

pass" a s s e r t i o n  i s  c l e a r l y

S [ i - 1 ]  c S [ i ]  , but  i f  the  form

of  the  assert ion  be fore  execut ing

t h e  l o o p  i s

Q : Vj [2 < j < i 3 <j-array>]

t h e  l o o p  v i o l a t e s  c o n d i t i o n  ( a )

b e c a u s e  Sri-11 may receive an

a s s i g n m e n t  a n d  i - l i s  a lready

in the domain of the <j - index> .

( b )  T h e "one-pass" assert ion  can be  wri t ten  as  a  s ingle

conjunct . Furthermore  th is  conjunct  i s  va l id  for  a l l  array

s elements whose indices are added to the domain of the <j-index>

by one  c i rcui t  through the  loop . Thus  i f  the  "one-pass"

a s s e r t i o n  i s WI = S[i+l) A S [ i + l ]  c S[i+Z] and i and i + l

are added to the <j-index> by the  loop , t h e  c o n d i t i o n  ( b )  i s

not  fu l f i l led  because  i t  cannot  be  expressed  by  an appropr iate

s ingle  conjunct .
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r u l e  Rl. I f  both  (a )  and (b )  are  true  the  “one-pass” a s s e r t i o n

i t s e l f  i s  t a k e n  a s  t h e <j -array> . Of course, the  quant i f ied

v a r i a b l e  o f  the <j -index> must be substituted for the actual

array index which appears in the loop. For example, if we have

f o u n d  t h e  a s s e r t i o n  t o  b e  vj [l G j < i 2 < j - a r r a y > ] and in

the loop we have only A[i] +- 0 and then i +- i+l ,  t h e  “ o n e - p a s s ”

a s s e r t i o n  i s A[i] = 0 , and (a)  and (b)  hold . Thus we obtain

trj[l ( j < i 3 A[j] = 0 ]  a s  t h e  l o o p  a s s e r t i o n .

The following rule is  based on the fact that we have already

establ ished  the  des ired  form o f  the <j - i n d e x >  p a r t  o f  t h e

a s s e r t i o n . We want to be able to write one conjunct,  say

Vj [l c j < i ~3, <j-array>] , where the <j -array> w i l l  b e  a

statement about (only)  the array elements with indices lcj<i

and not  contain  any  addit ional  restr i c t ions  on  the  indices .

r u l e  R2. (general izat ion) I f  ( a )  i s  t r u e ,  b u t  ( b )  i s  n o t ,

check  whether  (b )  fa i l s  only  because  the  assert ion  i s  not  a

-s ingle  conjunct . I f  s o ,  t h e < j - a r r a y >  p a r t s  o f  a l l  t h e  c o n -

juncts  in  the  assert ion  are  searched  to  f ind  the  s trongest  s ingle

conjunct  which  is  t rue  for  a l l  array  e lements  spec i f ied  by  the

known <j - index> . This conjunct becomes the <j -array> . For

example,  given a one-pass assertion

Vj[l  c j < n 3 A[j-l] < A[j]] A A[n-1] -G A[n] and a required

Q of the form vj [l G j < n+l 3 <j-array>] , the  correc t

< j - a r r a y >  b y  t h i s  r u l e  i s  A[j-l] < A[j] .
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rule R3. I f  ( b )  i s  t r u e ,  b u t  ( a )  i s  n o t ,  t a k e  t h e  “ o n e - p a s s ”

assert ion  as  the <j -array> and cons ider  the  e f fec t  o f  an

addit ional  pass  through the  loop  on  th is  predicate . Then apply

t h e  g e n e r a l i z a t i o n  r u l e  R2 to  the  resul t . For example,  for

the segment of  the bubble-sort program introduced above,  the

one-pass  assert ion  y ie lds

Vj[2 5 j < i 2 S[j-l] c S[j]] .

One c ircui t  wi l l  change  this  to :

Vj[Z c j < i-l 3 S[j-l] ( S[j]] A s[id] g Sri.1 A s[i-l]  g s[i] .

G e n e r a l i z i n g  t h i s  p r e d i c a t e  b y  R2 i s  a  r e l a t i v e l y  d i f f i c u l t

step 9 not  yet  complete ly  invest igated . The  general izat ion

procedure would be expected to recognize that no predicate

comparing each element with its neighbor is  possible,  since no

information  is  avai lable  about  the  re lat ion  between S[i-21 and

S [ i - 1 ]  . Then the  transi t iv i ty  o f  the  inequal i ty  would  y ie ld

that vj [l < j < i 3 S[jJ c S[i]] is  the strongest claim which
a

can be made about the entire segment.

e-



‘b

-

c

e

i

i
h

L

31.

Example 4. Minimum of an Array. The program in Figure 4

will find the minimum of an array A using an array S in

an unusual way. ( T h e  u p p e r  h a l f  o f  t h e  a r r a y  i s  s e t  t o  A  ,

and the computation takes place in the lower half ,  using only

comparisons.) F o r  t h e  f i r s t  l o o p , top-down rules give no

informat ion , so we use bottom-up rules. By Xl ,  we  wi l l  t ry

the  assert ion vj[l r: j < k 3 < j - a r r a y > ] (because k, = 1 ,

and we have a "going-up" iteration). The  "one-pass"  assert ion

i s  c l e a r l y S[n+k] = WI 3 and condit ions  (a )  and (b )  are

f u l f i l l e d . Thus by rule Rl we obtain Q, : vj[l c j < k 3 S[n+j] =

ACj13 . S i n c e  u p o n  e x i t  f r o m  t h e  l o o p  k  =  n+2 , we have

P : vj[l c j c: n+l 2 S[n+j] = A[j]] . B y  r u l e  En2, p is added

to Q, l
We try rule Exl on JI' , b u t  S[l] is undefined on

e n t r a n c e  t o  t h e  l o o p ,  s o  t h e  r u l e  f a i l s .

U s i n g  a r r a y  t o p - d o w n  r u l e s ,  w e  f i r s t  r e w r i t e  $' a s

3j[l c j < 1 A S [ j ]  = min(A[l],...,A[n])]  b y  r u l e  A l .  U s i n g

AZ, we  would  l ike  to  reta in  the < j - a r r a y >  p a r t  i n  a n  a s s e r t i o n

e true on entrance to the loop. By the definition of min we know

that one of the elements is the minimum, and the p we have

at  the  entrance  to  the  loop  s tates  that A has  been copied  to

t h e  u p p e r  h a l f  o f  S  . Thus we obtain

gj[n+l c j c 2n+l A S[j] = min(A[l],...,A[n])]  a s  t h e  i n i t i a l

assertion which must be true. Since the assignment before the

l o o p  i m p l i e s  t h a t  i  = n upon entrance  to  the  loop ,  a  poss ib le

subst i tut ion  by  A3 is
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P:Vj[l&jsn+l 2
S[n+j]=A[j]  ]- - - -

! $?S[l] = min(A[l],.,.,A[n+l])

Q,- -

n>,O.

Q /,- - - - _,

---- -------I

' -.- -*-- -----
'S[i]

t

I
+ S[Zi] S[i]

- - - - - - -
* S[Zi+lJ

_ ---_I__ - -

I - -

- - l

--

I_ --
Figure 4. Program for Finding the Minimum of an Array
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9 : gj[i+l < j c 2i+l A S [ j ]  =  min(AIl],...,A[n])]  .

cc-

Since i = 0  upon ex i t  f rom the  loop ,  t h i s q  becomes

i d e n t i c a l  t o  $' . (Any o f  the  other  poss ib le  subst i -

t u t i o n s  o f  i for n will fail to match I/.J’ .) Thus we let

Q2 b e  qAp. The second conjunct is  not needed to prove

v 9 but  can be  reta ined  to  provide  the  addit ional  in format ion

that  the  upper  hal f  o f S is  unchanged by the second loop,  and

c o n t a i n s  A  .

Example  P a r t i t i o n  P r o g r a m . The program of Figure 5,

.- due to Hoare, wi l l .  f ind  a  part i t ion  o f  the  e lements  o f  a

L real array S . We would  l ike  to  show that  i t  i s  part ia l ly

correct with respect to $ : n >, 0 and

VJ : vavb{O G a < i A j <b<nxS[a]cS[b])Aj<i. W e
--

L use  the  bot tom-up approach ,  seeking  a  Q1 f o r  t h e  l a r g e  o u t e r

l o o p . Thus we consider one pass through the loop.  (It  should

e be  noted  that  the  invar iants  we wi l l  f ind  at  cutpoints  2  and 3
-

'L dur ing  the  " l inear" p a s s  a r e  n o t  n e c e s s a r i l y  t h e  d e s i r e d  Q2

or Q3 for  the  overa l l  execut ion  o f  the  program. ) T h e  f i r s t

inner  loop  y ie lds  immediate ly  by  rules  Xl  and Rl, the  invar iant

Pl : vk[i, < k < i-2 S[k] < r] . Thus upon exit  from the f irst

inner  loop p1 A S[i] 2 r i s  t r u e . S i m i l a r l y , a f ter  the  second

inner loop, we obtain p2 : vR[j, 2 R > j 2 S[&] > r] A S[j] c r

by X2 and RI. There  i s  no  poss ib i l i ty  that  the  second l o o p  c o u l d

d i s t u r b  t h e  c l a i m  o f  p1 , because there are no assignment
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Q m-----I
1 T

9: \daVb iOda<ihj<b~n~S[a],<S[b]}--
hj<i T

bi+i+l

L (WI, WI1 f Wjl,Wl)
3

,
I

(i,j) f (i+l,j-1)

Figure 5. Partition Program
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statements to the array in the loop. Moving PI A P2 A

S[i] 2 r A S[j] < r t h r o u g h  the t w o  p o s s i b i l i t i e s  f o r  t h e  t e s t

i<j, i f  w e  r e a c h  p o i n t  A , the assertion is  unchanged

whi le  at  po int B we have

1
Pl

: vk[i, g k < i-l 2 S[k] < r] A S[i-11 c r and

t
p2 : vR[j, 2 R > j+l 3 S[R] > r] A S[j+l] 2 r .

Rules Xl and X2 indicate that we require

P: :
*

vk[iO c k < i 2 < k - a r r a y > ] and p2 :vt[joaR>jD

<R-array>] . Thus by R2 we seek weaker array assertions about

the  ent i re  range  o f k  a n d  R w h i c h  w i l l  f u l f i l l  t h e s e  f o r m s .

The weakest assertion made about an element in p
1

o r p '
1

i s

that S[i-1] 6 r . Thus we let p: be vk[io c k < i => S[k] 6 r] .

S i m i l a r l y  p,* is VRIjo 2 R > j 5) S[R] 2 r] . Since i0 is

i n i t i a l l y  0  , w h i l e  j0 i s  i n i t i a l l y  n  , we assume a Q,

assert ion  o f  the  form vk[O c k < i 3 S[k] c r] A

VR[n 2 R > j 3 S[R] 2 r] . B y  r u l e  E n 2 ,  Q, and Q, w i l l  b e

g i v e n  t h e  a s s e r t i o n  o f  Q, , and ver i fy ing  these  assert ions

wi l l  show the  program part ia l ly  correct . We clearly could have

used  the  trans i t iv i ty  ru le  here ,  but  for  th is  example ,  the  amount

of  work required is  about the same.

c-
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IV. Conclusion

Clearly , the rules and examples given in this paper are

far  f rom being  a  general  system for  f inding  induct ive  asser-

L

CL

L
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t i o n s . More  and better  ru les  are  needed ,  part i cu lar ly ,

f o r  a r r a y  a s s e r t i o n s , which tend to be complex and unwieldy.

In addition,  before the rules can be incorporated into a

practical  framework, we must order their application. That

i s , at each step we must provide more exact criteria for

deciding which rule to apply and on which cutpoint of the

program. The order in which the rules are presented in each

s u b c l a s s  d o e s  i m p l i c i t l y  p r o v i d e  a  p a r t i a l  specification. Thus

we present ly  would  try  to  apply  Exl ,  and only  i f  i t  fa i led  try

Ex2, e t c . Moreover, we  general ly  would  try  to  gather  in for -

mat ion  on  s imple  var iables  us ing  the  rules  o f  Sect ion  I I

be fore  at tempt ing  to  t reat  array  assert ions .

The more basic (and open) questions are (a)  whether to

attempt top-down or bottom-up techniques f irst  for a given loop,

e and (b)  which loop of  a program should be treated f irst. Although

we experimented with various orderings in the examples in this

paper 9 we have tentatively formulated a more f ixed approach.

Our  present  inc l inat ion  i s  to  f i rs t  use  top-down rules  f rom

the  (physica l )  beginning  o f  the  program. (Since  in  general

there is  more than one outer loop, usual ly  only  entrance  rules

are applicable .) Then we use bottom-up rules for the same loop,
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to create a p t r u e  a f t e r  e x i t  f r o m  t h e  f i r s t  l o o p  c o n t a i n i n g

as much information as possible.  We continue with the next

outer loop in a similar manner. I f ,  however , we are stymied and

unable  to  f ind  a  loop  assert ion , we start with top-down rules

from the end of the program, and try to work backwards towards

the beginning.

A more sophisticated approach would require a weighted

evaluation function capable of  making a very cursory scan of

the program. This function would identify loops which seemed

' p r o m i s i n g ' ,  i . e . l i k e l y  t o  y i e l d  v a l u a b l e  i n f o r m a t i o n  r a p i d l y ,

a n d  a p p l y  s e l e c t e d  r u l e s  f i r s t  t o  t h e s e  l o o p s .

S ince  some o f  the  ru les  could  cont inue  searching  for  a

p o s s i b l y  n o n - e x i s t e n t  f o r m  o f  a s s e r t i o n  a l m o s t  i n d e f i n i t e l y

( the  transi t iv i ty  rule ,  for  example) ,  such  rules  would  have  a

"weak" vers ion  and a  "s trong"  vers ion . The "weak" version

would  be  used  in  the  in i t ia l  at tempt  to  f ind  an assert ion ,  and

would  "g ive-up" rapidly  i f  i t  d id  not  provide  an a lmost  immediate

' s o l u t i o n . Then other ,  possibly more appropriate,  rules may be

tr ied  on  the  cutpo int . O n l y  i f  a l l  r u l e s  f a i l e d  t o  a d d  r e l e v a n t

informat ion ,  would  the  "s trong"  vers ion  be  appl ied . This

div is ion  is  paral le l  to  the  human attempt  to  f i rst  f ind  what  i s

"obviouslyl' t r u e  i n  t h e  l o o p , and only afterwards bring out

t h e  f i n e  p o i n t s .

The overall  strategy we have adopted in this paper has been
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to  f ind  assert ions  s trong  enough to  prove  the  part ia l  correct -

ness  in  as  few steps  as  poss ib le . Thus, in general,  we

attempt  to  d irect ly  produce  a  near -exact  descr ipt ion  o f  the

operat ion  o f  a  loop , without going through numerous inter-

mediate stages where we are unable to show either validity or

u n s a t i s f i a b i l i t y . I f  o u r  h e u r i s t i c  i s  w r o n g ,  t h i s  f a c t  w i l l

be  revealed  re lat ive ly  rapidly  by  generat ing  an unsat is f iable

v e r i f i c a t i o n  c o n d i t i o n . We then may try a weaker alternative

claim. We feel  that this is  the approach which should be taken

in order to construct a practical  system which could be added

to  a  program ver i f ier .

We believe that the bottom-up approach may also be used to

solve other problems. For example, in the partition program

(Example  5) , the inductive assertion was actually found without

u s i n g  t h e  $ g i v e n  b y  t h e  p r o g r a m m e r .  I n  o n e  s i n g l e  s t e p  $

m a y  b e  g e n e r a t e d  f r o m  Q, , and thus we have 'discovered'

what the program does without the use of  additional information.

This feature of  the bottom-up approach can probably be moste
u s e f u l  f o r  s t r e n g t h e n i n g  a  t o o - w e a k  a s s e r t i o n ,  i . e . ,  r e v e a l i n g

that  the  program does  more  than is  c la imed in  + .

Another  apparent  appl icat ion  is  for  proving  terminat ion

using  wel l - founded sets . F o r  t e r m i n a t i o n ,  p r e d i c a t e s  Qi and

f u n c t i o n s  ui a r e  r e q u i r e d ,  w h e r e  ui [a mapping to the well-

founded set)  has its domain bounded by Qi and  descends  each

t ime the  loop  i s  executed . Here again the bottom-up approach
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i s  u s e f u l  s i n c e  n o  $ is  provided . We have already begun

investigating bottom-up methods for generating both the

Qi ‘S and the Ui 'S which will  ensure termination.

The  ul t imate  goal  o f  automat ic  assert ion  generat ion  i s

almost certainly unattainable ; thus the optimal system would

involve man-machine interaction. Whenever it was unable to

generate the proper assertion,  the machine would supply

detailed questions on problematic relations among variables

and poss ib le  fa i lure  po ints  ( incorrect  loops )  o f  the  program.

Cl early, a  p a r t i a l  s p e c i f i c a t i o n  o f  t h e  a s s e r t i o n s ,  p r o v i d e d

by the programmer, could  shorten  th is  ent i re  process .
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