
I . Stanford Artificial Intelligence Laboratory
Memo AIM-256

December 19 74

Computer Science Department
Report No. STAN-B-74-474

Automatic Program Verification III:
A METHODOLOGY FOR VERIFYING PROGRAMS

Research sponsored by

Advanced Research Projects Agency
ARPA Order No. 2494

COMPUTER SCIENCE DEPARTMENT
Stanford University

--

Stanford Artificial Intelligence Laboratory
Memo AIM-256

Computer Science Department
Report No. STAN-CS-74-474

DECEMBER 19 74

AUTOMATIC PROGRAM VERIFICATION III:

A METHODOLOGY FOR VERIFYING PROGRAMS

bY

F.W. v.HENKE and D.C. LUCKHAM

ABSTRACT

The paper investigates methods for applying an on-line interactive verification system designed to
prove properties of PASCAL programs. The methodology is intended to provide techniques for
developing a debugged and ver i f ied vers ion star t ing f rom a program, that (a) is possib ly
unfinished in some respects, (b) may not satisfy the given specifications, e.g., may contain bugs,
(c) may have incomplete documentation, (d) may be written In non-standard ways, e.g., may

depend on user- defined data structures.

The methodology involves (i) interactive application of a verification condition generator, an
algebraic simplifier and a theorem-prover; (ii) techniques for describing data structures, type
constraints, and properties of programs and subprograms (i.e. lower level procedures); (i i i) the
use of (abstract) data types in structuring programs and proofs.

Within each unit (i.e. segment of a problem), the interactive use is aimed at reducing verification
conditions to manageable proportions so that the non-trivial factors may be analysed. Analysis of

- verification conditions attempts to localize errors in the program logic, to extend assertions inside
the program, to spotlight additional assumptions on program subfunctions (beyond those already
specified by the programmer), and to generate appropriate lemmas that allow a verification to be
completed. Methods for structuring correctness proofs are discussed that are similar to those of
“structured programming”.

A detailed case study of a pattern matching algorithm il lustrating the various aspects of the
methodology (including the role played by the user) is given.

This research was supported by the Advanced Research Projects Agency of the Department of
Defense undet Contrnct DAHC 15-73-C-0435 . The views and conclusions contained in this
document nre those of the cttrthr(s) andshould not be interpreted as necessarily representing the
ojicial policies,
Government.

either expressed or implied, of Stanford University, ARPA, or the U. S,

Reproduced in the U.S.A. Availnbie from the National Technical Information Service, Springjeld,
Virginia 2215 1.

1

A METHODOLOGY FOR VERIFYING PROGRAMS

1. INTRODUCTION
-

f-

L

L
L.
L
L

L

I N T R O D U C T I O N

We are concerned here with the question of whether or not program verification systems that are
currently being developed have any practical usefulness. Ver i f icat ions of s imple standard
programs h a v e b e e n o b t a i n e d w i t h t h e s e s y s t e m s (S e e f o r e x a m p l e , [K i n g a n d F l o y d] ,
[Igarashi,London a n d Luckham], [Deutschl, [Good a n d Ragland], [Elspas, Levitt,and Waldinger],
[Suzuki], [Boyer and Moore]). These results provide encouragement to explore further. But, in
all cases except for one example in [Morales] the programs were known in advance to be correct
- i.e. provably consistent with thetr documentation. Moreover, these example test programs are
based on standard well-known functions and data structures (for the most part, either integer
arithmetic or very simple list processing). Realistically practical verification problems have yet to
be faced. A methodology for using these systems to construct verifications in real life situations has
not been developed, and indeed the question of whether they will help the process of writing and
verifying programs or will merely “get in the way” is entirely open.

The goal of practical usefulness does not imply that the verification of a program must be made
independent of creative effort on the part of the programmer. AS we shall see later, such a
requirement is utterly unrealistic. What we have to do is to provide a tool (the verification
system) and instructions for its use (the methodology) that can sometimes enable a programmer to
gain a degree of certainty about his or other people’s programs. The tool and methods must be
easy to apply. In short, we seek to extend the programmer’s repertoire of techniques, not to
replace it.

The verification system discussed here has been developed specifically for programs written in
P A S C A L [Wirth] and Is an extension (see [Suzuki]) o f the system descr ibed in [ILL] . The
purpose of this system is to aid the programmer in constructing a proof that his program satisfies
its documentation. Such a proof (in the logic of programs [Hoare 71, ILLI) is called a verification
of the program. The documentation may include:

1. input-output specifications,
2. properties of certain crucial internal states,

- 3. specifications and properties of sub-programs,
4. specifications of data structures.

In order to be useful in practice we must develop a methodology for using the verifier which aids
the user in situations where:

1, the documentat ion is incomplete (i .e . addi t ional facts about the program must be
discovered before a verification can be found), I

2. the program itself is unfinished (e.g. parts of it may be unwritten),
3. the program is badly written (even though it conforms to structuring principles),
4. the data structures are non standard (e.g. an axiomatic description does not already exist).

What “aid” should one expect from a verification system? A verification proof depends upon a set
of assumptions or lemmas about components of the program (sub-procedures, data structures,
library routines, etc.). Let us call this a BASIS for a verification. Essentially, a verification basis is
a set of consequences of an underlying axiomatitation of the data structures and subroutines,
although such an axiomatization may not actually be known. Different proofs have different bases.

v.HENKE and LUCKHA M 2

A verification is convincing to a programmer only if he “believes” the basis in the r a t h e r
imprecise sense that its statements seem true; a more precise sense (acceptable) is given below. As
we shall show in examples, a programmer can, obtain a verification of his program using a
verifier, and be faced with an impressively complex basis, (or even worse, with some systems he
might end up without knowing the basis at ail). If he does not believe the basis, he must be able
to reduce its elements to more believable statements or else search for an alternative basis, Thus
verification methodology must

1. establish that a basis is adequate, (i.e. ensure the existence of a corrrectness proof from the
basis),

- 2. present alternative bases to the programmer, (i.e. help him discover bases and improve
documentation),

3. include methods for analyzing a basis and reducing its components to other bases.

There is an underlying motivational assumption here: in dealing with real life problems it may
often be unrealistic and impractical to attempt a verification directly from first principles. It is
sufficient to establish a verrfication basis that is clearly implied by an axiomatic semantics for
those concepts that are used in the program.

-_

L

i

However , in the case of a “new” program such semant ics may not have been formulated .
Consequently, we need a methodology which permits a verification to proceed by developing a
hierarchy of bases in which a basis at one level verifies elements of the basis immediately above it
and depends on bases at the level immediately below. The development of this hierarchy can be
viewed as “discovering” the semantics; it will usually be guided by the structure of the program. A
basis for verifying properties of one level of the program will be formulated in terms of concepts
used in writing that level. The statements in the lowest level bases should be already established
facts (about nonprimitives) or axioms for the semantics of primitive functions and data structures.
Apart from the practical need to divide complicated verifications into subproofs which may be
attempted individually, this hierarchical idea has other advantages. It allows a verification to
proceed hand-in-hand with the writing of the program. A basis is to be viewed as more than just
a set of assumptions for a verification. Often it includes additional necessary properties of
unwritten subroutines beyond what was in their original specifications. Alternatively, the omission
of a specification might indicate that a simpler subroutine will suffice. Thus, a basis for one level
of a program is a sufficient set of specifications for the next level. Secondly, if an axiomatic
semantics for new concepts is needed, it is probably best developed from a knowledge of adequate
verification bases (consisting of simple statements) for programs using those concepts. Thirdly, the
problem of getting differing programmers to agree upon a “verification” of a program can be
terminated short of a complete reduction of the problem to first principles if they both have
confidence in the acceptability of some intermediate basis.

I
L

C

At this point we can be a little more precise about some of the concepts we have introduced:
A set of statements forms a basis for verifying a property of a program if a proof of that

-property can be given within the logic of programs [Hoare 71, ILL1 which assumes (i.e. depends
upon) only those statements. For emphasis, we shall sometimes say that such a basis is
adequate.

A basis is acceptable if (i) all of its statements about the primitives (data structures a n d
library routines) are true, and (ii) programs can be constructed to satisfy all of those statements
that contain names for uncoded subroutines.

e -

3 I N T R O D U C T I O N

-

L-

L.
,
i
L

i

L
L
L

.

The .primary prohlrm is to find acccptnble verification bases. There are a number of important
secondary problems. These can all be categorized as parts of the “Formalization problem”. First,
there is the questton o f what documontation.to include with the program; for example which
internal states need to be described, which invariant properties of a loop need to be stated, and
what properties of subroutines are actually necessary. Secondly, how should the documentation
be expressed? This involves the choice of representation of concepts (e.g. should the relation “C”
on the integers be used or can all the necessary facts be expressed in terms of a derived concept
like “IS O R D E R E D S E T ” ?) . Atso the programmer must choose whether to express in terna l
properties of the program by I)urcly “static” assertions about the values of its variables, or by
defining extra computations and making assertions about new variables (i .e. the technique of
introducing “ghost” variables and “virtual” program [ClintI). Thirdly, how should the program
be written in order to make its verification possible. Recent developments in programming
language design, pretty much resulting from experience with the debugging problem, such as
block structure and restrictions on procedure parameters and global variables, all certainly help.
However, many other details in a program influence its verification (e.g. the form of data structure
definitions should indicate clearly the assumptions that can be made about the structures), At the
moment, these secondary problems are areas where the programmer’s ingenuity must be applied.
It is to be hoped that verification methodology will eventually develop some relevant guidelines
for attacking the formalization problem.

Our methodology can be very roughly outlined as follows. A program level, which may contain
calls to uncoded lower level subroutinc?s, is submitted together with some documentation to the
verification system. The general methodology divides activity into three phases: debugging the
code, constructing induct ivc ;Isscrl ions, and constructing a basis . At each of these phases the
system is used to indicate modlficatrons and changes by means of a methodology depending on
analysis of verificatioli colrditions (see Section 2.4). (Eventually we intend to incorporate other
techniques for analysing programs.) Modified problems are resubmitted for further analysis, In
the third phase the system provrdes a test for the adequacy of a proposed basis. Finally, the basis
must be shown to be acceptable, which involves writing the next level of the program.

We shall show in Section 3 how the Pascal Verifier can be used interactively to verify levels in a
p r o g r a m a s t h e y a r e w r i t t e n and to guide writing subsequent levels. W e i l l u s t r a t e t h e
methodology in action in an experiment to write and verify a program for a fundamental pattern

- matching algorithm (Unification). We have tried to keep our presentation as close to the real life
sequence of events as possible without too much repetition. Essentially, we present snapshots of
this sequence of events, each snapshot illustrating a different situation which the methodology
must handle . T h e r e a r e e x a m p l e s o f t h e u s e o f t h e v e r i f i e r t o f i n d b u g s , t o a u g m e n t
documentation, to build up a basis, and to analyze the basis (i.e. reduce it to simpler statements).
This last point involves choosing a formalism for defining recursive data structures, and here we
h a v e a d o p t e d w i t h m i n o r m o d i f i c a t i o n s s o m e s u g g e s t i o n s o f [Hoare 731. O f c o u r s e , o u r
methodology is far from complete, and many of the problems that arise during a verification,
(except for the adequacy of a basis, which is handled automatically by the system) involve the
user in making choices and decisions. It is already clear how to automate some of this work.
However, we must emphasize that the verifier is intended for use in conjunction with other
programming facilities .

Some parts of the general methodology depend on a knowledge of what the components of the
verifier do. We have, therefore, included a brief description of the verifier in Section 2 together
with a simple example of its use. I

-

v.HENKE a n d LUCKHAM 4

The principle references upon which this paper depends are [Hoare 711 and [ILL] (for the logic
programs) , [Hoare and Wirthl (for axiomatic semantics of Pascal), and [ILL] and [Suzuki] (for
details of the verifier).We shall use concepts and notation from [Hoare 71, ILL] without definition.

2 . T H E V E R I F I E R

The Pascal verification system is represented in outline in Figure 1. The logical theory and
ImpIementation of the Verification Condition Generator (VCG> is given in [ILL], and details of
the simplifier are in [Suzuki]. In section 3 we shall describe interactive use of this system that
relies mainly on these two components and, at the moment, only employs the theorem prover when
everything else fails. Here we g ive a very br ie f sketch of VCG and the s impl i f ier wi th the
intention of mentioning just those details that affect the methodology of Section 3.

INPUT - - w - - m -
PROGRAM 1 S I M P L I F I E R 1 1 THEOREM 1

a n d ’ “lzG I------> 1 - - - > 1 I ----> I P R O V E R I
DOCUMENTATION - - w - - w - - - - - - - - - - - - - - - - - - -------w-w

;
I I
I

I
I I

V I
I M O O I F I E O - I---------------c--------- IANALYSIS O F O U T P U T I<---1

PROBLEM - - - - - - - - - - - - - - - - - - -

Figure I: Main Componellts of the Verifier

2.1 V E R I F I C A T I O N C O N D I T I O N G E N E R A T O R (WC) T h e i n p u t t o VCC i s a v e r i f i c a t i o n
problem of the form P{A}Q where P and Qare entry and exit specifications (called assertions) for
a Pascal program A. The program A may itself contain additional documentation. Figure 2
shows an input to VCC together with some extra documentation (explained later). To verify that
‘A satisfies its specifications, we require that a proof of P(A)Q within the logic of programs be
found. VCG reduces problems of the form P(A)Q to problems about shorter programs, using the
rules of the axiomatic semantics of Pascal. For example, P(IF L THEN B ELSE C)Q could be
reduced to ver i fy ing two problems, Pr\L(B}Q and PA~L(CJQ t h e a x i o m a t i c s e m a n t i c s f o r
conditional statements implies that if these latter two problems are verified then the first problem
is also verified. Similar reductions are applied to other kinds of Pascal statements. The final
output from VCG is a set of purely logical statements composed from Pascal Boolean assertions
(see Figure 3). T h ese are called the Verification Conditions (abbreviated to VC’s) for the original
problem, P(A IQ

5 T H E V E R I F I E R

L

t

L*

1

L

.

There are two points to be mentioned here. First of all, VCG has a completeness property with
respect to provability. A s s u m e t h a t a v e r i f i c a t i o n o f P(A)Q is to be found making only
assumptions from some underlying axiomatic semantics, T say. A proof of P(AJQ can always be
constructed assuming the VC’s, and conversely if P(AJQ is provable in the logic of programs
f r o m T, then VCG will generate VC’s that are provable in T prov ided A conta ins addi t iona l
helpful assertions (exactly what extra documentation must be given is a subject of much current
research). This means that the set of VC’s IS always an adequate Basis for the verification (but it
may not be acceptable). And also, if the user’s problem is provable from statements in T, he will
be able to establish that fact with the present verif ier by adding enough documentation to the
program. The second point is that VCC reduces problems to purely logical VC’s. As we shall see
later, this may not always be the best strategy, especially when the VC’s involve the names of
procedures that have yet to be written, and it may sometimes be better to stop the reduction
process and generate VC’s that contain pieces of code explicitly. It is doubtful if verification can
be based solely on pure logic, and It may be necessary to use other techniques such as equivalence
preserving transformations on programs.

Finally, the present version of VCG contains a number of new features and rules that are not in
the original version in [ILL]. The one most relevant to our discussion is a feature (due to Suzuki)
for handling calls to uncoded functions by means of “DEFFUN” statements. The intention is to
give the user an easy way to state specifications for functions that are not yet coded, although it
can be used for standard functions as well. A DEFFUN statement is of the form:

D E F F U N f(x Ltypel,...): type
E N T R Y R(x I , . . .) ; E X I T &‘alue>:S(f);

where “f” is the function name, <value> is an expression denoting the value of f, and R(x I,,..) and
S(x I,...) are entry and exit assertions. No function body is required. Whenever a call to f occurs
d&-ing the generation of VC’s the adaptation rule [Hoare] will be applied:

P{A j(R(a ,,..) A W(a’,...)(S(f(a’,...))+af(a’,...)))
----------------------ee-

P (A ;x +f(a,...>]Q(x>

A verification of the program will then imply the runtime legality of all calls to f. The use of
DEFFUN’S is not mandatory, and the user may choose to omit them if he is sure that all his
function calls are legal (a normal compile-time type check may be sufficient).

2.2 T H E S I M P L I F I E R M a n y VC’s a r e (o r c o n t a i n s u b f o r m u l a s t h a t a r e) l e n g t h y a n d
complicated but turn out to be logically trivial. The first step in the analysis of VC’s is to simplify
a n d e l i m i n a t e t h e t r i v i a l p a r t s so that one can see the real verification problems. It is
inappropriate to process these unsimplified VC’s with the theorem prover because there are faster,
less general techniques for carrytng out logical and algebraic formula reduction. VC’s are first
processed by a simplifier. Originally, we had planned the simplifier as a preprocessor to the
theorem prover, but our current methodology makes repeated interactive use of the simplifier
before using the prover (See Figure I).

1

L

L

v.HENKE a n d LIJCKHA M 6

Let us first state very briefly what the simplifier does (Full details in [Suzuki]). The user may
submit three kinds of documentation statements which will be used as reduction rules by the
simplifier. Here are examples of each:

A X I O M C A R(CONS(taS,eY))-X;

This means that any term in a VC that “matches” the left side (i.e. is identical to the left side
when X and Y are replaced by appropriate strings) will be replaced in the VC by the string for
X. It is a left to right reduction rule. A variable preceded by “en is called a pattern variable.

A X I O M I F lSTERMLIST(L)r\-(L-ZERO) T H E N ISTERM(HD(sL))++TRUE

This is a condi t iona l ax iom. Suppose a VC has the form A+B+ Any express ion in B that
m a t c h e s ISTERM(HD(@L)) m a y b e r e d u c e d b y this rule to TRUE if ISTERMLIST(L) a n d
-(L=ZERO) (where L is the substitution string for ot in the successful match) occur in A.

COAL RCONS(eX l,sY I)-RCONS(eXZ,&‘Z) S U B (x 1 - x2)A(y 1 - y2)

This is a goal statement. It is treated as a reduction rule that says “an expression that matches the
COAL may be replaced by TRUE if the corresponding instance of the SUBgoal can be reduced
t o T R U E .

Figure 2 shows a program with documentation that will be used as simplification rules.

Goal statements can be formulated as conditional axioms and vice versa. The difference is that
axioms are “sticky“ (any reduction by an axiom is never reversed) whereas goals are not (goals
have no effect on a VC unless the reduction can be pushed all the way to TRUE). Ideally, the
axioms should consist of those reduction rules having the property that no reduction to TRUE
depends on their order of application.

- The s impl i f ier conta ins a sequence of s impl i fy ing “boxes”, An incoming VC is s impl i f ied in
sequence by (I) a logical proposition simplifier, (2) processing of arithmetical expressions by choice
of standard forms and by evaluation, (3) reduction by axioms, and (4) reduction by goals.

This is a good place to discuss the role of the simplifier in our verification methodology.
Esspntially, we are using the simplifier as a fast theorem prover. Our philosophy Is that the user
should be able to submit a problem and receive back the reduced K’s within a few seconds. If
the kinds of reduction rrrles are eastly urtderstood, he will probably be able to see further useful
rules by analyzing the VC’s. He can then resubmit the problem with additional rules. Eventually
some of this analysis will be automated (See Section 2) and likely rules suggested to the user.
There is no a t tempt to make the set o f ru les loglcally independant at first, the idea being to
develop a first basis quickly. It dots make sense to choose simple rules(believability), and some
kinds of rules (e.g. commutativity) hav-e to be excluded because of the way the simplifer works. If
all VC’s reduce to TRUE, the set of reduction rules is an adequate verification basis.

The kinds of reduction rules have to be simple also for speed as well as understandability.

I. -

-

7 THE V E R I F I E R

However, experience suggests that we do need something beyond algebraic manipulation. T h e
goal statements form a simple theorem prover. On the other hand, some complex propositional
transformations are time consuming and often-unneeded, and best left to the theorem prover .
Thus the boarderline between Simplification and Theorem-proving, at the moment, is somewhat
pragmatic.

2 . 3 A N E X A M P L E Figure 2 shows the procedure SIFTUP used in the algorithm TREESORTS
[Floyd] for sorting linear arrays of integers. The problem is to verify that the output of SIFTUP
is always a permutation of its input. The program contains an internal ASSERTION as well as
the entry and exit conditions for this problem. 1

There are three reduction rules stated in terms of the relation PERMUTATION (A,B) m e a n i n g
“array A is a permuation of array B”, and the function ASET(A,i,j) which applies A[i J+j to A.
W e may have no specific axiomatic theory of permutations in mind. Nevertheless, the first two
AXIOMS are clearly trivial. Most people will “belleve” the third one after a moments thought.

The unsimpl i f ied VC’s put out b y VCC are in Figure 3. So also are the s impl i f ied o n e s , f r o m
which we conclude that the three rules are an adequate basis for ver i fy ing the permutat ion
property. The reader may wonder how we thought of the third rule. What we did was to run t h e
problem first without it and compare the premiss and conclusion of V&3 or +4.

It

1

L

AXIOM PERMUTATION(nl,nl)~TRUE;
AXIOM ASETW 1,@!2,@! 1 [@I2])~l I ;
AXIOM PERMUTATlON(ASET(ASET(kPIl ,ci~l2,all [e13]),~13,a14),a15)~

PERMUTATION(ASET(l1,12,14),15);

PROCEDURE SIFTUP(IO,N:INTEGER);
ENTRY M=MO;
EXlT PERMUTATION(M,MO);
VAR COPY:REAL; J, l:lNTEGER;
BEGIN

I + IO; COPY + hql];
10: Jc 2 *I;

ASSERT PERMUTATION(ASET(M,I,COPY),MO);
IF J ,< N THEN

. BEGIN IF J < N THEN
BEGIN IF M[J+ I] > M[J] THEN J + J+ 1 END;

IF M[J] > COPY THEN BEGIN M[l] + M[JJ; I + J; GO TO 1 0
END;

END;

M[I) + COPY;
END;

Figure 2: The procedure SIFTUP used by TREESORT.

v.HENKE and LCJCKHA M

WI
M=MO --) PERMUTATION(ASET(M,IO,M[IO)),MO)
*2
(COPY<M[J+ 1])A(M[J]<M(J+ 1])A(J<N)A(J$N)APERMUTATION(ASET(M,I,COPY),MO)

-) PERMUTATION(ASET(ASET(M,I,M[J* 1)),J* 1 ,Ci)PY),MO)
a3
(COPY<M[J])A~(M[JJ~M[J+~))A(J<N~A(J_<N)APERMUTATION(ASET(M,I,COPY),MO)

3 PERMUTATlON(ASET(ASET(M,I,M[J]),J,COPY),MO)
a4
(COPY<M[J])A~(J<N)A(J~N~APERMUTATION(ASET(M,I,COPY),MO)

+ PERMUTATlON(ASET(ASET(M,I,M[JJ),J,COPY),MO)
a5
-(COPY<M[J+l])h(M(J]<M[J+l J)A(J<N)A(J,<N)APERMUTATION(ASET(M,I,COPY),MO)

-) PERMUTATlON(ASET(M,I,COPY),MO)
06
~(COPY<M(J])A~(M[J]~M[J+I])A(J~N)A(J~N)APERMUTATION(ASET(M,I,COPY),MO)

+ PERMUTATION(ASET(M,I,COPY),MO)
a7
~(COPY<M[J])A~(J<N)A(J,<N)APERMUTATION(ASET(M,I,COPY),MO)

+ PERMUTATlQN(ASET(M,I,COPY),MO)
a8
-(J,~N)APERMUTATION(ASET(M,I,COPY),MO) 4 PERMUTATION(ASEf(M,l,COPY),MO)

-

THE SIMPLIFIED VERIFICATION CONDITIONS ARE:

0 1 TRUE
@ 2 TRUE
*3 T R U E
0 4 TRUE
0 5 TRUE
0 6 TRUE
l 7 TRUE
0 8 TRUE

TIME: 7 CPU SECS, 31 REAL SECS

Figure 3: VERIFICATION CONDITIONS FOR SIFTUP ’

9 T H E V E R I F I E R

2 . 4 H I N T S O N ANALYSINC, Vc’s. Each VC corresponds to a path through the program
between two assertions (possibly the same assertion). A simple VC has the form P+Qoc where
Q is the end assertion, P is a logical combination of the beginning assertion and boolean control
tests, and csc is a substitution of terms for program variables. If the path contains function or
procedure calls, the form of the VC is more complex. The VC expresses a logical condition on
the action of the program along the path. It also contains implicitly a description of the path and
what the action is.

(a) The path of a VC is determined by the values of the boolean control tests occuring in P.
(b) The computat iona l changes can be determined f rom terms subst i tu ted for program

variables by 0~.

E X A M P L E : V C 4 (f i g u r e 3) c o r r e s p o n d s t o t h e p a t h f r o m t h e A S S E R T I O N s a t i s f y i n g J<N,
-(J<N),and M[J]>COPY back to the ASSERTION. The act ion of a~ (determined f rom the Q
p a r t o f VC4) is: M+ASET(M,I,M[Jl) (i.e. M[IlcM[Jl), and I+J. The assignment JtZI:tI cannot be
detected unless ASSERTION contains J.

Our methodology depends on extracting information from VC’s. When a VC does not reduce to
TRUE, the programmer may try to decide if it is true using his knowledge of the program (i.e. the
path and action). If it is true, he can either expand P (i.e. the beginning asser t ion) or g i v e
additional documentation in order to prove the VC. Additional documentation can be given by
placing new assumptions in the basis. If the VC appears to be false, he has either to weaken the
specifications (changing P or Q) or to change the program .

Commonly occuring situations include the following:
(i). Paths of VC’s correspond with cases the program is supposed to recognize. Any kind of

mismatch of cases and paths Indicates a change should be made in the program.
(ii). The action of a VC does not express what the program was intende.d to do in the case

corresponding to the VC path. A change in the program is necessary (see 3.1 (b),(c)),
(iii).Part of Q is logically independant of P. Then usually P should be expanded (see 3,1(a)

and (d)).
(i v) . T h e V C appears true but not provable from the the current Basis. Analysis of the

components of Q and related parts of P can often yield conditions on functions and
procedures which were overlooked or were omitted because their relevence was questioned.

- These may then be added to the Basis (see 3.3 a,b,c).

How much of this analysis and corrective action can be automated ? Most of the current attempts
to automate the construction of assertions (especially in case (iii)) assume that the program is
already correct. If we do not assume correctness, it seems that th! choice of action (whether to
thange the documentation or the program) depends entirely on the programmer’s intentions and
cannot be automated. However , m u c h can be done to automate the extraction of information
from VC’s. The system helps by displaying the (updated) effects of any changes and allowing
e<perimentation.

m -t

v.HENKE and LUCKHAM 10

3 . C A S E S T U D Y : M E T H O D O L O G Y I N A C T I O N

Let us first explain unification informally A unification program accepts as Input two lists of
terms X,Y and constructs as output a substitution (of terms for variables) that makes each member
of X equal to the c o r r e s p o n d i n g m e m b e r o f Y i f p o s s i b l e , o r e l s e o u t p u t s t h e a n s w e r
“IMPOSSIBLE”. For example, given the input X={x,g(h(y),t),v), Y$f,g(h(u),k(w)),v), the program
should put out the unifier Z-(<x+f>, <y+u>, <z+k(w)>).

It is possible to write such first-order unification programs in many different ways. A popular
method is to use the input list structures as temporary storage, which permits an encoding as an
iterative loop without recursive calls. If this is done in the example above, a first pass through
the loop will result in the values X’={g(h(y),z),vj, Y’+g(h(u),k(w)),v), Z’+x+f>j; a second pass will
yield X”-(v,h(y),z), Y”={v,h(u),k(w)), Z*‘=(<x+f>j, and so on.

,

We asked an experienced programmer to write a unification program in real t ime (while we
looked on). We note the following. He stated his intention to use the input data structures as
temporary storage, &t no structures were declared. He attempted to code “top down”, naming
subfunctions without coding them, but merely stating what they were supposed to do (but he often
c h a n g e d his mind). As the program developed, he had difficulty documenting the loop and
introduced virtual program to do this (without tell ing us). He gave up on the idea of purely
iterative code and ended up putting a recursive call inside a WHILE loop.

t-

L

It is t h i s p r o g r a m t h a t w e s t a r t w i t h a s V E R S I O N I . W e m a k e n o c l a i m t h a t i t i s h o w a
unification program should be coded. We choose it because it is the result of a real life situation
and is a problem of sufficient richness to be a good test of our ideas on methodology.

The property to be verified is that if the program stops, either it outputs a unifier 2 of the input
termlists X and Y or it outputs a failure. Other standard (and complementary) properties that will
be verified later are that Z is a most general unifier, and that if a failure is output then X and Y
are not unifiable.

The top level program is developed in three steps: version 1 (a first sketch), a debugged version 2,
- and the final verified version. Ideally, debugging and verification happen simultaneously; for

demonstration purposes, we largely separated these two steps. As it is not our aim to discuss
syntactic analysis, all programs are given in a syntactic correct form which will be accepted by the
VCG-system (or a compiler).

-

II CASE STUDY

The subfunctions used in the program have the following intended meanings:
TSUBST(X,Z) - the term resulting from applying substitution Z to term X,
SUBST(X,Z) - the termlist resulting from applying substitution Z to termltst X,._
Z E R O w the empty list,
C O M P(Z,X ,Y) - the substitution resulting from composing substitution Z with the single

substrtution that replaces variable X by term Y,
OCCUR(X,Y) - a Boolean test,TRUE whenever term X is a subterm of term Y,
RCONS(U,X) - termlist obtained by adding term X to the end of termlist U,
T E R M S (X) - the termlist consist of the arguments of term X (not a simple variable),
FNLT(X) - the function letter of complex term X,
HD(X), TL(X) - the head and tail of list X.

-

3.1 VERSlON 1: DEBtjWINC A N D E X T E N D I N G D O C U M E N T A T I O N . V e r s i o n 1 i s t h e t o p
level of the program that was initially submitted for verification. It was written almost on-line and
therefore contains bugs and even misconceptions of the structure of algorithm and data. Roughly
speaking it is a sketch of a program with the question “can this be made to work?” It does not
include any specifications of the data types (in form of axioms, deffuns etc.). The invariant of the
main loop consists just of the main idea: the initial parts of the termlists X and Y are unified by
the constructed substitution Z. To express this the programmer used two “ghost variables” [Clint]
U and V, which hold the parts already dealt with, and “virtual program”, i.e., statments that are
not necessary for the actual computation. Failure of the algorithm is expressed by the pseudo-
procedure LOSE.
Note that the program contains several bugs:
w the cases structure is incorrect;
w after the recursive call of UNIFY the result is not tested for success or failure and the returned

substitution is not assigned to Z;
m at the end of the procedure it is not guaranteed that both Xl and Y I are ZERO.

v.HENKE and LUCKHAM

PASCAL
PROCEDURE UNIFY(X,Y:TERMLIST;tI :SUB; VAR t:SUB);

ENTRY ISTERMLIST(X)AISTERMLIST(Y);
E X I T (SUBST(X,Z)=SUBST(Y,Z)) v LOSE(X,Y);

VAR U,V,X 1 ,Y 1 :TERMLIST; VAR XZ,Y2:TERM; VAR 22:SUB;
BEGIN

Z Initialization of variables Z
U:=ZERO; V:*ZERO; Z:sZ 1; X 1 :=X; Y 1 :=Y;

INVARIANT (SUBST(U,Z)=SUBST(V,Z)) v LDSE(X,Y)

12

!

i

WHILE (X 1 +ZERO) A (Y 1 {ZERO) 00
BEGIN
X2:= SUBST(HO(X 1),Z);
Y2:= SUBST(HO(Y 1),Z);
IF ISVAR(X2) THEN BEGIN IF lSVAR(Y2) THEN Z:=COMP(Z,X2,Y2);

IF OCCUR(X2,YZ) THEN LOSE(X,Y)
-_ ELSE Z:=COMP(Z,X2,Y2)

EN0
ELSE BEGIN IF ISVAR(Y2)

THEN BEGIN IF OCCUR(Y2,X2) THEN LOSE(X,Y)
ELSE Z:=COMP(Z,Y2,X2)

EN0
ELSE BEGIN IF FNLT(X2)=FNLT(Y2)

THEN UNIFY (TERMS (X2),TERMS (Y 2),
ELSE LOSE(X,Y)

t,Z2)

EN0
END;

U :=RCONS(U,HD(X I)); V :=RCONS(V,HD(Y 1));
X 1 :=TL(X 1); Y 1 :=TL(Y 1);
END; Z End of WHILE body Z

END; Z Procedure body Z

Figure 4: Versiorl 1

13 DEBUGGING AND EXTENDING DOCUMENTATION

LOSE NOT FOUND

(ISTERMLIST(Y) 6 lSTERMLIST(X) 6 LOSE(X,Y) v SUBST(W ,281)~SUBST(Val Jr1) &
-Yl@ldERO A -XI@ldERO

+ LOSE(X,Y) v SUBST(Y,Z@ 1)=SUBST(X,to 1))

(LOSE(X,Y) v SUBST(U,Z)=SUBST(V,t) 6 -Y 1 aZERO & -X 1 =ZERO 6
4SVAR(SUBST(HD(X 1),Z)) 6
-ISVAR(SUBST(HD(Y 1),Z)) 6 FNLT(SUBST(HD(Y 1),Z))~FNLT(SUBST(HD(Xl),t))

+ lSTERMLlST(TERMS(SUBST(HD(Y 1),Z))) &
(LOSE(TERlvlS(SUBST(HD(X I),Z)),TERMS(SUBST(HD(Y 1),Z))) v
SUBST(TERMS(SUBST(HD(Y 1),Z)),Z2w 1)=SUBST(TERMS(SUBST(HD(X 1),Z)),Z2*1)

+ LOSE(X,Y) v SUBST(RCONS(U,HD(X 1)),Z)=SUBST(RCONS(V,HD(Y 1)),t)) dt
lSTERMLlST(TERMS(SUBST(HD(X 1),Z))))

09
(LOSE(X,Y) v SUBST(U,Z)=SUBST(V,Z) & -Y 1 =ZERO & l QX 1 mZER0 &
ISVAR(SUBST(HD(X 1),Z)) 6
ISVAR(SUBSt(HD(Y 1),Z)) & OCCUR(SUBST(HD(X1),Z),SUBST(HD(Y 1),t))

+ PRE,LOSE(X,Y) 6 (RES,LOSE(X,Y)
+ LOSE(X,Y) v

SUBST(RCONS(U,HD(X 1)),COMP(Z,SUBST(HD(X 1),Z),SUBST(HD(Y 1),I)))
=SUBST(RCONS(V,HD(Y 1)),COMP(Z,SUBST(HD(X 1),Z),SUBST(HD(Y 1),Z)))))

Figure 5: Some VC’s for version 1 in simplified form

v.HENKE and LUCKHAM 14

Corresponding to the lack of any detailed information, the system is not able to simplify more
than the most trivial parts of the generated VC’s.

Discussion of the problems iuvolved in version 1:

a) Failure Handling: Trying to define pre- and post-conditions for the missing procedure LOSE
as required by the system, the programmer realizes that indication of failure is a change of the
state rather than an action to be invoked (a direct way to put across an error message, e.g. In form
of a jump to the top level is not available in Pascal). Thus, he should use a boolean variable
FLAG whose value will indicate success or failure. Accordingly, the procedure UNIFY gets o n e
more variable parameter, such that it returns the value of FLAG together with a new value of 2.
Each call to LOSE is to be replaced by FLAG:=O, and the initial value of FLAG will be 1. The
EXIT assertion must be changed to specify the use of FLAG:

E X I T (SUBST(X,Z)=SUBST(Y,Z) A FLAGsI) v FLAG=0

An equal change must be made in the INVARIANT (I f the INVARIANT is not changed, t h e
necessity of the chsnge will be seen in later runs in the path leading from the loop to the EXIT.)-
see Section 2.4(iii).

b) Missing Code: The necessity to update the value of Z after the recursive call to UNIFY can be
detected by analysing VCe3. The relevant parts are

-1SVA R (S U B S T (H D (X I),Z)) & 1ISVA R(SUBST(HD(Y l),Z)) 8c
FNLT(SUBST(HD(Y l),Z))-FNLT(SUBST(HD(X l),Z)) 8c SUBST(U,Z)-SUBST(V,Z)

+ SUBST(TERMS(SUBST(HD(Y f),Z)),Z2*l)=SUBST(TERMS(SUBST(HD(X 1),2)),22r,l)
-+ SUBST(RCONS(U,HD(X I)),Z)=SUBST(RCONS(V,HD(Y l)),Z)

V+3 as i t stands is not provable (there are obvious counterexamples). The first two lines
indicate that it corresponds to the path containing the procedure call UNIFY(..,Z2). The purpose
of this call is to extend Z to a substitution 22 that unifies the pair HD(X 1) and HD(Y 1) as well as
U and V. Indeed, the occurences of Z in the last line of V&3 should be 231. The f inal value

- o f 2 at the e n d of the path should be the va lue of 22 returned by UNIFY i f the at tempted
unification succeeds. Thus the actlon on the path is not what was intended, and the code must be
changed- Section 2.4(ii). The correct action can be achieved by adding

I F F L A G - 1 T H E N Z:=Z2;

immediately after the call.

c) Error in the Case Analysis: VC*9 is of the form PD(QDR). The programmer notices t h e
combination of Boolean tests

ISVAR(A)AISVAR(B)AOCCUR(A,B)

in part P. This means that VCw9 expresses a condition on the action of the program along the
path corresponding to this combination of cases. This action can be deduced from Q and R: the
“procedure” L O S E i s c a l l e d , a n d t h e s u b s t i t u t i o n Z I s u p d a t e d t o COMP(Z,C,D), T h i s

115 DEBUGGING AND EXTENDING DOCUMENTATION

,
L

L

combination of actions is clearly wrong; indeed, the programmer’s intention in this case is that the
program should do nothing to 2 and continue+nother example of Section 2.4(ii). This error fs

fixed by adding an extra IF statement for the case ISVAR(XZ)AISVAR(Y~)A(X~~Y~) (see figure
6).

d) Expansion of t h e I N V A R I A N T : To sta te the invar iant o f the loop, the programmer
introduced the variables U and V which are intended to hold the values for the initial parts of
the termlists X and Y. From looking at VCoI he can see that

(0 SUBST(U,Z)=SUBST(V,Z)

has to imply

(2) SUBST(X,Z)-SUBST(Y,Z)

when control ieaves the loop, i.e. when XI-ZERO and Y I-ZERO, and the algorithm is successfui.
This is tmpossible unless some re la t ionship between U,V and X,Y respectively Is g i v e n - a n
example of Section 2.4(iii). Now, the intended relationship is

(3) APPEND(U,X 1)=X A A PPEND(V,Y I)=Y

where APPEND is the standard LISP function. The question is, whe& should this be added t o
the documentation? Further analysis of VW shows that the only possible place Is the invariant
of the loop (the other parts of the VC derive from entry and exit condition and the loop control
test). The obvious properties of APPEND

(4) APPEND(ZERO,L)-L APPEND(L,ZERO)-L

will be assumed as axioms, guaranteeing that (3) will be true when entering and leaving the loop.
Then, (I) will imply (2), provided both X 1 and Y I equal ZERO at the end. On the next run with
the two axioms on APPEND added, the omission of a corresponding test after leaving the loop
will be visible in the VC, so a statement

IF (X WZERO) v (Y WZERO) THEN FLAG:=&

is added at the end of the procedure.

R E M A R K The programmer could as well try to figure out what other properties of A P P E N D
are required to prove invariance of the invariant around the loop, but he leaves that to t h e
system as he hopes to find what is needed from the W’s of a subsequent run (refer to Section 3.3
b). Note that the function APPEND is used only in the documentation.

e) tlse of G h o s t Variables arid Virtual Program: As a data flow analysis would show, t h e
variables U and V are not necessary to compute the final result. They are needed only to express
the invariant of the main loop. Therefore they are called “ghost yarlables” [Clint]. Obviously,
assignments to ghost variables need not be executed at run tlmc nor translated by a compiler.
Thus these statements are considered “virtual”; their purpose is to ensure the correct curxnt
values of the ghost variables as the computation proceeds.

v.HENKE and LUCKHA M 16

The technique of using ghost variables and pieces of virtual program for documentation purposes
is very useful and quite common. Although they often could be eliminated as part of the program
text - especially in the context of arithmetical problems where most operations are invertible - they
represent a powerful tool. Whether a programmer chooses virtual program or not depends on his
preferences and the problem domain. I n o u r e x a m p l e , U a n d V c o u l d b e r e p l a c e d i n t h e
invariant by expressions like EXCLUDE(X 1,X) meaning the remaining initial list after chopping
off X 1 from the right end of X. In this way, EXCLUDE becomes sort of an inverse function of
APPEND. However , we prefer the v i r tua l program approach s ince i t expresses c learer the
building-up of the values of U and V simultaneously with the other computation; beside that, the
ax ioms and goals involv ing the equal i t ies SUBST(U,...)-SUBST(V,...) are compl icated even
without the difficulties added by the use of EXCLUDE, as will be seen later:

3 . 2 D A T A T Y P E S A N D T Y P E C H E C K I N G . F o r p r o g r a m v e r i f i c a t i o n , d a t a t y p e d e f i n i t i o n s
represent sets of axioms defining the semantics of the types. They are primitive statements in the
verification basis. This is usually called the “abstract” definition of a data type. A handy formalism
is needed that permits the programmer to define his types without having to write down ail the
axioms explicitly. The unification program here uses recursive types. We adopt the following
formalism for defining recursive data types. It is closely related to suggestions of [McCarthy 19631
and [Hoare 19731, and is an extension of and a departure from what is possible in the present
version of Pascal.

A type definition is made by listing alternatives. An alternative is either a simple type (e.g., one
that is a type predefined in the language, or a constant) or a composed type. In a more formal
BNF-like notation:

<type definition> + <type name> ‘:= <type> (1 <type>)0
<type> c <simple type> 1 <composed type>
<composed type> c <constructor> ‘(<selector- I >:<type- l>, . . ,<selector--n>:<typen> ‘)

(‘IF <constraint>)
<simple type> 4- <constant> 1 <type name>
<constraint> c <boolean expression of selector names>

with the restriction that the names of all constructors in a type definition and all selectors in one
composed type have to be distinct. The formal type definition syntax permits simple kinds of
constraints to be placed on a constructor.’ The meaning of the constraint is that in order to
constuct an element of the type, the constuctor must be applied to arguments that satisfy the
constraining condition. (an example is the type SINGLESUBstitution below).

In this notation, the data types to be used in our program may be defined by the following (only
the upper-case letter part of the names is used in the programs):

T E R M :- V A R 1 MKTERM(FNLT:CONST, T E R M S : T E R M L I S T)
I TERMLIST :-
i

Z E R O 1 C O N S (H D : T E R M , T L : T E R M L I S T)
SINGLESUBstitution :- PAIR(VAR:VAR,TERM:TERM) IF 1 O C C U R (V A R , T E R M)

I SU Bstitution :- Z E R O 1 MKSUB(REST:SUB, LAST:SINGLESUB)

1

i

17 D A T A T Y P E S A N D T Y P E C H E C K I N G

VARiables and CONSTants are assumed as primitive types. TERMLIST is just a linear list of
TERMS. The constraint on SINGLESUB means %PAIR(V,T) is a SINGLESUBstitution only if
V does not occur in T.”

Notation: IS<typename> denotes the type predicate (i.e. characteristic function) for <typename>.

The type definition determines the logical type of all the functions occuring in it (constructors a n d
selectors) . For example , HD maps TERMLIST into TERM, and MKTERM is a funct ion f rom
CONST!::TER MLIST into TERM (:::: direct product). It is assumed that a selector function is
defined only for objects belonging to the corresponding constructed subtype.

At present the verifier does not yet accept type definitions but needs to be given the type axioms.
The definition of, e.g., SUBstitution denotes a set of axioms including standard relationships
between constructors and selectors:

ISSUB(ZER0)
IF ISSUB(A)/\ISSINCLESUB(B) T H E N I S S U B (M K S U B (A , B))
REST(MKSUB(A,B))=A
LAST(MKSUB(A,B))-B

and the induction rule

for any formula F.

F(ZER0) F(A) I- F(M KSUB(A,B))
---------m-----------m

ISSUB I- F(S)

The functions defining a type (constructors and selectors) are submitted to the system as
DEFFUN’s. If there are constraints on a type (as for SINGLESUB), type checking also involves a
check if those conditions hold whenever a new object of the type is constructed; thus, the
constraints become part of the ENTRY assertion of the DEFFUN for the respective constructors,
When the program is augmented by DEFFUN’s for all subfunctions, the system will generate
complete argument type checks as part of the VC’s. However , for reduct ion of the VC’s t h e
assertions have to include a type predicate for each variable that is passed as a parameter to a
function or procedure. In this way, the verifier will do type checking automatically.

While formulating the type declarations for the subfunctions it was noticed that in the use of
SUBST in the INVARIANT the first argument is a termlist whereas in its function calls in the
assignment statements the first argument is a term. In order to avoid this type conflict a separate
function TSUBST is introduced for application to terms.

v.HENI<E and LCJCKHA M 18

3.3 VERSION 2: CONSTRIICTING A BASIS. Version 2 of the procedure UNIFY (see f igure
6 on the nest pap;c) is a correct program m the sense that the code does satisfy the ENTRY/EXIT
assertions. The asset tions, (including the invariant) have been expanded to a point where they
o u g h t t o b e sufIicIcntly dctailrd. This version contains those axioms and goals that are naturally
a n t lcllja ted by the programmrr. A m o n g those are astoms that express intended properties of the
data types and rubfurlctlons. In order to speed up the simplifer, only those data type axioms that
were really needccl have ken added. T h e DEFFUN’s for the basic data type functions have also
been included; they consist of just the obvious input and output specifications (essentially type
i n f o r m a t i o n) .

What still remains to br clone is to establish an adequate basis for verifying the top level, i.e.,
completion of the documentation. Below we demonstrate techniques for constructing the basis by
e x t r a c t i n g f r o m t h e r e d u c e d VC’s add i t iona l spec i f ica t ions (or “lemmas”) on the subfunctions
which are believable and which permit the system to completely reduce the VC’s to TRUE.

GOALFILE --
Z Axioms defining the data types and basic functions Z
AXIOM ISTERMLIST(ZER0) +-+ TRUE;
AXIOM ISSUB(ZEROkTRUE;

2 Axioms describing properties of subfunctions i?
AXIOM APPEND(ZERO,H4;
A X I O M APPEND(GQS,ZERO)++S;
AXIOM SUBST(@X,ZERO)tiX;
AXIOM SUBST(ZERO,II~W~ZERO;.;

PASCAL

DEFFUN HD(L:TERMLIST):TERM; ENTRY ISTERMLIST(L)A~L~ZERO); EXIT ISTERM(

D E F F U N TL(L:TERMLIST):TERMLIST; ENTRY ISTERMLIST(L)A~L=ZERO); EXIT ISTERMLIST(TL);

DKFUN RCONS(L:TERMLIST; X:TERM):TERMLIST;-
ENTRY ISTERMLIST(L)AISTERM(X); EXIT ISTERMLIWRCONS);

DEFFUN TERMS(X:TERM):TERMLIST; ENTRY ISTERM(X)A~SVAR(X); EXM ISTERkiLIST(TERMS);

DEFFUN FNLT(X:TERM):CONST; ENTRY ISTERM(X)A~SVAR(X); EXIT iSCONST(FNLT);

D E F F U N TSUBST(X:TERM;S:SUB):TERM; ENTRY ISTERM(X)hlSSUB(S); EXIT ISTERM(TSUBST);

DEFFUN SUBST(X:TERMLIST; S:SUB):TERMLIST;
E N T R Y ISTERMLIST(X)AISSUB(S); EXIT ISTERMLIST(SUBST);

DEFFUN COMP(S:SUB; X:VAR; Y:TERM):SUB;
ENTRY ISSUB(S)AISVAR(X)AISTERM(Y)A-OCCUR(X,Y); EXIT lSSUB(COMP);

Figure 6 Version 2 (continued)

19 CONSTRUCTING A BASIS

i

!
L

PROCEDURE UNIFY (X,Y:TERMLIST; Z 1 :SUB; VAR Z:SUB; VAR FLAG:B()OLEAN);
ENTRY ~STERMLIST(X)~ISTERMLIST(Y)AISSUB(ZI);
EXIT (~SSUB(Z)~(SUBST~X,Z~=SUBST(Y,Z)}A(FLAG=I)) v (FLAG : 0);

VAR U,V,X 1 ,Y 1 :TERMLIST; VAR XZ,Y2:TERM; VAR Z2:SUB;
BEGIN
Z Initialization of variables Z
U:=ZERO; k--ZERO; Z:=Z 1; X 1 :=X; Y 1 :=Y; FLAG:=1 ;

INVARIANT (ISSUB(Z)A~STERML~ST(U)A~STERMLIST(V)A~STERML~ST(X~)AISTERMLIST(Y I)
A(SUBST(U,Z)=SUBST(V,Z))A(APPEND&J,XI)=X)A(APPEND(V,YI)=Y)A(FLAG=I)) v (FLAG=O)

WHILE (X 1 {ZERO) A (Y 1 {ZERO) A (FLAG4) DO
BEGIN
X2:= TSUBST(HD(X 1),Z);
Y2:= TSUBST(HD(Y 1),ZI;
IF ISVAR(X2) THEN BEGIN IF ISVAR(Y2)

THEN BEGIN IF (X2/Y2)

END
THEN Z:=COMP(Z, X2,Y2)

ELSE BEGIN IF OCCUR (X2,Y2) THEN FLAG:=0

END
ELSE Z:=COMP(Z, X2,Y2)

END
ELSE BEGIN IF ISVAR(Y2)

THEN BEGIN IF OCCUR(Y2,X2) THEN FLAG:=0
ELSE Z:=COMP(Z,Y2,X2)

END
ELSE BEGIN IF FNLT(X2)=FNLT(Y2)

THEN BEGIN UNlFY(TERMS(X P),TERMS(Y2),Z,Z2,FLAG);
IF FLAG=1 THEN Z:.ZZ

END
ELSE FLAG:=0

END
END;

U :=RCONS(U,HD(X I)); V :=RCONS(V,HD(Y 1)I;
. X 1 :=TL(X 1); Y 1 :=TL(Y 1);

END; Z End of WHILE body Z

IF (X 1 +ZERO) v (Y 1 /ZERO) THEN FLAG:=0
END; Z Procedure body Z

Figure 6: Versioll 2 (intermediate versiott)

v.HENKE and LUCKIIA M

VC’s 1 3 5 6 8 are reduced to TRUE

2 0

(ISTERMLIST(X) & ISTERMLIST(Y) & ISSUB(Z81)AISTERMLIST(W)AISTERMLIST(W)
ASUBST(U~~~,ZW)=SUBST(V@~,Z*I)AU~I=XAV~~=YAFLAG~~=~VFLAG~~=O & ISSUB

-+ ISSUB(Z@l)ASUBST(Y,Z* 1)=SUBST(X,Z*l IAFLAGW =l vFLAGwl=O)

(ISTERMLIST(RCONS(V,HD(Y 1))) & ISTERMLlST(RCONS(U,HD(X 1))) & ISTERMLIST(TL(Y 1)) &
ISTERMLIST(TL(X 1)) & ISSUB(Z2~2) &
SUBST(TERMS(TSUBST(tiD(Y 1),Z)),Z2&2)=SUBST(TERMS(TSUBST(HD(X 1),Z)),Z2w2) &
lSCONST(FNLT(TSUBST(HDW 1),Z))) & ISTERMLIST(TERMS(TSUBST(HD(Y 1),Z))) &
ISTERMLIST(TERMS(TSUBST(HD(X 1),Z))) &
FNLT(TSUBST(HD(Y 1),Z))=FNLT(TSUBST(HD(X 1),Z)) & -ISVAR(TSUBST(HD(X I),Z)) &
-ISVAR(TSUBST(HD(Y 1),Z)) & SUBSTW,Z)=SUBST(V,Z) &
ISSlJB(7) & ISTERMLISTW) & ISTERMLISTW & ISTERMLIST(X1) & ISTERMLIST(Y 1) &
-Y 1 =ZERO & -X 1 =ZERO & ISTERM(TSUBST(HD(Y 1),Z)) & ISTERM(HD(Y 1)) &
ISTERM(TSUBST(HD(X 1),Z)) 81 ISTERM(HD(X 1))

+ APPEND(V,Y 1)=APPEND(RCONS(V,HD(Y 1)),TL(Y 1)) &
APPEND(U,X 1)=APPEND(RCONS(U,HD(X 1)),TL(X 1)) &
SUBST(RCONS(U,HD(X 1)),Z2#2)=SUBST(RCONS(V,HD(Y 1)),Z2~2))

(-X 1 =ZERO & SUBST(U,Z)=SUBST(V,t) & ISTERMLIST(Y I) 81 ISTERMLIST(X 1) &
ISTERMLIST(V) & ISTERMLIST(U) 6 ISTERMLlST(RCONS(U,HD(XI))) &
lSSUB(Z) & -Y 1 =ZERO & ISTERM(HD(X 1)) 81 lSTERMLlST(RCONS(V,HD(Y 1))) &
ISTERMLIST(TL(Y 1)) & ISTERMLIST(TL(X 1)) & ISVAR(TSUBST(HD(Y 1),Z)) &
TSUBST(HD(Y 1),Z)=TSUBST(HD(X 1),Z) & ISTERM(TSUBST(HD(Y 1),Z)) 81 ISTERM(HD(Y 1))

-+ SUBST(RCONS(U,HD(X 1)),Z)=SUBST(RCONS(V,HD(Y 1)),Z) &
APPEND(U,X 1)=APPEND(RCONS(U,HD(X 1)),TL(X 1)) &
APPEND(V,Y 1)=APPEND(RCONS(V,HD(Y 1)),TL(Y 1)))

Jb 11
(SUBST(U,Z)=SUBST(V,Z) & ISTERMLIST(Y 1) & ISTERMLIST(X 1) & ISTERMLIST(V) & ISTERMI;IST(U) &.
ISSUB & & -X 1 =ZERO -Y 1 =ZERO & ISVAR(TSUBST(HD(Y 1),Z)) & ISTERM(HD(Y 1)) &
ISTERM(TSUBST(HD(X 1),Z)) 81
ISTERM(HD(X 1)) & ISVAR(TSUBST(HD(X 1),Z)) & ISTERM(TSUBST(HD(Y 1),Z)) &
-TSUBST(HD(Y I),Z)=TSUBST(HD(X 1),Z)

a --) -OCCUR(TSUBST(HD(X 1),Z),TSUBST(HD(Y I),Z)) &
(ISTERMLIST(TL(X 1)) 81 lSSUB(COMP(Z,TSUBST(HD(X 1),Z),TSUBST(HD(Y 1),Z))) &
ISTERMLIST(RCONS(V,HD(Y 1))) & lSTERMLtST(RCONS(U,HD(Xl 1)) & ISTERMLIST(TL(Y 1))

+ APPEND(V,Y 1)=APPEND(RCONS(V,HD(Y 1)),TL(Y 1)) &
APPEND(U,X 1)=APPEND(RCONS(U,HD(X I)),TL(X 1)) &
SUBST(RCONSW,HD(X 1)),COMP(Z,TSUBST(HD(Xl),Z),TSUBST(HD(Y 1),Z)))=SUBST(RCONS(V,HD(Yl)),

- COMP(Z,TSUBST(HD(X 1),Z),TSUBST(HD(Y 1),Z)))))

Figure 7: Some VC's for version 2 in simplified form
The numbering correyjonds to the order in which the VC’s are generated.

21 C O N S T R U C T I N G A B A S I S

The analysis of the VC’s not yet reduced to TRUE shows three areas where the documentation
(the basis) has to be extrndcd. Each area is indepcnclcnt from the others, thus they can be dealt
with separately. We approach the problem of-proving a V C by first attempting to prove each
conjunct in the conclusion separately.

a) OCCtJR (V&l I): T h e conclusion o f V&l 1 contams -OCCUR(A,B). T h e p a t h o f VQI I is
determined by the control tests ISVAR(A), ISVAR(B) and A#B in its premise. By analysing the
path, -OCCUR(A,B) is found to hc an entry requirement of a call on COMP which was intended
under these conditions. So this conjunct of VC*ll is judged correct, and will be satisfied if the
user agrees to add the following specification on OCCUR to the basis:

I F I S V A R(X)AISVA R(Y)A(Y+X) T H E N -OCCUR(X,Y)-TRUE

b) APPEND (VC’s 4,‘7,9,10,11): As was ment ioned before addi t ional proper t ies of APPEND are
needed. It turns out that exactly one fact crops up in all the VC’s:

--A PPEND(RC@NS(S,HD(T)),TL(T)) = A PPEND(S,T)

L

i
i‘L

i

L

T_he programmer might have added a lot of irrelevant properties at 3.1 d) if he had started to
write down things about APPEND he thought might be helpful. As seen here, it can be more
efficient to write down only very simple axioms and delay anything further u,ntil it is seen from
the VC’s what is needed. If atomtc properties of APPEND and RCONS had been added instead,
the above fact would have to be deduced from them each time it was required (here: IO times). It
is much more efficient to add the fact to the basis at this point and justify it once during the
analysis of the basis (see section 3.4). Moreover, the user can delay completely specifying RCONS.

c) Equalities involving SlJBST and RCONS WC’s 4,‘7,9,10,1 I): AS they are the “heart” of the
problem the equalit ies Involving SUBST turn out to be the hardest to get reduced. We could
simply assume the proper t ies of SUBST and RC0NS that apparent ly would a l low complete
reduction to TRUE of all remaining VC’s. But, beside the fact that those properties may be too
complex to be believable even at the top level, a certain regularity can be observed in the VC’s,
clue to the structure of the program: The equahty in the conclusion is generally of the form

L

(1) SUBST(RCONS(A l,BI),S) - SUBST(RCONS(A2,B2),S)

whereas the premise includes a corresponding equality

(2). SUBST(A 1,s’) - StJBST(A2,S’).

Thus, it is sensible to hope that lemmas derived from one problem will be general enough to
reduce other problems as well.

Recall that applying a substltrrtion to a list means applying it to each list element separately. So
the obv ious way to simplify an equality (I> is by reducing it to equality (2) via a s t a t e m e n t
expressing a kind of commutativity:

(3) SUBST(RCONS(A,B),S) = RCONS(SUBST(A,S),TSUBST(B,S))

(the change from SW BST to TSU BST ii necessary because of the different type) together with

L

h

v.HENKE and LUCKHA M 2 2

(4) IF (X l=,X2)~(y j-Y2) T H E N RCONS(X l,Yl)=RCONS(X2,Y2)

as a goal statement. For example, look at the re.levant parts of VC*lO:

SUBST(U,Z)=SUBST(V,Z) A TSUBST(HD(Y lj,Z>=TSUBST(HD(X i),Z)
+ SUBST(RCONS(U,HD(X l)),Zj=SUBST(RCONS(V,HD(Y l)),Z)

Using the statements (3) and (4) the simplifier will generate from the conclusion the subgoal

RCONS(SUBST(U,Z),TSUBST(HD(X l),Z))-RCONS(SUBST(V,Z),TSUBST(HD(Y l),Z))

and from that

SUBST(U,Z)-SUBST(V,Z) A TSUBST(HD(X l),Zj=TSUBST(HD(Y l),Z)

which is just the premise.

A tthough (3) and (4) will simplify the other VC’s further, they are not sufficient to reduce them
completely. The equality in V&4

SUBST(RCONS(U,HD(X l)),Z2+2)=SUBST(RCONS(V,HD(Y l)),Z2+2))

will be reduced to

(5) SUBST(U,ZZQ)=SUBST(V,ZZQ) A TSUBST(HD(X lj,Z2*2)-TSUBST(HD(Y l),Z2*2)

Now, the first conjunct obviously has to be proved from the equality

(6) SUBST(U,Z) = SUBST(V,Z)

in the premise. This raises the question, how Z and Z2*2, the actual value of Zl, are related to
each other. Looking at the program text we find that 22 is the substitution returned by the call to
UNIFY in case of success; thus, 22 is an extension of Z by one or more applications of COMP.

- To express this relationship we introduce the predicate ISSUBSUB(Sl:SUB; S2:SUB) m e a n i n g
“S l is a sub-substitution of S2” or more precisely: Sl is an initial part of $2 {from which it follows
that by composing Sl with appropriate singlesub’s we can get $2). We can now formulate a
lemma sufficient to reduce the first equality in (5) to (6):

I F ISSUBSUB(Z,Z2) A SUBST(U,Z)=SUBST(V,Z) T H E N SUBST(U,Z2j=SUBST(V,Z2)

provided the predicate JSSUBSLJB(Z,Z 1) is added to the exit condition of UNIFY and therefore
also to the invariant of the WHILE loop.

In order to prove the second conjunct of (5) we have to look for “similar” equalities in the premise
of-VC*4. Obviously, the relevant parts are

(7) SUBST(TERMS(TSUBST(HD(Y i),Zjj,Z2*2j=SUBST(TERMS(TSUBST(HD(X l),Z)),Z2+2)
A FNLT(TSUBST(HD(Y l>,Z))=FNLT(TSUBST(HD(X l),Z))

2 3 C O N S T R U C T I N G A B A S I S

--

t-

L

i.

L
L

w h i c h e x a c t l y m e a n t h a t TSUBST(HD(X l),Z) and TSUBST(HD(Y l),Z) are unified by Z2*2. If
we add as a new axiom (noQq.&+ in figure 8 (appendix)) the condition stating when two functional
terms are unified, then (7) will be replaced by: .

(8) TSUBST(TSUBST(HD(Y I),Z),Z202)=TSU BST(TSUBST(HD(X l),Z),Z2*2)

The problem now is to prove the second conjunct of (5) from (8). This is a plausible implication
and is added as a goal (no, I6 in figure 8).

Similarly, other lemmas are derived to reduce the remaining VC’s to TRUE.

The third version of the top level program is shown in appendix (figure 8). Using the axioms
and goals listed in figure 8 the system is able to reduce all the verification conditions to TRUE
except VCe2; this involves more complex propositlonai structure and is proved easily by the
theorem prover. Thus, figure 8 contains an adequate documentation of the top level.

3.4 ANALYSIS OF THE VERIFICATION BASIS. The basis as given in figure 8 is adequate
to reduce the top level VC’s completely, but by no means does the verification of the program end
at this point. Beside axioms about data structure primitives the basis contains spcifications on
non-primitive functions and lemmas relating these functions.

Analysis of the verification basis is intended to show that the basis is acceptable, that is, we can
write programs for the second level functions that satisfy the DEFFUN’s and the lemmas. A fairly
sensible order of doing this is the following:
1)
2)

Axioms from user-defined data structures and standard properties of primitives are accepted,
Atl basis statements involving only primitives must be derived from the standard properties.

3) The number of remaining statements involving second level functions Is reduced by finding
dependancies between them.

4) Code for the second level functions is written to satisfy the DEFFUN’s and the remaining

- basis specifications.
5) If a lemma cannot be satisfied, it must be changed. This in turn requires establishing the

adequacy of the altered basrs for verifying the top level.

Following this scheme, (refermg to figure 8 (appendix)) we find that axioms +I and *2 are part of
ths; data type definitions. (Note that no use was made of other data type axioms so far; however,
they will be required to verify lower level functions.) We take the f u n c t i o n s A P P E N D a n d
OCCUR as primitives (standard library functions); axioms nos.3,4,6 are standard properties of
them.

Obviously, axiom *I I follows immediately from axiom *IO and goal *l2.

A11 the remaining basis statements involve second level functions. They obviously cannot be
justified using only the given DEFFUN.‘s, but provide further specifications of the subfunctions.
They must be regarded as necessary conditions that the programmer’s code must satisfy. In this
way, they may serve as “guide lines” for the writing of second level programs; some of them - e.g.,
nos. 9,10,13 - can be translated directly,into code as part of the case analysis.

v.HENKE and LUCKHAM 2 4

i

t

L

For some of the functions the programs are staightforward. Axioms 415 and +7 specify RCONS: If
we define RCQNS by

RCONS(X,Y) :- APPEND(X,LIST(Y))

t&n +5 follows easily from well-known properties of APPEND and LIST. Taking COMP as t h e
abbreviation

COMP(S,V,T) :- MKSUB(S,PA IR(V,T))

the lemmas nos. 8,9,10, and 12 give the obvious specification of ISSUBSUB in terms of MKSUB.

In appendix figure 10 programs for the second level functions are given which correspond to the
DEFFUN’s used at the top level. The verification that these programs satisfy the DEFFUN’s can
be done relative to a basis consisting of the data type definitions (i.e. axioms and DEFFUNS for
the constructors and selectors.) This is straightforward since the programs directly reflect the
recursive nature of the types.

Remark I t should be noted that verification basis for the top level does not necessarily
completely predetermine the way second level functions have to be implemented. In our example,
application of substitutions can still be either simultaneous or sequential; this solely depends on
the representation of the function COMP (or MKSUB). (Although the type definition for SUB
implies sequential application, we did not make any use of those axioms.) The implementation in
figure IO assumes sequential application of substitutions.

Now we must show that the programs satisfy the rest of the lemmas, Usually, proving that a
lower level function meets a specification (satisfies a lemma in the basis) means setting up a new
verification problem by adding the lemma to be justified to the ENTRY and/or EXIT assertions
for the body of the function. In complex cases, especially where the proof requires’ induction civer
a data structure, it is necessary to reduce the problem by hand first. (Data structure’induc’tion
rules are not implemented yet.)

As an example, we show the justif ication of the goal * 15, using the programs from figure 10.
- First, goal *15 was reduced using the induction rule for the data type SUB to the induction step

problem (the base case problem is trivial). This problem in turn was further simplified by hand to
(15’) using properties of ISSUBSUB and the assumption of the induction step.

(15’) ISSUB(S 1) A ISSINCLESU B(S2)
3 TSUBST(L, MKSUB(S 1, S2)) - SINCLETSUBST(TSUBST(L, S I), S 2)

If (IS’) can be verified, then we can use induction to prove goal 015, Figure I I (appendix) shows
the verification of (15’).

Perhaps the reader may be convinced that the proofs of all the remaining lemmas in figure 8 (see
Appendix) are as straightforward as *15. Hence figure 8 presents an adequate and acceptable
basis (i.e. the lower level functions can indeed be coded to satisfy the lemmas). The top level
then is verified.

This is not so.

2 5 A N A L Y S I S O F T H E B A S I S

I -
Goa1 46, although simple enough, hides (i.e. depends upon) an extra property of the top level
that has not yet come to light. It is not true of substitutions in general, thus it is not acceptable in
th is form. It is t rue of the substitutions c o n s t r u c t e d b y t h e p r o g r a m (w h i c h i s w h y i t was
“believable”) because they have a special property. Namely, whenever a variable occurs as the left
hand side of a pair, it will not occur in any later pair. This property holds for these substitutions
because whenever a substitutron for a variable is added to 2, that particular variable is eliminated
from all expressions remaining in X I and Y 1 (by then applying 2). The property is equivalent t o
idelnpotency of the substitution which we express by the new predicate “IDEM(S

IDEM - SUBST(X,S) - SUBST(SUBST(X,S),S) for a l l X .

We must change goal *16 to goal rIGNEW by adding IDEM to it as a premiss and then start
verification of the lop levrl agarn (see step 5, bq$lning Section 3.4). Reasoning along the lines
developed in earlier sections (a11d analysis of the new VC’s) shows that we have to ‘expand all
assertions in the program by appropriate instances of IDEM (see figure 12). Analysis of the Vc’s
shows that one additional lemma is required:

IDl?M(S 1) 3 IDEM(COMP(S l,TSUBST(X,S l),TSUBST(Y,S 1)))

i We add this to the basis (goal 46A) and obtain again a complete reduction of the top level VC’s.

I_. ENTRY ISTERMLtST(X)~tSTERMLtST(Y)~tSSUB(Zl)~tDEM(Zl);
E X I T (&SUB(Z) A (SUBST(X,Z)=SUBST(Y,Z)) A tSSUBSUB(ZI,Z) h tDEM(Z) A (FLAG=1))

t

v (FLAG = 0);

INVARIANT (..&APPEND(V,Y I)=Y)AtSSUBSUB(Zt ,Z) A IDEM A (FLAG4)) v (FLAGsO)

Z 16NEW Z GOAL TSUBST(@X,aZ)=TSUBST(aY,aPI)

L S U B ISSUBSUB(@S,Z) A IDEM
A (TSUBST(TSUBST(X,eS),Z)=TSUBST(TSUBST(Y,mS),Z));

Z 16A Z GOAL tDEMVZOMP(@S 1 ,TSUBST(~QX,~PS 1),TSUBST(QY,RPS 1))) SUB IDEM(
-

Figure 12: Expam-led documecltatioll for idempoterlcy

The addi t ional lemma +l6A can be justified b y s h o w i n g that it is der ivable f r o m s t a n d a r d
properties of substitution composition and application. (This proof is given in the appendix.)
This means that it will be satisfied by correct code for COMP and TSUBST.

v.HENKE and LUCKHA M 2 6

--
3 . 5 V E R I F I C A T I O N O F FIJRTIIER P R O P E R T I E S O F U N I F Y , W h e n t h e u s e r h a s
deve loped an adequate documrntatiot~ for his programs with respect to one property, he can
attempt to exploit it for the verification of further properties. In this section we demonstrate how
additional verification problems can be solved by modifying the established basis and assertions.

The basis developed at the end of section 3.4 (figures 8 and 12) is adequate for verifying a rather
weak property of our unification program. However, even this task has brought to l ight the
unusual and useful idcmpotency property of the substitutions constructed by this program. Now,
when we come to verify more stringent requirements we find further code changes to be necessary,
and these are justifiabe by idempotency.

Our goal is to verify that
(a) UNIFY generates a most-general-uriifier, if the termlists passed as arguments are unifiable;
(b) UNIFY returns FLAC=O, i.e. failure, only if the termlists are not unifiable.

In order to prove (a) we Introduce a predicate

MGU(X,Y,Z) - % is a most-general-unifier (or mgu, for short) of X and Y, i .e. S is a
I

ir

substitution that unifies X and Y, and if S’ is another unifier for X and Y
then S is a sub-substitutron of S’.”

First of all, assertions in the program are strengthened by replacing all occurrences of equations
o f t h e f o r m SUBST(X,S)=SUBST(Y,S) b y MGU(X,Y,S). W e c a n n o t m a k e a s i m i l a r s i m p l e -

minded “strengthening” o f t h e b a s i s s i n c e s o m e goal s tatements are not t rue i f a l l o f the
substitutions are restricted to betng mgu’s. We must find out what properties of MCU need to be
added to the existing basis. We therefore return to the verifier and try to derive the necessary
axiomatitation for MGU from the VC’s.

The first problem arises from a VC corresponding to the path from ENTRY to INVARIANT,
which is of the form

ISTERMLIST(X)AISTERMLIST(Y) A ISSUB -) MCU(ZERO, Z E R O , 21). . . .

I
-

This can only be true if ZI-ZERO (see case (iii) in section 2.4). Now, Zl is a value parameter,
So we must ask if ZI can be elimrnated from the body of the procedure.

This leads us to consider the path containing the recursive call to UNIFY, and here we find in
general that Zlr’ZERO. The rccursIvc call is of the form

UNIFY(TER MS(X2), TERMStY?), Z, 22, FLAG)

where X2=TSUBST(HD(X I), Z) and Y?=TSUBST(HD(Y I), Z), a n d t h e c u r r e n t v a l u e o f 2
replaces the formal parameter Zl. Notice that X2 and Y2 are values resulting from applications
of Z to X 1 and Y 1. If we trace the computation of this call, we find that the only use made of Z
(the value of Z1) is to apply it again to X2 and Y2. By idempotency, this second apptication is
redundant! Thus, if we omit the parameter Zl altogether and initialize 2 to ZERO, we get exactly
the same result by appropriately composing the substitution returned by the recursive call with the
old Z. To do this, we introduce a general composition function,

b -I.(

-

27 F U R T H E R P R O P E R T I E S O F U N I F Y

-
SCOMP(Z l,Z2) - the composition of two substitutions, Zl and 22.

It turns out that the verification can now be completed by adding one crucial new axiom which
describes how to build up mgu’s:

(0) MGU(X I,Y I,S 1) A MCU(TSUBST(X2,S l), TSUBST(Y2,S I), S2)
3 MCU(RCONS(X 1,X2), RCONS(Y I,Y2), SCOMP(Sl,S2))

(goal 026 in figure IS). If we replace the o l d COMP(Z,X,Y) b y t h e e q u i v a l e n t
M K S U B(Z,PA IR(X,Y))
involve an updating of Z.

a spec ia l case of (f:!) (goal ~27) wi l l reduce the remain ing VC’s that

Figure 13 shows the necessary changes to the program and basis for the new problem (compare
with figure 8). The remaining new goals are obvious consequences of the definition of MCU. As
for acceptability, we give a justification of the not immediately obvious lemma (!:!) in the appendix.

>
L-

Remark: Having madr! these changes (Justified on the basis of idempotency), the reason for
having to verify idempotency in the old code disappears, and the required specifications of the
new code can be verified without it (see figure 13). Similarly, we no longer need to verify the sub-
substitution property.

i

t

v.HENI< E and LUCXHA M 2 8

Z Goals for MGU Z
Z 26 Z GOAL MGU(RCONS (nX 1 ,mX2),RCONS (nY 1 ,(ipY 2), SCOMP(GQS 1,&2))

SUB MGU(X 1 ,Y 1 ,S 1)AMGU(TSUBST(X~,S 1),TSUBST(Y2,S 1),S2);
Z 27 Z GOAL MGU(RCONS(@X I ,eX2),RCONShY 1 ,mY2), MKSUB(opSI 4S2))

SUB MGU(X 1 ,Y 1 ,S 1)AMGU(TSUBST(X~,S 1),TSUBST(Y2,S 1),S2);
5! 28 Z GOAL MGU(RCONS(@X 1 ,mX2),RCONS(mY 1 ,aY2),6 1)

- SUB MGU(X I ,Y I ,S 1)A(TSUBST(X~,S 1)=TSUBST(Y2,S 1));
Z 29A Z G O A L MGU(~X,~IY,PAIR((~~X,~Y)) S U B ISVAR(X)AISTERM(Y)A-OCCUR(X,y);
Z 298 Z G O A L MGU(@X,~Y,PAIR(QY,~X)) S U B ISVAR(Y)AISTERM(X)A-OCCUR(y,X);
i? 30 i! G O A L MGU(mX$?Y,mS) S U B (FNLT(X)=FNLT(Y))AMGU(TERMS(X),TERMS(Y),S);
Z 3 1 Z AXIOM MGU(ZERO,ZERO,ZERO)wTRUE;

DEFFUN MKSUB(S:SUB; S 1 :SINGLESUB): SUB;
ENTRY ISSUB(S)AISSINGLESUB(S 1); EXIT ISSUB(MKSUB);

DEFFUN PAIR(X:VAR; Y:TERM): SINGLESUB;
E N T R Y ISVAR(XhISTERM(YhOCCUR(X,Y); EXIT ISSINGLESUB(PAIR);

DEFFUN SCOMP(S 1 ,S2:SUB):SUB; ENTRY lSSUB(S 1)AISSUB(S2); EXIT lSSUB(SCOMP);

PROCEDURE UNIFY (X,Y:TERMLIST; VAR Z:SUB; VAR FLAG:INTEGER);
ENTRY . . .
E X I T (lSSUB(Z) A MGU(X,Y,Z) A (FLAG=1)) v (FLAC=O);

BEGIN
Z Initialization of variables Z

I 8 . Z:=ZERO* , . . *

INVARIANT (ISSUB(Z)AISTERMLIST(U)AISTERMLIST(V)AISTERMLIST(X~)
A ISTERMLIST(Y 1)AMGU(U,V,Z)A(X~APPEND(U,X 1))A(Y=APPEND(V,Y 1))A (FLAG=1))

v (FLAG=O)

WHILE . . . DO
BEGIN
IF ISVAR(X2) THEN BEGIN IF ISVAR(Y2)

THEN BEGIN IF (X2+Y2) THEN Z:aMKSUB(Z,PAIR(X2,Y2))
END

ELSE
END

ELSE BEGIN IF ISVAR(Y2) THEN
ELSE BEGIN IF FNLT(X2)=FNLT(Y2)

THEN BEGIN UNlFY(TERMS(X2),TERMS(Y2),Z2,FLAG);
IF FLAG= 1 THEN Z:=SCOMP(Z,Z2)
ELSE FLAG:=0

END
ELSE

Figure 13: Additioml docuwentatioll amd program changes for MCU

2 9 F U R T H E R P R O P E R T I E S O F U N I F Y

Problem (b) is to show that if UNIFY returns FLAG-O then there is no unifier for X and Y.
We express this property by the predicate:

NOTUNIF(X,Y) - “X and Y are not unifiable”

and set up the new verification problem

* * . (UNIFY(X,Y,Z,FLAG) 1 (. . . AFLAG= 1) v (FLAG=0 A NOTLJNIF(X,Y))

N o t e t h a t t h e p o s t - c o n d i t i o n rm@s ” FLAG=1 <=> NOTUNIF(X,Y) .I’ T h e a d e q u a t e
axiomatitation of NOTUNIF is almost straightforward. However, in goals a33 and 834 (see figure
14) the premiss MCU(. . .) is crucial for acceptabiiity.

The final program and documentation for the full verification of UNIFY is given in figure 14.

ACKNOWLEDGEGENTS. We wish to acknowledge the efforts of M. Sinttoff in helping to set up
this experiment at the beginning. N, Suzuki has cooperated at all stages in modifying the
simplification system to handle our problems.

v.HENKE a n d LUCKHAM 30

REFERENCES

[Bayer and Moore] R.S . Boyer and J S . Moore , “Proving Theorems abwt LISP Problems”,
Third IJCAI Proceedings, 1973. .

[Clint] M.Clint, “Program Proving: Coroutines”, Acta Informatica 2 (1973) 52-63.

[Deutsch] L .P . Deutsch, “ A n I n t e r a c t i v e P r o g r a m V e r i f i e r ” , P h . D . t h e s i s , U n i v e r s i t y o f
California, Berkeley, I973

[ELW] B . Elspas, I<. L e v i t t , a n d R . Waldinger, “An Interactive System for the Verification of
Computer Programs”, SRI Project 1891, Stanford Research Institute, 1973.

[Floyd] R. W. Floyd, “Algorithms 245. TREESORT3”, Comm.ACM 7 (1964).

[G o o d a n d Ragland] D . G o o d a n d L . Ragland, “ N U C L E U S - A L a n g u a g e o f P r o v a b l e
Programs”, in Program Test Methods, W.Hetzel (ed.), Prentice Hall, 1973.

[Hoare 711 C.A.R. Hoare, “Procedures and parameters: An axiomatic approach”, in Symposium
on Semantics of Algorithmic Languages, Engeler, E. (ed.), Springer-Verlag, 1971, pp. 102-
116.

[Hoare 19731 C . A . R . Hoare, “ R e c u r s i v e d a t a t y p e s ” , Memo AIM-223, Stanford Artif icial
Intelligence Project, Stanford University, 1973.

[Hoare a n d Wirthl C . A . R . Hoare a n d N. W i r t h , “ A n A x i o m a t i c D e f i n i t i o n o f t h e
Programming Langriage PASCA L”, Acta Informatica 2 (1973), 335-355.

[ILL] S. Igarashi, R.L. Lonclon, and D.C. Luckham, “Automatic Program Verification I: Logical
Basis and Its Implementation”, AIM-200, Stanford Artificial Intelligence Project, Stanford
University, 1972.

[K i n g a n d F l o y d] JC. K i n g a n d R . W . F l o y d , ” An In terpretat ion Or iented Theorem Prover
- over the Integers”, Journal of Comp. and SysSci., ~01.6, no.4, Aug. 1972 pp.305-323.

[M c C a r t h y] J. M c C a r t h y , “A basis for a mathematical theory of computation”, in C o m p u t e r
Programming and Formal Systems, (ed. Braffort and Hirschberg), North Holland, 1963.

. [Morales] J. Morales, “Verification of Sorting A Igorithms”, unpublished report, Sept 1973.

[Suzuki1 N. Suzuki, “Verification of Programs by Algebraic and Logical Reduction”, forthcoming
Memo, Stanford Artificial Intelligence Project, Stanford University.

[W i r t h] N . W i r t h , “ T h e programming language Pascal”, Acta Informatica 1.1 (197 I), 35-63.

31

A P P E N D I X

A P P E N D I X

Proofs of lemmas
Figure 8: Third version of top level + corresponding goalfile
Figure 9: Sample VC’s for third version
Figure 10: Second level functions + goalfile
Figure 11: Lemma about goal 15
Figure 14: The complete program and documentation for UNIFY

Proofs of Leni 111 as

Notation: We use the following short-hand notation:
“X *cd ” for suhstltution application (TSUBST/SUBST)
“bco~” f o r substitution composition (MKSUB/SCOMP)
“X ,:: y ” for list concatenation (A PP/RCONS)
“<x *y >” for PA IR(X,Y)

We make use of certain facts about substitutions:

(i) associativity of ‘b”: cc la(&2@0~3) - (d locl~2)aclc3
(ii) a kind of associativity of “.“: (x.0~ 1).0& - x.(oc 1~00)
(i i i) a k ind of d ist r ibut iv i ty of “.“: (xsy).oc - (x&‘(y.oc)

1. Coal J6A: IDEM + IDEM(oc@<x.oc, y.d>)

This is equivalent to proving

(d @ <X.d, y.cd @ (cd @ <x.cd, y.clb) - cd bp <X.d, y.oc>

from the assumptions

(a 1) oc~oc=cc, (a 2) isvar(x.oc), (a 3) isterm(y.oL), (a4) 1 occur(x+&y.clc)

(a2)-(a4) are from the ENTRY assertron for COMP; they imply that the single
substitution is idempotent, namely

b) <x.cd, y.‘A> cg <X.d, y.cd> - <x.ct, y.co

Now
(d @ <X.d, y.cdr) @ (cd Q <X.d, y.cb)

- ((d @ <x.05, y*co) @ cd) Q <X.d, y.oc>
- [(oc Qb 4 @ <X.d, y.(d@cd>)J bD <X.d, y.oc>

- id @ <X.d, y.cd @ ~xxdc y.oc>
- cd @ <X.d, y.oc>

by (0
using standard properties
of ‘7 a n d “a” and (al)
by (4
by b), 0)

P -

t-

.

v.HENKE and LUCKHAM
32

2 . L E M M A 01:) f o r MGIJ (Section, 3.5)

We prove (0) from the assumptions

Suppose
Then by (1)
SO

which implies
From this we infer
Thus, by (2)
Ol-

for suitable fi2, which

.
/31 - cd?ofl?
/3 - (d l@oc2)@fi2
proves (:::).

for suitable pl,

by W, (iii)

L

L

.

33

GOALFILE

APPENDIX

Z Axioms defining the data fypos and basic functions Z

Z 1 Z AXIOM ISTERMLIST(ZER0) ++ T R U E ;
Z 2 Z A X I O M ISSUB(ZERO)++TRUE;

i? Axioms describing properties of subfunctions Z

Z 3 Z A X I O M APPEND(ZERO,fiS)wS;
Z 4 Z A X I O M APPEND(nS,ZERO)++S;

z 5 2 AXIOM APPEND(RCONS(~~,HD(QT)),TL(~T))~APPEND(S,T);

Z 6 X AXIOM IF ISVAR(X)AISVAR(Y)A(Y~~X) THEN -OCCUR(aX,aY)+eTRUE;

Z 7 Z GOAL RCONS(@X 1 ,@X2)=RCONS(@Y 1 ,@Y2) SUB (Xl SY 1)~(X2aY2);

Z 8 X AXIOM IF lSSUB(Z) THEN ISSUBSUB(ZERO,~PZ)~TRUE;

Z 9 Z A X I O M ISSUBSUB(sZ,~t)~TRUE;

L Z 10 Z A X I O M ISSUBSUB(~Z,COMP(at,sX,wY))wTRUE;

5! 1 1 5! A X I O M I F ISSUBSUB(Y,Z) TtlEN ISSUBSUB(~Y,COMP(~Z,@V,B;~W))*TRUE;

*> Z 12 Z G O A L ISSUBSUB(~Z,RZI) SUB ISSUBSUB(flZ2,ZI)AISSUBSUB(Z,~Z~),
ISSUE3SUB(z,nz2)hlSSUBsuB~@z2,zl);

iL
Z 13 Z AXIOM TSUBST(eoX,ZERO)tiX;

I
Z 14 Z AXIOM IF -ISVAR(X) THEN -ISVAR(TSUBST(rpX,cS))wTRUE;

! Z 15 X G O A L TSUBST(RPX,RPZ)=TSUBST(~~PY,~Z) S U B ISSUBSUB(raZ1 ,Z)A(TSUBST(X,~~ZI)mTSUBST(Y,eZ1));

i? I6 Z GOAL TSUBST(@X,RPZ)=TSUBST(~Y,~~)
SUB ISSUBSUB(nS,Z)~(TSUBST(TSUBST(X,~S),Z)=TSUBST(TSUBST(Y,~S),z));

-
Z 17 Z GOAL TSUBST(~X,COMP(~Z,~X,~Y))=TSUBST(R~Y,COMP(~Z,~X,~~))

SUB lSSUB(COMP(t,X,Y)), lSSUB(COMP(Z,Y,X));

X 18 4 G O A L TSUBST(RPX,COMP(~Z,~U,~V))=TSUBST(~Y,COMP(~Z,~U,~V))
SUB (U=TSUBST(X,Z))~(V=TSUBST(Y,Z))AISSUB(COMP(Z,U,V)),

(U~TSUBST(Y,Z))~(V=TSUBST(X,Z))AISSUB(COMP(Z,U,V));

. Figure 8 (corhucd)

v.HENI<E and LKKHA M

Z I9 X A X I O M SUBST(nX,ZERObX;

57 20 Z AXIOM SUBST(ZERO,mS)++ZERO;

Z 2 1 Z A X I O M SUBST(RCONS(ssX,nY),~Z)~RCONS(SUBST(X,Z),TSUBST(Y,Z)); .

Z 22 Z AXIOM IF FNLT(X)=FNLT(Y) THEN (SUBST(TERMS(@IX),~PZ)=SUBST(TERMS(~Y),~QZ))~
(TSUBST(X,Z)=TSUBST(Y,Z));

Z 23 Z GOAL SUBST(P~X,COMP(~Z,~A,~B))=SUBST(R~Y,COMP(~Z,~A,~B))
SUB (SUBST(X,Z)=SUBST(Y,Z))AISSUB(COMP(Z,A,B));

X 24 Z GOAL SUBST(~PX,~PZ)=SUBST(R~V,~~) SUB ISSUBSUBhZI ,Z)h(SUBST(X,@Z])=SUBST(Y,~Z~));.;

PASCAL

DEFFUN HD(L:TERMLIST):TERM; ENTRY lSTERMLlST(L)rz-(L=ZERO); EXIT ISTERM(

DEFFUN TL(L:TERMLIST):TERMLIST; ENTRY ISTERMLIST(L)A-(L=ZERO); EXIT ISTERMLIST(TL);

DEFFUN RCONS(L:TERMLIST; X:TERM):TERMLIST; I

ENTRY ISTERMLIST(L)AISTERM(X); EXIT ISTERMLIST(RCONS);

DEFFUN TERMS(X:TERM):TERMLIST; ENTRY ISTERMWWWWX); EXIT ISTERMLIST(TERMS);

DEFFUN FNLT(X:TERM):CONST; ENTRY ISTERM(X)A~SVAR(X);

DEFFUN TSUBST(X:TERM;S:SUB):TERM; ENTRY ISTERM(X)hlSSUB(S);

EXIT ISCONST(FNLT);

EXIT ISTERM(TSUBST);

DEFFUN SUBST(X:TERMLIST; S:SUB):TERMLlST;
ENTRY ISTERMLIST(X)AISSUB(S); EXIT ISTERMLIST(SUBST);

DEFFUN COMP(S:SUB; X:VAR; Y:TERM):SUB;
ENTRY ISSUB(S)AISVAR(X)AISTERM(Y)A-OCCUR(X,Y); EXIT lSSUB(COMP);

DEFFUN OCCUR(X:VAR; Y:TERM):BOOLEAN; ENTRY ISVAR(X)AISTERM(Y); EXIT fSBOOLEAN(OCCUR);

Figure 8 (continued)

1‘

I 1

-

I-

L
L

L

35

PROCEDURE UNIFY (X,Y:TERMLIST; Z 1 :SU8; VAR Z:SUB; VAR FLAG:BOOLEAN);
ENTRY ISTERML~ST(X)A~STERML~ST(Y)A~SSUB(Z~);
EXIT (ISSUB(Z)A(SUBST(X,Z)=SUBST(Y,Z)~~ISSUBSUB(ZI ,Z)A(FLAC~)) v (FLAG = 0);

APPENDIX

VAR U,V,X I ,Y I :TERMLtST; VAR XZ,Y2:TERM; VAR Z2:SUB;
BEGIN

Z Initialization of variables Z
U:=ZERO; V : = Z E R O ; Z:=Z I ; X I :=X; Y 1 :=Y; FLAG:=1 ;

INVARIANT (ISSUB(Z)A~STERML~ST(U)A~STERML~ST(V)A~STERML~ST(X 1)AISTERMLIST(Y I)A
(SUBST(U,Z)=SUBST(V,2))h(APPEND(U,X 1)=X)A(APPEND(V,Y I)~Y)AISSUBSUB(ZI ,Z)h(FLAG= 1))

v (FLAG=01

WHILE (X 1 /ZERO) A (Y 1 +ZERO) A (FLAG= 1) DO
BEGIN
X2:= TSUBST(HD(X 1),Z);
Y2:= TSUBST(HD(Y 1),Z);
IF ISVAR(X2) THEN BEGIN IF lSVAR(Y21

-_ THEN BEGIN IF (XZ/YZ)
THEN Z:=COMP(Z,X2,Y2)

END
ELSE BEGIN IF OCCUR(X2,YZ) THEN FLAG:aO

l

ELSE Z:=COMP(Z,X2,Y2)
END

END
ELSE BEGIN IF ISVAR(Y2)

THEN BEGIN IF OCCUR(Y2,X2) THEN FLAG :=O
ELSE Z:=COMP(Z,Y2,X2)

END
ELSE BEGIN IF FNLT(X’L)=FNLT(Y2)

THEN BEGIN UNlFY(TERMS(X2),TERMS(YZ),Z,ZZ,FLAG);
IF FLAG4 THEN ZsZ2

END
ELSE FLAG:=0

END
END;

- U :=RCONS(U,HD(X 1 I); V :=RCONS(V,HD(Y 1 I);
X 1 :=TL(X 1); Y I :=TL(Y I 1;

END; Z End of WHILE body Z

IF (Xl +ZERO) v (Y 1 {ZERO) THEN FLAG:=0
END; Z Procedure body 1

Figure 8: Third versiorl with documentatiorl

i

v.HENI<E and LtJClii I A M

FOR UNlFY THERE ARE I 1 VERIFICATION CONDITIONS. HERE IS ONE OF THEM:

(-XI =ZERO & -Y 1 =ZERO & FLAG=1 &
~SSUB(Z)AISTERMLIST(U)AISTERMLIST(V)AISTERMLIST(X 1)dSTERMLIST(Y 1)ASUBS+
T(U,Z)=SUBST(V,Z)AAPPEND(U,X I ~XAAPPEND(V,Y 1)=YdSSUBSUB(Zl ,Z)AFLAG=I vFLAG=O

+ lSTERMLlST(X 1) 81 -XI=ZERO & (ISTERM(HD(X1))
+ ISTERM(HD(X I 1) & ISSWZ) & (lSTERM(TSUBST(HD(X 1),Z))
+ ISTERMLIST(Y I) 81 -YI=ZERO & (ISTERM(HD(Y1))
-+ ISTERM(tiD(Y 1)) & ISSUD(Z) Er (ISTERM(TSUSST(HD(Y 1),Z))
+ (--ISVAR(TSUBST(HD(Y I),Z)) fir -ISVAR(TSUBST(HD(X I),Z))
+ lSTERM(TSUBST(tiD(Y 1),Z)) & -ISVAR(TSUBST(HD(Y 1),Z)) &

(ISCONST(FNLT(TSUC3ST(HD(Y I),Z)))
+ ISTERM(TSUBST(HD(X I),Z)) & -ISVAR(TSUBST(HD(X 1),Z)) &

(lSCONST(FNLT(TSUUST(HD(X I),Z)))
+ (FNLT(TSUBST(HD(X 1),Z))~FNLT(TSUBST(tlD(Y 1),Z))
--) ISTERM(TSUBST(HD(Y I),Z)) Rr -ISVAR(TSUBST(HD(Y 1),Z)) &

(lSTERMLlST(TERMS(TSUDST(tiD(Y I),Z)))
-I ISTERM(TSUBST(HD(X 1),Z)) & -lSVAR(TSUBST(HD(Xl),Z)) &

(ISTERMLIST(-TERMS(TSUBST(HD(X1),Z)))
+ lSTERMLlST(TERMS(TSUBST(HD(X 1),Z))) & lSTERMLlST(TERMS(TSUEST(HD(Y 1),Z))) &

lSSUB(Z) & (FLAG=1 &
ISSUB(Z~~~)ASUBST(TERMS(TSUBST(HD(XI),Z)),Z~~~)=SUBST(TERMS(N
TSUBST(HD(Y 1),Z)),Z~%~)AISSUBSUB(Z,Z~~~)AFLAG=I vFLAC=O

-+ ISTERMLIST(X 1) & 9X 1 =ZERO & (ISTERM(HD(X 1))
3 ISTERMLIST(U) & ISTERM(HD(X 1)) & (lSTERMLlST(RCONS(U,HD(X 1)))
+ ISTERMLIST(Y 1) & -Y I =ZERO i? (ISTERM(HD(Y 1))
+ ISTERMLIST(V) & ISTERMWD(Y I)) & (ISTERMLIST(RCONS(V,HD(Y 1)))
--) ISTERMLlST(X 1) & 1X 1 =ZERO & (ISTERMLIST(TL(X 1))
+ ISTERMLIST(Y1) & -Y I =ZERO & (ISTERMLIST(TL(Y 1))
--) ISSUB(Z~~~)AISTERMLIST(RCONS(U,HD(X 1)))AISTERMLIST(RCONS(V,HD(Y 1)))A

ISTERMLIST(TL(X I))AISTERMLIST(TL(Y 1))A
SUBST(RCONS(U,HD(X I)),72w2)=SUBST(RCONS(V,HD(Y 1)),Z2@2)~
APPEND(RCONS(U,HD(X I)),TL(X 1))=xA
APPEND(RCONS(V,tlD(Y 1)),TL(Y I))=YA
ISSUBSUB(Z1 ,Z~~~)AFLAG= 1 vFLAC=O))))))))))))))))))

Figure II: OIIC of the r~~~siqMicd VC's for the third version

36

137 APPENDIX

GOALFILE

AXIOM ISTERMLIST(ZER0) ++ TRUE;

AXIOM lSSUB(ZER0) +I TRUE;

AXIOM ISSINGLESUB(ZER0) ti TRUE;

GOAL WNGLESWsW SUB (S=PAIR(QX,RPY~)AISVAR(EPX)~ISTERM(BY)A~DCCUR(~X,~Y);.;

PASCAL

DEFFUN MKTERM(X:CONST;Y:TERMLIST):TERM;
ENTRY lSCONST(X) A ISTERMLIST(Y); EXIT ISTERM(MKTERM);

DEFFUN FNLT(X:TERM):CONST;
ENTRY ISTERM_ A -ISVAR(X); EXIT ISCONST(FNLT);

DEFFUN TERMS(X:TERM):TERMLIST;
ENTRY ISTERM A -ISVAR(X); EXIT ISTERMLIST(TERMS);

L

i

L

DEFFUN CONS(X:TERM; L:TERMLIST):TERMLIST;
E N T R Y ISTERM(X)AISTERMLIST(L); EXIT ISTERMLIST(CONS);

DEFFUN HD(L:TERMLIST):TERM;
E N T R Y ISTERMLIST(L)A-(L=ZERO); EXIT ISTERM(

DEFFUN TL(L:TERMLIST):TERMLlST;
E N T R Y lSTERMLlST(L)/\-(L=ZERO); EXIT ISTERMLIST(TL);

DEFFUN MKSUB(S:SUB; S 1 :SINGLESUB):SUB;
ENTRY ISSUB(S)AISSINGLESUB(S I); EXIT ISSUB(MKSUB);

DEFFUN LAST(S:SUB):SINGLESUB;

- ENTRY ISSUB(EXIT ISSINGLESUB(LAST);

DEFFUN REST(S:SUB):SUB;
ENTRY lSSUB(S); EXIT lSSUB(REST);

DEFFUN VAR(S:SINGLESUB):VAR;
- E N T R Y ISSINGLESUB(S); EXIT ISVAR(VAR);

DEFFUN TERM(S:SINGLESUE):TERM;
E N T R Y ISSINGLESUB(S); EXIT ISTCRM(TERM);

DEFFUN PAIR(X:VAR; Y:TERM):PAIR;
ENTRY ISVAR(X)dSTERM(Y); EXIT ISPAIRtPAIR);

Figure 10 (corlt hued)

c

c

v.HENKE and LUCK HAM

FUNCTION SUBST(L:TERMLIST; S:SUB):TERMLIST;
E N T R Y ISTERMLIST(L) A lSSUB(S);
EXIT ISTERMLIST(SUBST);

BEGIN
IF (S=ZERO) THEN SUBSTsL
ELSE SUBST:=SINGLESUBST(SUBST(L,REST(S)),LAST(S));

END;

FUNCTION TSUBST(X:TERM; S:SUB):TERM;
E N T R Y ISTERM A ISSUB(
EXIT ISTERM(TSUBST);

BEGIN
IF (S=ZERO) THEN TSUBST:=X
ELSE TSUBST:=SINGLETSUBST(TSUBST(X,REST(S)),LAST(S));

END;

FUNCTION SINGLESUBST(L:TERMLIST; S:SINGLESUB):TERMLIST;
ENTRY ISTERMLISTtL) A ISSlNGLESUB(S);
E X I T ISTERMLIST(SINGLESUBST);

BEGIN
IF (L=ZERO) THEN SINGLESUBST:=ZERO
ELSE SINGLESUBST:=CONS(SlNGLETSUBST(HD(L),S), SlNGLESUBST(TL(L),S))

END;

FUNCTION SINGLETSUBST(T:TERM; S:SINGLESUB):TERM;
E N T R Y &TERM(T) A ISSINGLESUB(S);
E X I T ISTERM(SINGLETSUBST);

BEGIN
IF ISVAR(T) THEN BEGIN IF (T=VAR(S))

THEN SINGLETSUBST := TERM(S)
ELSE SlNGLETSlJBST := T

END
ELSE SINGLETSUBST :a MKTERM(FNLT(T), SlNGLESUBST(TERMS(T), S))
END;.

FUNCTION COMP(S:SUB; X:VAR; Y:TERM):SUB;
ENTRY ISSUB(S)AISVAR(X)AISTERM(Y)A-OCCUR(X,Y);
E X I T lSSUB(COMP);

BEGIN COMP:=MKSUB(S,PAIR(X,Y)); END;

38

Figure JO: sccottd level futwtiotls atrd goalfile

39

X Program for verifying
lSSUB(S 1)AISSINGLESUB(S~)AISTERMLIST(L)

- 3 [TSUBST(L,MKSUB(S 1 ,S2))=SINGLETSUBST(TSUBST(L,Sl),Sz)j
Program body of TSUBST with new entry/exit conditions Z

-
PASCAL
ENTRY ISSUB(S)A(S=MKSUB(S 1 ,S~))AISTERM(X);
EXIT (TSUBST=SINGLETSUBST(TSUBST(X,S 1),S2));

AXIOM LAST(MKSlJB(mS,&j I))4 I ;
r - AXIOM REST(MKSUB(eaS,aS 1))++S;

AXIOM (ZERO4ulKSUB((sS 1,62))tiFALSE;

BEGIN
IF (S=ZERO) THEN TSUBS’bX ELSE TSUBST:41NGLETSUBST(TSUBST(X,REST(S)),LAST(S))j
END.;

L

FOR THE MAIN PROGRAM THERE ARE 2 VERlFiCATlON CONDITIONS

48 1
L
) &ZERO & ISSUB & S=MKSUB(Sl,S2) & ISTERM

--) X=SINGLETSUBST(TSUBST(X,S 1),S2))

(-S=ZERO & lSSUB(S) & S=MKSUB(S 132) & ISTERM
+ SlNGLETSUBST(TSUBST(X,REST(S)),LAST(S))~SlNGLETSUBST(TSUBST(X,Sl),S2))

AFTER SOME SIMPLIFICATION, YOU CAN GET

L
@ 1 TRUE
0 2 T R U E

Figure 11: lemna about goal 15

APPENDIX

P -

v.HENK E and LI.JCWA M

GOALFILE

Z Axioms defining the data types and basic functiork Z
X 1 Z A X I O M ISTERMLIST(ZER0) ~1 T R U E ;
Z 2 Z A X I O M ISSUB(ZERO)++TRUE;

-

Z Axioms describing properties of subfunctions Z
X 3 i! A X I O M APPEND(ZERO,,w+S;
Z 4 Z A X I O M APPEND(~JS,ZERO)++S;
Z 5 Z A X I O M APPEND(RCONS(QS,HD(~T)),TL(~T))*APPEND(S,T);
Z 6 Z AXIOM IF ISVAR(X)AISVAR(Y)A(V/X) T H E N -OCCUR(aX,sY)t+TRUE;
Z 1 3 Z A X I O M TSUBST((~PX,ZERO)~X;
7: 14 Z AXIOM IF -ISVAR(X) THEN -ISVAR(TSUEIST(IQX,~~S))++TRUE;

Z Goals for MGU Z

Z 26 Z GOAL MGU(RCONS(nX 1 ,nX2),RCONS(ejY
SUB MGU(X 1 ,Y 1 ,S 1 hMGU(TSUI-3ST(XZ,S 1

1 ,mY2), SCOMP(@SI ,@S2))
),TSUBST(YIZ,S 1),S2);

Z 27 Z GOAL MGU(RCONS(nX I ,oX2),RCONS(nY 1 ,nY2), MKSUB(W ,(aS2))
SUB MGU(X 1 ,Y 1 ,S 1)AMGU(TSUBST(X~,SI),TSUDST(Y2,SI),S2);

L-
Z 28 Z GOAL MGU(RCONS(mX 1 ,mX2),RCONShY 1 ,nY2),mS 1)

I/ SUB MGU(X 1 ,Y 1 ,S 1 1)A(TSUBST(X~,S)=TSURST(Y2,S 1)) ;

i 5! 29A Z GOAL MGU(~X,~Y,PAIR(RX,RY)) SUB ISVAR(X)AISTERM(Y)A-DCCUR(X,y);

L
Z 298 7. G O A L MGU(RPX,~Y,PAIR(~Y,~X)) S U B ISVAR(Y)AISTERM(X)A-DCCUR(y,X);

X 3 0 x GOAL MGUhX,@Y,nS) S U B (FNLT(X)=FNLT(Y))hiGU(TERMS(X),tERMS(Y),S);

t
Z 3 1 Z A X I O M MGU(ZERO,ZERO,ZERO)wTRUE;

L Z Goals for NOTUNIF 2

Z 32 2 GOAL NOTUNIF(~X,R~Y)
SUB ISVAR(X)AISTERM(Y)A-ISVAR(Y)hOCCUR(X,Y),

eL ISTERM(X)AISTERM(Y)A-ISVAR(X)A-ISVAR(Y)A -(FNLT(X)=FNLT(y)),
(FNLT(X)=FNLT(Y))ANOTUNIF(TERMS(X),TERMS(Y));

.
1 33 z G O A L NOTUNIF(RCONS(l3X 1 ,qX2),RCONS(@YI ,1;3Y2))

SUB MGU(X I ,Y 1 ,nS) A NOTUNlF(TSUBST(X2,~Sl,TSUBST(y2,@S)),
MGU(X 1 ,Y 1 ,oS) A NOTUNlF(TSU8ST(Y2,cSI,TSUBST(XZ,RgS)),
NOTUNIF(X2,Y2);

4 0

Z 3 4 Z GOAL NOTUNIF(APPEND(nX 1 ,~X~),APPEND(~~PY 1
S U B (X2=ZERO)r\-(Y~=ZERO)AMGU(X 1 1

,laY2))
,Y ,@S),

(Y2=ZERO)h-(X~=ZERO)AMGU(X 1 ,Y 1 ,aS),
NOTUNIF (X 1 ,Y 1);

Figure 14 (cont iwcd)

l -

-

41 APPENDIX

PASCAL

DEFFUN HD(L:TERMLIST):TERM; ENTRY ISTERMLIST(L)A-(L=ZERO); EXIT ISfERM(HD);

D E F F U N TL(L:TERMLlST):TERMLIST; E N T R Y ISTERMLIST(L)A-(L-ZERO); EXIT ISTERMLIST(TL);
.\

DEFFUN RCONS(L:TERMLIST; X:TERM):TERMkiST;
ENTRY ISTERMLIST(L)AISTERM(X); EXIT ISTERMLIST(RCONS);

DEFFUN TERMS(X:TERM):TERMLIST; ENTRY ISTERM(X)A~SVAR(X); EXIT lSTERMLIST(TERMS);

DEFFUN FNLT(X:TERM):CONST; ENTRY ISTERM(X)A-ISVAR(X); EXIT lSCONST(FNLT);

D E F F U N TSUBST(X:TERM;S:SUB):T&?M; ENTRY ISTERM(X)AISSUB(S); EXIT lSTERM(TSUBSQ

DEFFUN MKSUB(S:SUB; S 1 :SINGLESUB):SUB;
ENTRY ISSUB(S)dSSINGLESUB(SI 1; EXIT ISSUB(MKSUB);

DEFFUN PAIR(X:VAR;--Y:TERM):SfNGLESUB;
ENTRY ISVAR(X)dSTERMfY bOCCUR(X,Y 1; EXIT ISSINCLESUB(PAIR);

DEFFUN SCOMP(S l,S2:SUB):SUB; ENTRY lSSUB(S 1)AIs!5u8(s2); EXIT 6SUB (SCOMP);

DEFFUN OCCUR(X:VAR; Y:TERM):BOOLEAN; ENTRY lSVAR(XblSTERM(Y); EXIT ISBOOLEAN(OCCUR);

Figure 14 (cow inucd)

v HENKE ;~nd LIJCKHA M

PROCEDURE UNIFY (X,Y:TERMLIST; VAR Z:SUB; VAR FLAG:INTEGER);
. ENTRY ISTERMLIST(X)r\lSTERMLIST(Y) ;
- E X I T (I S S U E (Z) A MGU(X,Y,Z) A (FLAG=1 1) v ((FLAG=O) A NOTUNIF(X,Y));

BEGIN

Z Initialization of variables 7
U:=ZERO; V:=ZERO; Z:=ZERO; x1:=x; Y I :=Y; FLAG:=1 ;

INVARIANT (~SSU~(Z)A~STERMLIST~U~AISTERM~-IST(V~A~STERML~ST(X~ 1
: c AISTERMLIST(Y I)AMGU(U,V,Z)A(X=APPEND(U,X 1))r\(Y=APPEND(V,Y 1))A (FLAG=i))

v ((FLAG=O)ANOTUNIF(U,V)~~X=APPEND(U,XI))h(Y=APPEND(V,Y 1)))

WHILE (XI /ZERO) A (Y I /ZERO) A (FLAG=1 1 DO
BEGIN
X2:= TSUBST(HD(X 1),Z);
Y2:= TSUBST(HD(Y 1),Z);

L- IF ISVAR(X2) THEN BEGIN IF ISVAR(Y2)
THEN BEGIN IF (X2r’Y2)

LF

I
I
L

1

END
THEN Z:=MKSUB(Z,PAIR(X2,Y2))

ELSE BEGIN IF OCCUR(X2,Y2) THEN FLAG:=0
ELSE Z:=MKSUB(Z,PAIR(X2,Y2))

END
END

ELSE BEGIN IF ISVAR(Y2)
THEN BEGIN IF OCCUR(Y2,X2) THEN FLAG:=0

ELSE Z:=MKSUB(Z,PAIR(Y2,X2))
END

ELSE BEGIN IF FNLT(XZ)=FNLT(Y2)

L
L

L

THEN BEGIN UNIFY(TERMS(X2),TERMS(Y2),22,FLAG);
IF FLAG= 1 THEN Z:=SCOMP(Z,Z2)
ELSE FLAG:=0

END
ELSE FLAG:=0

END
. END;

U :=RCONS(U,HD(X 1));
V :=RCONS(V,HD(Y 1)I;
Xl :=TL(X 1);
Y 1 :=TL(Y 1);

END; Z End of WHILE body Z

IF (xl +ZERO) v (Y 1 +ZERO) THEN FLAG:=0
. END; Z Procedure body Z

THE VERIFICATION TAKES 286 CPU SEC.

42

Figure 14: The cwq~lrte prryrm artd dncuwerltatiorl for UNJFY

