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Abstract:

An information processing model of some important aspects of inductive
reasoning is presented within the context of one scientific discipline,
Given a collection of experimental (mass spectrometry) data from
several chemical molecules the computer program described here
separates the molecules into "wel I-behaved” subclasses and selects
from the space of all explanatory processes the "characteristic"
processes for each subclass. The definitions of “well-behaved” and
“characteristic” embody several heuristics which are discussed. Some

results of the program are discussed which have been useful to chemists
and which lend credibility to this approach.

*This research was supported by the Advanced Research Projects
Agency (SD-1831 and the National Institutes of Health (RR=612),
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INTRODUCTION

Induction in science has been understood to encompass many different
levels of tasks, from theory construction as performed by Einstein to
everyday non-deductive inferences as made by sclentistslooking for
explanations of routine data. For the most part, it is not well
defined however one understands it (a notable exception belng
statistical inference). Althoughgeneral statements can be made about
non-deductive inference, it is unllkely that there exists one general
"Inductive method” that cuidessclientiflic inference at all levels.
Nor does it seem likely that a method of scientific Inference at any
one level can succeed without recourse to task-specific information,
thatls, information specific to the particular science. Within
these assumptions we are explorine an Iinformatinnprocessing model of

scientific inference in one discipline.

A unifylng theme in our explorations Is that inductlionlis efficient’
selectfon from the domain of allposslible answers. Previous papers

on the Heuristic DENDRAL Program (1) have advanced this theme with
respect to hypothesis formation in routfne scientific work. Recently,
we have heenexploring this theme wtth respect to the hicher-order
task of finding general rules to explain large collections of data (2).
This paper extends the previous work to the task Of finding rules for
subclasses of objects, glven empirical data for the objects but
without prior knowledge of the number of subclasses or the features

that characterize them.




THE TASK AREA

For reasons discussed previously (2), the task area is mass spectromet ry,
a branch of organic chemistry. The rule formation task is to find

rules that characterize the behavior of classes of molecules in the

mass spectrometer, given the mass spectrometric data from several

known molecules,

The chemical structure Oof each molecule is known. The data for each
molecule are a) the masses of various molecular fragments produced from
k the electron hombhardment of the molecule in the instrument and bh) the
relative abundances 0f fragments at each mass. The data for each
“ molecule are arranged in a fragment-mass table (FMT), or mass spectrum.
< Typically, there are SO-100 data points in one FMT. The task is to
: characterize the experimental hehavior of the whole class Of molecules.
C Rules which characterize the behavior Of the molecules are represented
L as conditlional sentences in our system. The antecedent of a simple
conditional rule is a predicate which is true or false of a molecule
; (or class of molecules); the consequent is a description Of a mass

spectrometric action (henceforth “process”) which IS thought to occur

when that molecule is in the experimental context. We have termed

these rules "slttuat ion-act ton rules" (or "S=A rules?. The rule

syntax has been describedpreviously(3) and is not critical to an

understanding of the present paper.
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An example of arule, rewritten infEnglish,is: “IF the graph of the
molecule contains the estrogen skeleton, THEMbreak the bonds between
nodes labeled X3-17 and 14-15," Thls process (the consequent of thts
rule,) Ts named RBRKINLIn Tabhle |, The zraph of the estrogen skeleton
mentioned in the antecedent is shown with the conventional node

numbering in Figure 3.

The rules will he used in the Heuristic DENDRAL performance program
to determine the structure of compounds, reasoning from the mass
spectrometric data of each. They are also of use to chemists

Interested in extending the theory of mass spectrometry.

OVERYIEW OF METHOD

The rule formation programcontains three major sub=programs, which
are described below under the headings Data Interpretation, Process
Selection, and Molecule Selection, The control structure for the
overall program is described after the discussions of the three
major sub=programs., A brief overview of the whole program will he

glvenfirst, however, In order to set the context.

The purpose of the program is to find the charactertstlc processes
whichdetermine separable subclasses Of molecules given the experimental
dataand molecular structure of each molecule. The overall flow of

the program, as described below, is shown inFloeure 1. The three

major steps are to relnterpret the experimental Rata as molecular
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Processes, find the characteristic processes for the given molecules,
and select the set of molecules that are "well-hehaved" with regard
to the characteristic processes. The reinterpretation of the data is
done once for each molecule in the whole set, and the results are
summarized once. The second and third sub-programs are called
successively until they isolate a well-behaved subclass of molecules
and determine the processes which characterize their behavlor. The
monitor then subtracts the well-behaved subclass from the starting
class of molecules, and repeats the successive calls to the second and
third subprograms. The whole program stops when there are N or fewer

molecules not yet in some well-behaved subclass. (For now, N=3.)

The data interpretation program has been described previously with
some aspects of the process selection program (3)., The molecule
sel‘ectfon program and class refinement loop in the control sequence

are new addlitlions.

DATA INTERPRETATION

As mentioned above, the purpnse of the Rata interpretation and summary

program (INTSUM) is to reinterpret the experimentally determined data,

the FMT, for each molecule and summarize the results. Because the
program has heendescribed previously (3), details will he omitted
here. It should he noted that the successful application of this

program to a sub-class of estrogens has already been reported in the

chemical 1 iterature (4), The INTSUM program is general in that it



will work on FMT's for any class of molecules with a common skeletal
graph and ttis flexihle in that the knowledge used by the program Is
easily changed and there are numerous options controlling the operation

of the program.

The INTSUM program is called with the initial set of molecules and
their FMT's, It is also given the graph structure of the skeleton
common to all molecules in the initial set. The first step is to
search the space of all possihle processes which could explain data
points in the FMT of any molecule withthe given skeleton, The space
of explanatory processes is camhtnatortal; simpleprocesses that cut
the graph into two fragments are generated first, followed by pairs
of simple processes, triples, and so on. The heuristics 1isted below

constrafn the search:

Simpliclity (Occam's Razor)

If two or more processes explain the same data polnt, prefer the

simpler one, i.e., the process involving fewer simple steps.

Chemical Constraints

(a)Break no more than NB bonds in any process, whether simple or
multi-step (NB=5 in our current version); (h)Do not allow any process
to break two bonds to the same carbon atom; (c) Do not allow a fragment

to contain fewer than NA atoms (NA=5 currently); (d) Do not allow any
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process to contain more than NPsimple processes (NP=2 currently); (e)

Break only single bonds (no double or triple bonds).

The heuristic search produces a 1lst of plausihle processes without
reference to the data. The second step of the INTSUMprogram is to
determine for each process and each FMT whether there is evidence for
the process in the FMT, If so, then that process can explain the data
point and the strength of the evidence Is saved. The final step is

to summarize for each process and all molecules the frequency, total
strength of evidence and number of alternative explanations. (Frequency
for a given process is the percentage of all molecules that have evidence
for the process.) These statistics are passed to the process

select ion program,

PROCFSS SFLECTION

The process selection program chooses the most characteristlc processes
forthe givenclass of molecules from the list of a prioriplausthle
processes that are output by the INTSUM program. It assumes that the
molecules given to it are all in one well-behaved class. Thus, 1t can
merely filter the list of processes to find those which satisfy the

criteria for characteristic processes.

A process mentioned in a rule statement must satfsfy several criteria
in order to be counted as a characteristic process for the molecules

under consideration. The INTSUMprogramprovides a summary of
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statistics for the plaus Ible processes it has chosen from the space of
al 1 processes. The process selection program appl fesheuristic
criteria to sort out the most likely processes and to distinguish
among al ternat ive explanations, when alternatives remain. It uses
the information from the data for filtering, in contrast to the a
priori filtering in the INTSUM program. For example, an a priori
simpliclitycriterionfilters out processes that break too many bonds.
The critertafor “most 11 kely processes” -- frequency, strength of
evidence, and degree Of uniqueness -- are discussed below. To a large
extent the choice of these criteriaand particularly the choice of
parameter settings are arbitrary. However, the following discussion

provides some rationale for our choices.

Frequency

If nature presented clear and unamhiguous data to us we could expect
all and only characteristic processes for a class of molecules to
occur 100% of the time. This is what we would like to mean by
‘characteristic’ process. Yowever, the data contain noise and, more
Importantly, we are Forced to Tnterpret the data in terms of processes
that we construct. Thus, in the literature one finds discussions of
exceptions to rules together with presentation of the rules. A low
frequency threshold (60%) is used as a criterion for plausible process
Instead of a high one because the marginal processes which are included
at one steo can be excluded at a later reffnement step if they prove

to be uncharacteristic of a class of molecules.



r— r—

Strength of Evidence

The program considers the strength of evidence found for each process,
besides the frequency of molecules that show the process. Associated
with each fragment mass in the experfmental data is a measure of the
percent of total ions (or ion current) contributed by fragments of
that mass. (The evidence from mass spectrometry is not merely binary,
l.e., yes/no, although we have considered It that way in the past,)
The total ion current for any molecule can be visualized as the sum of
all y=values in a bar graph in which- the x-values represent fragment
masses. The strength of evidence for a process, then, is the percent
of the total of all ion currents (for all molecules) that can b e
explained hy the process. The present value of this parameter is
0.005, i.e., 0.,5% of the data must be explained by any process that

will be said to be characteristic of the given molecules.

There may be much information in the weaker data points, but until we
can interpret the strong signals, we do not want to start looking
critically at the weak ones. Thls is why we have a strenath of

evidence threshold (although In our trials we have kept it fairly low).

NDegree of Un | queness

The program will discard processes that cannot uniquely explain at

least n data points for each molecule. The rationale behind thfs

criterion is that processes that are always (or often) redundant with



other processes have no explanatory power of their own.” |In spiteof
the intuitive appeal of thiscriterion, it was not used for the trials
reported here in which molecule selection is coupled with process

selectlion. For process selection alone, it is a useful filter.

These three criteria filter the processes to provide the characteristic
processes for the molecules given to the program. However, the
processes may still overlap Inthe data points that they explain. If
two (or more!) processes are ambisuous, i.e., they explain most of the
same data points, the program tries .to resolve the ambiguity in favor
of a single explanation. This s not easy, for the competing
explanations have al 1 passed the tests for “most 1 lkely processes”
just discussed. Thus, they al 1 appear good enough to be rules on their

own.

The resolution of ambiguities among processes is made according to
relative values of the criteria used to judge them likely in the
first place. That is, the values of frequency, strength of evidence
and degree of uniqueness are compared = in any order=-to determine

which process Is preferred, if any.

MNLECULE SELECTION

Molecule selection, by itself, is a simple program whose purpose is to

find a subclass of molecules that are "wel I-behaved” with respect to

a set of processes. Its inputs are (a) a class of molecules and(h)
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a set of processes that are characteristic of those molecules (output

of the process selection program just descrihed).

The processes that are chosen as roughly characteristic of a class of
molecules are used by the molecule selection program to refine the
extension of the class. Several processes will each have a few

except ions = the number permitted depending on the frequency threshold
used by the program. But if the same molecules appear as exceptions
over and over again (for several processes) then they probably do not

belong in the same subclass with the molecules whose behavior is

characterized by those processes.

A molecule s said to he well-behaved with respect to a set Of
processes (or well-behaved) if It shows evidence for at least MP of
the processes. The current value of MP is 85% of the number O f
processes in the set. Currently this is the only criterion used to
identify members of the subclass, although other features of the
molecules could also be used for clustering. For example, the
structural features of chemical molecules could also help classify
molecules which “belong” together. The reason descriptive features
such as these are not used. during molecule selection Is that they
constitute a good check (bhy chemists) Oon the adequacy of the results

of the molecule separation procedure,

CONTROL STRUCTURE OF THE RULE FORMATION MONITOR

The overall flow of control has been hriefly described and diagrammer

- 10



i n Figure 1, and the three major components of the whole program have
been discussed. The interaction between process selection and molecule
selection Is the last important detail in the description of the

program. It is shown schematically in Figure 2 and selected portions

of intermediate output are shown in Table II.

After the INTSUM program interprets and summarizes the data for a set
of molecules, the process selection program is asked to find a set of
processes that characterize those molecules. However, process
selection starts with the assumption that the molecules should be
characterized al 1together, i.e., that the molecules are homogeneous,
or helongin one class with respect to mass spectrometry, The purpose
of the rule formation monitor, and the molecule selection program In
particular, is to remove the necessity of working within this
assumption. Because a class of molecules has a common skeleton, there
is reason to believe that they are homogeneous (with respect to mass
spectrametry processes). Rut this is not necessarily true. Manyof
the molecules whose structures contain the graph common to estrogens
(e.g., the equilenins discussed with Table IlIn the Results section)
fail to exhibit behavior that is characteristic of most estrogens in

the mass spectrometer.

The monitor begins with the Null Hypothesis that the initial set M
of molecules Is homogeneous with respect to all the relevant processes
given as input. With the process selection program it finds plausible

processes that roughly characterize the whole class of molecules. It

11



attempts to confirm the hypothesis by finding the subclass S of
molecules that are well-behaved for those processes. If this subclass
S is the same as the initial set M, then the assumption of homogeneity
is taken to be true. In that case, there is no proper subset to be

separated.

When the subclass S is dlfferent from the starting class M, however,
the program loops back to process selection as shown in Figure 2.

This figure shows the procedure for producing one homogeneous subclass
of molecules (and the characteristic processes for the subclass); this
procedure, rule formation, is itself used repeatedly in the main

program as shown in Figure 1.

The inputs to the rule formation procedure are (a) the set RP of
relevant processes and statistics for them, viz., the output of INTSUM,
and (h) a class M' of molecules, where M' is initially the same as the
entire class of molecules, M,givento INTSUM. M'is used to keep

track of the best refinement of M so far.

The process selection program selects a set of processes P from RP in
the manner described above. P characterizes the class M', insofar
as M' can be characterized at all. The criteria for characteristic
process can be made more restrictive if the class Is known to be
homogeneous (e.g., frequency >95%). In this case, however, the
loose criteria listed above are used(e.z., frequency >60%) in

order to allow many exceptions to the "characteristlic'" processes.

12



The molecule selection program selects a subclass of molecules S,

from M', that are best characterized by the processes In P. The
subclass S includes molecules that show evidence for most (85% or more)
of the processes in P, and excludes molecules that are exceptions to
many. Thus Sis at least as wel 1 behaved as M' with respect to P.

And since the two measures of selection are not perfectly complementary,
S is llkely to be better behaved than M' with respect to P, (If
molecule selection uses less restrictive measures than process
selection, then S will be less wel 1 behaved than M' and the procedure

will fail except when the initial set of molecules is homogeneous.)

One Interest ing part of the procedure Is that after processes are
selected, ALL of the molecules are reclassified with regard to the
number of times they appear as exceptions to the processes. This,.
shown i n Figure 2 : at step 2 of each level all molecules In the
initial set, M (not M'or §), are tested against the processes. Thus,
a molecule can be excluded at one level (because it is an exception

to too many Of the processes at that level), but be included again at

another level for a slightly different set of processes.

The condition under which we want the program to stop is that the

subclass S of molecules after an iteration is the same as the class
M' from which the iteratton started (condition 1 in Flgure2). In
other words, under this condlition the program has found an S and a

P such that P characterizes $(S=M') and S is well-behaved with

respect to P, The subclass S Is taken to he homorgeneous, and the

13



processes in P can be taken to be mass spectrometry rules for

molecules in S.

The refinement level in Figure 2 is the number of times the procedure
has been invoked in trying to find one homogeneous subclass of
molecutl es. The second of the stopping conditions tests whether the
refinement level is equal to an arbitrary maximum, which is currently
3. This condition is necessary to avoid an infinite loop in the case

where the program can find no subclass S that is homogeneous with

respect to P. The level 3 has been observed to produce falrly
acceptable results: after three iterations through this loop, the
subclass S is about as refined as it will get. After more lterations

the procedure appears to oscillate in that molecules added to S in
one iteration are subtracted from S in a later iteration. OQur
experience is very llmlted, BRecause there Is no guarantee that the
procedure converges, however, some stopping condition like the

maximum refinement level Is necessary.

The last stopping condition shown in Figure 2 tests whether there are
enough molecules in the subclass to warrant further refinement. If
there are fewer than an arbitrary minimum number (=3) of molecules in
S, then further refinements will be unrel fahle. This minimum is not
completely arbitrary, since it depends to some extent on the frequency
measures used in process and molecule selection. Rut, intuitively,
when the number of molecules in S Is small there is little value in

hreaking S up into subclasses anyway.

1k



As shown in the overall flow diagram, Figure 1, after the first major
subclass (S) has been defined, all molecules in S are removed from

any further consideration by subtracting them from M. T h eentire
procedure Is then repeated with the new M. I't stops only when there
are so few molecules left In M (3 or fewer) that process selection is

unreliable and molecule selection appears pointless.

The output of the whole program now is merely the collected set of
outputs from all iterations, viz., the collected S,P pairs, as shown
in Figure 2. Future work will focus on automatically generalizing
the descriptlions of the molecules. Thils is now done by hand, except
when the initial class M is homogeneous = then the generalized

description is the common graph structure.

RESULTS

The INTSUM program alone has already provided useful new results for
chemists, as reportedin the chemical 1 iterature(4), The process
selection program, working with output from INTSUM (but without
molecule selection), has successfully found sets of characteristic
processes for a well-understood class of molecules (estrogens,
Figure 3) and for classes whose behavior is still under investigation
(e.g., equilenins, progesterones, amino aclids). For 47 estrogens,
which were assumed by both an expert and the program to be in one
class, rules found by the program agree closely with rules formed by

the expert from the same data. (This resultisnot shown in a table,

15



but the comparison with the expert's rules looks much like that shown
in Table I.) Expert chemists have made suggestions for improvements,
but were generally in agreement with the processes selected by the

program,

The rule formation program with molecule selection has been tested on
several sets of molecules. The results of running the program on a
set of 15 estrogens (a subset of the 47 mentioned above) are shown

In Table |I. The program separated two of the 15 compounds into a
second class because they were not as well behaved as the rest = they
were exceptions to about 20% of the characteristic processes. However,
the chemist thought the separation was reasonable. The processes
selected by the program are shown with indlications of the discrepancies
between the program’s choices and the chemist’'s, The discrepancies
mostly arose from the program’s applying different criteria to select
one process from viable alternatives. Tahle Il shows the success of
the molecule separation part of the program when rule formation was
Rone on data from 19 non-homogeneous estrogenic steroids. The major
subclass of chemical interest is the set of 5 equllenins which are
identified by common modifications to the skeleton shown in Figure 3.
The structural properties were not used by the program although the
chemist did classify the compounds by such features. By selecting
well-behaved subclasses of molecules the program grouped four or five
"equilenins" (molecules #4, 8,10,19) and all three “3-acetates”

(#3, 11, 18) in the first subclass. The fifth equflenin (#2) w as

removed from that subclass on the last refinement because it was an
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exception to 3 of 9characteristic processes used to determine the

subclass,

In the thirditeration shown In Table Il, the program grouped three

of the chemist's four "3-henzoates" together (molecules #12, 13, |b).

In the fourth Iterationitgrouped together the chemist's two
"dlacetates" and one "trlacetate" (molecules #9, 15, 16), Two Iterations
produced subclasses with only two members = when put together they
encompass two "17-acetates" (#1,17), one "17-henzoate", and one
"gamma=-lactone" (#5), The two molecules remalining unclassified at

the end of the procedure were the last "equlitlenin" (molecule #2) and

the last "3-benzoate" (#6),

CONCLUSI10NS

Bullding an fnformatfon processing model of sclentlficreasoningin
mass spectromet ry, although not completed, has al ready led to
interesting and useful results. The model Incorporates heuristic
search In process selection. The procedure for sel ect ing mol ecul es
can he thought of as aplanning procedure Insofar asit reduces the
prohlem of formulating rules for aclass of diverse molecules to a
number of smaller subproblems, viz,, formulating rules for smaller
classes of well=-behaved molecules. However, the molecule selection

procedure Ishighly dependent on process selectlion, as described In

detail,

17




The Incompleteness of the program as a model of the entire rule
format lon procedure should be readily apparent. \We have not
described anything that approximates confrontation of rules withnew
data, for example. But as the results section indicates, the program
can separate subclasses of wel I[-behaved molecules and can find
characteristic processes for the subclasses with enough accuracy (on
a fewexamples) to galnpreliminary acceptance by an expert in the

field,
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Figure 1. OVERALL FLOW OF RULE FORMATION PROGRAM

INPUT: Listof Molecule= Data Pairs

|
I
PROGRAM: | NTSUM - Data Interpretation and Summary
I
I
-----—---—--0---—-------) L|St Of MOIGCUIeS, M.
| Listof Relevant Processes, RP, with
I Summary Statistics for Each Process
| |
| |
| PROGRAM: PRule Formation»
| I
I !
Set of Characteristic Processes, P (P(& RP),
Class of Well=Rehaved Molecules, S({(S<g M),
|
I

I
|
I
|
| SUBTRACTION STEP: Remove all Molecules in §
| from M.
I |
I I
| STOPPINGR CONDITIONM: M contains 3 or Fewer
I No Molecules.
ceceeeaca c———- |

| Yes

|

sSTOP

OUTPUT = All S-P pa? rs found.

# Details in Figure 2,
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Figure 2.

DETAILS OF INTERACTION BETWEEN PROCESS SELECTION AND
MOLECULE SELECTION IN THE RULE FORMATION PROGRAM

INITIALIZE: Refinement Level =0
M= Original class of molecules.
M =M,
RP = Relevant processes (from INTSUM) including
evidence and statistics for the processes.
|
I
INPUT: M’, RP
I
| )
-==>SUR-PROGRAM: Process Selection (using the null hvpothesis that
| all molecules can he characterized by the same set
| of processes)
| |
| |
| Set of processes, P, that are characteristic of
| M’ (PCRP)
I I
I |
| SUBR=-PROGRAM: Molecule Selection
I I
| Subcl ass of Mol ecul es, S, selected from M such that
| every molecule in S is well-hehaved with respect to
I the processes in P
| !
I I
| Increment Refinement Level
I I
|
|
|
|
|
|
I
|
I

I
Test for Stopping Condl tions:
1. S = M, or
2. Refinement level =3,0r YES STOP.
3. Fewer than 3 molecules in S e==ecee==>0YTPUT =S,P

NO

I
|
|
---- SURCLASS QEF | NEMENT: Reset M' 0o S (M'=9%5),
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: -TABLE I.
3 PROCESSES SELECTED FOR 15 ESTROGENS
- BELIEVED TO BE IN ONE WELL-BEHAVED CLASS

% OF ALL DATA

PROCESS LABEL* PICTORIAL DESCRIPTION POINTS EXPLAINED
~ 1. BRKO & 22%
2. BRK2L/19L 14%
o (preferred over
BRKTL and BRK2L/18L)
3. BRK6L or BRK2L/1TL 1%
C .
k. BRK1OL 8%
= B
)
L 5. BRK1LML or BRK1SL - 6%
|
L .
6. BRKLTL E 5%
e
7. BRK2L/10L 1%
zpreferred over
BRK18L)
L 8. BRKLL 3%
. 9. BRKSL or BRK13L & 2%
~ <l
10. BRK1OL/15H or BRKSH/20L ] o
or BRKLH/19L

e The underlined processes are those selected by an expert chemist on the basis of data from UT vell-behaved
estrogens, including these 15.
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TABLE I, Page 2
4 OF ALL DATA

PROCESS LABEL® PICTORIAL DESCRIPTION POINTS EXPLAINED
11. BRK11L 2%
12. BRK2L/11L . %
(preferred over
BRK20L)

13. BRKSH/10L ‘l- 2%
®

14. BRKSH/12L 1%
’
15. BRK12L/15H or 1%
BRK1L2L/1bH .
TOTAL PERCENT OF DATA EXPLAINED 8u%

* The underlined processes sre those selected by an expert chemist on the basis of data from 47 well-behaved
estrogens, including these 15.
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TABLE | |

SUMMARY 0OF STEPS INTHERULF FORMATION
PROCEDURE WITH 19 ESTROGENICSTEROINS

L

ITFRATION #1
Inftltal Set:

First Refinement:

Second Refinement:

Third Refinement:
= Subclass 1

ITERATION #2
Inftial Set
(- Subelass 1)

Th Ird Refinement
= Subclass 2

Mol ecul es

(1,2,3,...,19)

(2,3,4,5,8,10,11,19) -*-m-w->

(2,3,4,8,10,11,18,19)

(3,4,8,10,11,18,19)

(1,2,5,6,7,9,12,13,

14,15,16,17)

(5,17)
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Processes

BRKO

BRK10L
RRK11L
BRK20L
BRK2L/19L
RRKSUB3L/3L
BRKSUB3L/12L

RRKO

BRK1OL

BRK11L

RRK20L
RRKOOC3*1L
BRKSUR3L/2L
BRKSUB3L/23L
RRKSUB18L/11L

RRKO

BRK10OL

RRK11L

BRK20L
BRKOC3#1L/11L
BRKOOC3#1L
BRKSUB3L/2L
BRKSUB18L/11L
RRKSUB3L/23L

same

BRKO

BRK16L
BRK2L/19L
BRKSUB3L/3L

BRKN
BRK2L/19L
BRKNC3=1L/81L
RRKOC3=1L/17L
BRKOOC17+1L



ITERATION #3

Third Refinement (11,12,13,14)

= Subclass 3

ITERATION #4

La;t Refinement: (9,15,16)
= Subclass 4

ITERATION #5

La;t Refinement: (1,7
= Subclass 5

UNCLASSIFIED MOLECULES (2, 6)
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BRKO

BRKBT3+1H
BRKBT3»1L/3L
BRKSURBR3L/3L

RRKO
BRKOOC3+1L
BRKOOC3=1L/6L
BRKOOC3»1L/7L
BRKOOC3+1L/8L
BRKOOC3#1L/16L
BRKOOC3»1L/17L
BRKOOC17=1L

BPKO

BRK6L

BRK7L

BRKSL
BRK1OL
BRK11L
RRK14L
BRK1S5L
BRK16L
BRK17L
BRK2L/17L
BRK2L/19L
BRKOOC17+1L
BRKSUB17L
BRKSUB17L/1L



