
Stanford Artificial Intelligence Laboratory
Memo AIM-280

eb , (.. M a y 1 9 7 6

Computer Science Department
Report No. STAN-B-76-555 . .

MONTE CARLO SIMULATION OF TOLERANCING
IN DISCRETE PARTS MANUFACTURING AND ASSEMBLY

bY

David D. Grossman

Research sponsored by

Nat ional Science Foundat ion

COMPUTER SCIENCE DEPARTMENT
Stanford University

Stanford Artificial Intelligence Laboratory
Memo AIM-280

May 1976

Computer Science Department
Report No. STAN-CS-7 6-555

MONTE CARLO SIMULATION OF TOLERANCING
IN DISCRETE PARTS MANUFACTURING AND ASSEMBLY

bY

David D. Grossman

--m. ABSTRACT

. The assembly of discrete parts is strongly affected by imprecise components, imperfect fixtures
and toois, and inexact measuremets. It is often necessary to design higher precision into the
manufacturing and assembly process than is functionally needed in the final product. Production
engineers must trade off between alternative ways of selecting individual tolerances in order to
achieve minimum cost, while preserving product integrity. This paper describes a
comprehensive Monte Carlo method for systematically anaiysing the stochastic implications of
toierancing and related forms of imprecision. The method is illustrated by four examples, one of
which is chosen from the field of assembly by computer controlled manipulators.

permznent address: Computer Sciences Department, IBM T. J. Watson ResearcA Center, p.0. aox
218, Yorhtown Heights, New York 10398.

This research was supported by the National Science Foundation under Contract NSF APR 74-
0139&A02 . The dews and cOnChsiOns COntdned in this document qre those of the author(s) and
should not be interpreted as neCeSSaYily tepYeJenting the ojkial policies, either expressed OT
implied, of Stanford University, NSF, or the V. S. Government.

INTriODUCTION

The assembly of discrete parts is a major fraction of industrial production. The role of
computers in this field has been limited primarily to production and inventory control,
computer aided design, and programming numerically controlled machine tools. Very little
progress has been made in applying computers “to the problem of simulating assembly
processes, in spite .of the fact that such simulation offers the possibility of considerable
savings over the alternative cost of building pilot production lines.

When one examines other large industrial fields one finds that computer simulation is a
much more widely used tool. There are basically two reasons, however, why this tool has not
been extensively applied in discrete parts assembly. First, because assembly is not a scientific
discipline, experience is formulated as a set of ad hoc principles rather than as a

mathematical theory. Although such principles may be set forth in textbooks,111 it is difficult
to embody them in computer simulations. This situation is in sharp contrast, for example, to
the way differential equations can be used to model complex chemical processes. The second
reason is that assembly. environments contain an immense variety of dissimilar objects. This
aspect of assembly is in sharp contrast, for instance, to nuclear physics simulations where all
neutrons behave in the same way. .

. The only obvious unifying principle in discrete parts assembly is that in S-dimensional space
no two *objects may intersect. This fact suggests a formulation of the simulation problem in
terms of set theory, an approach which is being taken in research on parts description at the.

University of Rochester.[2,3,41 Set theoretic representations are good for determining if a
given point is inside +a particular set, but performance difficulties arise on problems
involving pairs of ‘sets. For example, the question of whether or not a piston intersects a
motor block is difficult to answer because it is likely to cause a lengthy search for a point
contained in both sets. Compounding this difficulty is the fact that assembly involves
continuous motion of the discrete parts, so that it is desirable to be able to solve set

e intersection problems at every instant of time. The computational algorithms would not be
hard to formulate, but the execution times would be extremely long, even on the fastest
computers in the world. For this reason, simulation of the full assembly process is intractable,
although simulation of special classes of assembly problems is’still a practical and achievable
goa:l.

From among the many aspects of assembly which could conceivably be modeled, this paper
is concerned with the implications of tolerancing and imperfection. In the literature on this
subject, dimensional tolerancing has come to mean specifying the tolerances of parts in
mechanical drawings. A national standard has been established which defines the meanings
of tolerancing symbols in drawings I51 and textbooks have been written to explain the use of

these symbols.[61 The emphasis on drawings, however, tends to obscure the underlying

reasons for being concerned with tolerances. The issue is not so much what 3.000+.005 cm
means but rather why the designer chose to specify this tolerance in the first place.

There are three factors which enter into specifying tolerances in drawings. First, the discrete
part which is described must ultimately be assembled into a product which is expected to
have some function, and the tolerance may be needed to provide this function. For instance,
it is highly desirable that each chamber of a Colt revolver align accurately with tie barrel.
Secondly, the part may be required to have certain tolerances in order that the assembly
process itself be feasible. For example, in order to-assemble an automobile engine, the holes
in the gasket must align with those in the block. Also, it is often necessary to have very
accurate parts to avoid jamming vibratory feeders. In fact, it is often necessary to design
higher precision into the assembly process than is functionally needed in the final product.
Finally, tolerances may be assigned to correspond to the capabilities of the manufacturing
method chosen., Tolerances achievable by sheet metal stamping would not be the same as
those achievable on a numerically controlled machine tool, and it would be foolish to assign
tolerances in a drawing which would give unreasonably small yields.

The product designer uses his expertise in product design, assembly, and manufacturing to
specify tolerances in the drawing which are both adequate and achievable. An excellent
textbook has been published which describes the considerations ‘involved in this process.PI

, The process is complicated because the design criteria depend on the combined tolerances,
rather than on the tolerances individually. Typically, the designer must trade off between
alternative ways of selecting individual tolerances in order to achieve some resultant
tolerance with minimum cost. Unfortunately, the 3-dimensional relationships involved are

. usually too tedious to allow a’rigorous mathematical treatment in all but the simplest cases.
The designer therefore uses a great deal of intuition in reaching s decision. Finally he writes
down a number like 3.000*.005 cm and throws away all the information which went into this
decision.

A recent paper from General Motors describes a system which enables product designers to
specify a set of individual parts tolerances and simulate the stochastic properties of
interesting resultant tolerances.183 The system is based on the Monte Carlo method, a
simulation technique which is well known and has’ been widely used in many other

191M applications. The existence of the GM paper shows that a need exists for simulation tools
in the field of parts tolerancing. The problem of tolerancing is sufficiently hard, and the
stakes are sufficiently high, that intuition is no longer a satisfactory method for specifying
parts tolerances.

The approach taken in the GM work is to provide an interactive system in which the user
can obtain high statistics very quickly. In order to achieve execution speed, the user must
explicitly provide all the equations which tell how the resultant tolerances depend on the
individual tolerances. The system models just the positions and orientations of a few features
of the part, rather than the entire part shape. This system is apparently proving quite useful
to GM designers.

Aside from the GM work, the only other published papers relating to modeling parts
tolerances are those from the university of Rochester, where a language called PADL for

HI

representing a class of discrete parts IS being developed. [2,3,41 The hope is that PADL

descriptions can someday be used to generate programs for numerically controlled machine

tools which can make the parts.

The topic of parts representation without regard to tolerancing has been studied by Binford,

Agm, and Nevatia, [10,11,121

’

and Lieberman

and Lavin.’ 18’ *‘I

Braid El 3’ 14’ Baumgart,’ ’ 5’ 16’ Grossman,’ “I

Although none of these parts modeling schemes was designed with

tolerancing in mind, both the Baumgart and Grossman approaches offer a natural way of

adding Monte Carlo procedures to simulate tolerances. As the author of one of these papers,

my choice of which of the two systems to use for the current work was highly biased. I chose

to use my own system solely because I am much more familiar with it.

Although the balance of this paper describes a specific implementation of Monte Carlo

tolerancing within a parts representation system, many of the issues discussed are

implementation independent. The point of this paper IS not simply to give a blueprint for a

specific way of simulating tolerances but rather to show that such a system is possible, to

expose some of the design issues, and to give examples of ways in which the system might be
used.

The simulation method described In this paper most closely resembles that of the GM paper,

but there are several mapr differences. Whereas the CM system computes the resultant
tolerances of indivrdual parts from tolerances specified in mechanical drawings, the current

work IS much more comprehensive. It allows one to simulate the propagation of tolerances all

the way from the manufacturing process right through the assembly process. Also, while the

GM work requires that the user explicitly supply formulas for the resultant tolerances as

functions of the individual tolerances, the current work provides system routines which

automatically perform these sorts of operations numerically. This provision is particularly

useful because in many situations the relevant formulas can not be derived in closed form.

On the other hand the GM system is Interactive, runs at high speed, and yields high

. statlstrcs answers, while the current system runs in batch mode, executes much more slowly,

and therefore yields much poorer statistics.

The next section of this paper reviews the main features of my earlier publication on

representing parts by PL/I procedures and explains how this system can easily be applied to

the Monte Carlo simulation of parts tolerances. This method is then illustrated by four

specific examples, one of which is chosen from the field of assembly by computer controlled

manipulators. The reason for chosmg this example IS that this research was carried out as

part of continuing manipulator projects at the IBM T. J. Watson Research Center and the

Stanford University Artificial Intelhgence Laboratory. However, it IS important to stress that

the slmulatlon techniques described here are applicable not only m the domain of computer

controlled assembly, but also in the much wider domam of manufacturmg and assembly as

they exist in industry today, usmg conventional equipment and procedures. The paper closes

wrth a discussion of research areas appropriate for extension of the Monte Carlo tolerancing

method.

151

MONTE CARLO METHOD

Distributions -

The basic idea of any Monte Carlo calculation is. to generate an ensemble of models which
simulates an ensemble of real entities.r91 The statistical properties of the real entities may
then be simulated by studying the corresponding properties of the models. Such simulation is

. useful when purely analytical methods cannot be found.

For the case of’ discrete parts manufacturing and assembly, the real entities consist of
three-dimensiona! objects at a workstation. These objects include component parts and their
features, tools and fixtures, measuring instruments, and automation equipment up to the
level of complexity of transfer lines and computer controlled manipulators. For all of these
objects, the primary attributes to be modeled are shape, position, and orientation.

In simulating statistical distributions of shape, position, and orientation attributes, it is
necessary to define the meaning of expressions of the form 3.000f.005 cm. One possible
definition would be a normal distribution with a mean of 3.000 cm and a standard deviation
of which ,005 cm is some small integral multiple. This choice would allow dimensions to fall
outside the specified range, albeit infrequently. Another possibility would be to have a.

. .distribution which goes rigorously to zero outside the specified range. Inside the range, the
distribution could be uniform, or peaked at 3.000 cm, or bimodally peaked at 2.995 cm and
3.005 cm. The distribution function might also be skewed if, for example, a part has been
manufactured in a fixture which is showing signs of progressive wear.

The ANSI dimensioning and tolerancing standards do not specify what statistical

distribution is implied by expressions of the form 3.000&.005 cm. 153 This omission is actually
necessary, because’ the shape of the distribution function depends on the manufacturing
process, so that the choice of this shape is best left to the production engineer. In the system

- described in this paper, an arbitrary choice was made to restrict the class of allowed
distributions to be either uniform or normal. This choice was made for the sake of
convenience and does not represent any inherent limitation in the method.

Part Ensembles

In most parts modeling systems the user describes each part in terms of numbers which are
entered directly into a data structure. This data structure, therefore, represents a particular
in~lancc of a part rather than an ensemble of similar parts. For the Monte Carlo simulation
of tolerances, however, it is necessary that the parts modeling system provide some simple
means of representing ensembles. What is needed, therefore, is a system in which the user
describes parts not in terms of numbers but in terms of partzmeters that are assigned
numerical values when a part is instantiated. The advantage of such a system for this Monte
Carlo simulation is that a random number generator may be used to assign values to these

parameters.

The use of parameters to characterize arbitrary attributes of parts is one of the principle

features of the Procedural Geometric Modeling System (PGMS) developed earlier by this

author.” ” This modeling system was therefore used for the current study. The reader is
referred to the earlier publication for details concerning the way in which PCMS represents

3-dimensional obpfts as PL/I procedures. A brief summary of the main features of this

system are included here for the sake of completeness. Further features wilt be explained in

subsequent sections of this paper as the need arises.

In PCMS, a hypothetical part whose name 1s “widget” and which has two attributes might

be invoked by the calhng sequence

CALL SOLID(WIDGET,A,Bj;

The generic widget itself would be represented by a PLlI procedure whose entry point is
named WIDGET. This procedure would describe how the widget is hierarchically
constructed out of its component subparts. These subparts might be positive SOLID’s or

negative HOLE’s For example,

WIDGET. ENTRY (A,B);
CA LL SOLID(CW BOID,A ,A ,B);

CALL HOLE(CUBOID,A,A12,B- 10);

RETURN,

A library of parts procedures already exrsts which starts with the primitive POINT and

includes such objects as LINE, CUBOID, CONE, WEDGE, CYLNDR, and HEMISPH.

More compiicated objects have also been coded, up to the level of complexity of IMM, which
represents the IBM Research mechanical mampulator, and SUARM, which represents the
Stanford University arm.

In addition to parts procedures, PCMS provides routines to perform transformations in
3-dimensional space. For example, if the generic widget were translated by C units along the

Y-ax is and then rotated by D degrees about the X-axis, the callmg sequence would be

CALL YTRAN(C);

CALL XROT(D);

CALL SOLID(WIDGET,A,B);

A particular instance of a widget would be invoked by assigning values to the parameters.

For example,

CALL YTRAN(12);

CA LL XROT(30); .

CA LL SOLID(W lDCET,3.000,16.5);

An ensemble of 500 similar widgets would be represented by the calling sequence

DO I= 1 TO 500;
CALL YTRA N(12+RA ND&O. 1,+0.3));
CA LL XROT(30+GA USS(2.5));
CALL SOLID(WII)CET,3.000+~AND(-.005,+.OO5),16.5+RAND(-.2,+.2));
END;.

where the function RAND(X,Y) returns a random number uniformly distributed on the
interval from X to Y, and the function GAUSS(Z) returns a random number normally
distributed with.mean 0 and standard deviation 2.

S e m a n t i c s

Once an ensemble of parts has been represented, PCMS provides a way to derive properties
from the representation. This process is referred to as attaching semantics to the
representation. The f@t step is to code a semantic routine which can compute a desired
property, For example, the routine TOTVOL shotin below adds up the volume of all
positive and negative CUBOID’s in any object. ’

TOTVOL: PROCEDURE (NODE,X,Y,Z);
DECLARE NODE. ENTRY;
IF NODE=CUBOID THEN VOLUME=VOLUME+POLARITY~~X~~Y~Z;
RETURN;
END TOTVOL;

Next, calls to system routines BEGIN, EXEC, and END are used to attach these semantics to
the system and the part procedure of interest is executed. In the case of the ensemble of 500
widgets, one could print the volume of each widget with the following code.

DO I= 1’ TO 500;
VOLUME=@ ItJNITIALIZE VOLUME::</
CALL BEGIN(5000); /+ALLOCATE STORAGE:::/
CALL EXEC(TOTVOL); IQATTACH SEMANTICS:::/

’ CALL YTRAN(12+RAND(-O&0.3));
CALL XROT(30+GAUSS(2.5));
tiLL SOLID(WIDGET,3.000~RAND(-.OO5,+.005),16.5+RAND(-.2,+.2));
CALL END; /tcDEALLOCATE STORACE,:c/
PUT SKIP DATA (VOLUME); /((PRINT WIDGET VOLUME<</
END;

Generalizing from this example, one can easily see how to ‘provide semantics to display
histograms of almost any desired properties of the ensemble. What is probably not clear
from this example is the fact that for more realistic parts, the hierarchy of subpart calls

involves so much computation that execution is usually rather slow. For instance, when the

procedure for the Stanford arm IS executed on an IBM 370/168 runnmg the VM time

sharmg system with 120 users, each instantiation takes about 6 seconds of virtual CPU time

and t minute of elapsed time. Derrving the properties of an ensemble of 500 Stanford arms

would therefore require about 8 hours of elapsed time. This number IS prohibitively long for

casual use of the system. However, 8 hours of elapsed time m slmulatmg a complex

mechanism would certainly not be excessive if the derived properties were to revea! a design

deficiency which would have taken months to correct had the hardware been built first.

Another fact which is not pJear from the example above IS that parts of typical complexrry
require the allocation of several hundred thousand bytes of intermediate storage The

Stanford arm procedure, for rnstance, requires nearly 3OOK of storage The reason behind .

thrs need for intermediate storage relates to the detailed lmplementatlon of PCMS, a topic

WhrcR 1s djscussed in my prloi pubkatlon and which will be omitted here.

EXAMPLES

R Ivet-Hoie Bracket

The fmt example chosen to illustrate Monte Carlo tolerancmg In PGMS is similar to rhe

wet-hole bracket used as the example rn the GM paper. A few changes were made because

the orlgrnal drawrng shows only a partrat view of the bracket in two dimensrons, while in

PGMS it is desirable to model the part completely and in three drmenslons.

The modified rivet-hole bracket may be represented by the follow-q code:

RHBRAK: ENTRY (X l,Y l.RADI,X2,Y2,RAD2~NG,THlCK,LENG,NSECT);

DECLARE RHBFRAMl34,4j FLOAT;

CALL STORE!RHBFRAME);

CALL SOLID(WEDGE,THlCK,LENG,ANG,I); /sBRACK ET4

CALL XYZTRAN(X l,Y 1‘0);

CALL HOLE(CYLNDR,THlCK,RAD 1,NSECT); IsHOLE I,:(/

C A L L RECALL(RMBFRAME);

CALL XYZTRAN(X?,Y2,0;;

CALL HOLE(CYLNDR,THICK,RAD2,NSECT); /<tHOLE 2~1

RETURN,

The call m the above code to the PGMS routine STORE IS used to save the current

coordinate frame in the local array RHBFRAME. Subsequently, the current frame is

translated from the corner of the bracket to the posmon of the fn-st hole. The current frame

IS then returned to the bracket corner by the RESTORE routme, so that It may subsequently

be translated to the posltion of the second hole.

. Figure 1: Drawing of Rivet-Hole Bracket

RHBRAK ()
WEDGE (1)

GLINE (1,l)
LINE (1,l;i)

POINT (l,l,l,l)
POINT (l,l,l,Z)

GLINE (1,2)
LINE (1,2,1)

POINT (1,2,1,1)
FOINT (1,2,1,2)

CLINE (1,3)
LINE (1,3,1.) *

POINT (1,3,1,1)
POINT (1,3,1,2),

--S.

. . . (a total of 9 GLINE’S)

CY LNDR (2)
GLINE (2,l)

LINE (2,1,1) ’
P O I N T (2,1,&l) ’
POINT (2,1,1,2)

. . . (a total of 3t4NSECT GLINE’S)

CYLNDR (3)
.GLINE (3,l) .

ONE (3,1,1)
. POINT (3,1,1,1)

POINT (3,1,1,2)

c

. . . (a total of 3sNSECT GLINE’S)

Figyrc 2: Rivet-Hole Bracket Subpart Hierarchy

The ten parameters of this procedure represent the seven dimensions subject to tolerancing,
the part thickness and length, and the number of sectors used in approximating the
cylindrical holes by polyhedra. The effect of this polyhedral approximation can be seen in
Figure 1 which was generated by attaching a standard graphics semantic routine to the
RHBRAK procedure,

The RHBRAK procedure represents a subpart hierarchy of 40+24sNSECT nodes as
indicated in Figure 2. At the top level, the RHBRAK consists of a solid WEDGE and two
CYLNDR holes. The WEDGE in turn is composed of nine GLINE’s (general lines), each of
which is made out of one LINE with two end POINT’s. Every level in this hierarchy can be
referred to by a unique s&address, also shown in Figure 2. For instance, the LINE along the
bottom left edge of the RHBRAK has a subaddress of (1,3,1). The importance of these
subaddresses will become clearer in the discussion which follows.

In the GM paper, the designer is concerned with the clearance between the two holes and
the clearances between the second hole’ and the edges of the part. In order to study these
resultants, the following semantic routine might be used.

--.
BRAKRES: PROCEDURE (NODE,X l,Y 1,RAD l,X2,Y2,RAD2);
DECLARE (RGHTEDGE,LEFTEDGE,HOLEl,HOLE2) POINTER;
DECLARE NODE ENTRY;
IF NODE-RHB,RAK THEN DO;

CALL DEFINE (RGHTEDGE, 1,2,1);
CALL DEFINE (LEFTEDGE, 1,3,1);
CALL DEFINE (HOLE 1,2);
CALL DEFINE (HOLE2,3);
CLEAR l=DISTOO(HOLE l,HOLE2)-RAD I-RAD2;
CLEAR2=DISTOX(HOLE2,RGHTEDGE);
CLEAR3=DISTOX(HOLE2,LEFTEDGE);
END;

RETURN;
END BRAKRES;

The DEFINE routine of PCMS is used to associate a PL/I pointer variable with any
previously specified frame in the part hierarchy. The first argument in the call to DEFINE
gibes the name of the pointer variable and the subsequent arguments give the subaddress in
the part hierarchy. Encoding these subaddresses requires that the user have a manual which
summarizes the subpart hierarchy generated by each procedure in the part library and
shows drawings of the basic volume shapes. Understanding subaddresses is currently the
most tedious aspect of PGMS.,

The function DISTOO invoked in this semantic routine returns the distance from Origin to
Origin (00) of the two specified frames. The function DISTOX returns the distance from
Origin to X-axis (OX) of the two specified frames. In order to have written this code it is
necessary to have known that every LINE runs along the X-axis of its frame, and that every

WI

CYLNDR runs along’ the positive Z-axis of its frame. Thus CLEARI, CLEAR2, and
CLEA R3 are the desired clearances. It can be seen from this example that the polyhedral
approximation has absolutely no effect on the statistical properties of these clearances.

Finally, a short program may be written to attach these semantics to the system and print the
three clearances for each of 500 rivet-hole brackets.

.DO I-l TO’500;
CALL BEGIN(50000);
CALL EXEC(BRAKRES);
CALL .SOLID(RHBRAK,1.325+GAUSS(.OO5/3),

.875+CAUSS(.005/3),

.2+RAND(-.0075,.0075),
2525+GAUSS(.005/3),
1.615+GAUSS(.00513),
l.%RA ND{-.0075,.0075),
67+RAND(-.25,+.25),

--. 0.25,
8.0,
1);

CALL END;
PUT SKIP DATA (CLEAR l,CLEAR2,CLEAR3);
END; ’

/$4X 1#4/
/sY lt41

/6RA D 1 t4/

/#x20/

/8Y 201
/*RA D2,)/
/*A NC+/
/I;~THICK<~I
/t{LENGtit/
/tiNSECT

Because execution time varies roughly in proportion to the total number of nodes in the
subpart hierarchy, NSECT has been set to 1 here. This simulation of 500 rivet-hole brackets
takes about 3 minutes of CPU time on an IBM 370/168.

For this example, using PGMS to model tolerances is somewhat more difficult than using
the GM system, largely because the tedium of understanding subaddresses outweighs that of

* writing down a few trigonometric formulas. As the examples become more complicated,
however, the subaddress problem remains about constant, while the trigonometry problems
b.ecome much worse. The overall balance therefore swings in favor of PGMS.

B6x M a n u f a c t u r e ’ ’

This example of Monte Carlo tolerancing is concerned with a manufacturing process in
which 4 holes are drilled into a rectangular box. The holes are made by a gang drill with
drill bits held in four separate chucks, while the box is held in a fixture attached to the drill
bed. The box is 12 cm long, 8 cm wide, and 4 cm high, and the four corner holes have
radius 3 mm and depth 2.5 cm and are nominally 1 cm from each edge.

Tolerance errors in the positions of the holes are generated because the fixture may be

translated or rotated slightly in the plane of the drill bed, and each of the four drill chucks

may be radially displaced slightly from its nominal position. To make the example somewhat
more interesting, it will be assumed that the rotational error in positioning the fixture is
about an skis which runs through a corner rather than the center of the box.

Each of the drill bits may be modeled as a cylinder which has been radially displaced by
RADERR in a random direction from its desired position.

DRILBIT: ENTRY (RADERR,LENG,RAD,NSECT);
CALL ZROT(RAND(O,360));
CALL XTRAN(RADERR);
CALL >OLID(CYLNDR,LENG,RAD,NSECT);
RETURN;.

An ensemble of boxes m,anufactured by this process may then be represented as a cuboid
with holes cut out by the four drill bits.

RECTBOX: ENTRY (X,Y,Z,LENG,RAD,NSECT,

--. XERR,YERR,ANGERR,RADERR);
CALL SOLID(CUBOID,X,Y,Z); /QBLOCK~~/
CALL ZROT(ANCERR);
CALL XYZTRAN(XERR,YERR,Z-LENG);
‘CA.LL XYZTRAN(l,l,O);
C A L L HOLE(DRILBIT,RADERR,LENG,RAD,NSECT); IsHOLE llr4/

CALL XTRAN(X-2);
C A L L HOLE(DRILBIT,RADERR,LENG,RAD,NSECT); /##HOLE 2t4/
CALL YTRAN(Y-2);
C A L L HOiE(DRILBIT,RADERR,LENG,RAD,NSECT); /aHOLE 3s/ . .
C A L L XTRAN(2X);
CALL HOLE(DRILBIT,RADERR,LENG,RAD,NSECT); /sHOLE 4t4/

RETURN;

The next step is to code a semantic routine which can derive the coordinates of the four
holes with respect’to the coordinate system of the box.

HOLFIND: PROCEDURE (NODE);
DECLARE (HOLE l,HOLE2,HOLE3,HOLE4) POINTER;
DECLARE NODE ENTRY;
IF NODE-RECTBOX THEN DO;

CALL DEFINE (HOLE 1,2>; CALL ORIGIN (HOLE l,POS 1);
CALL DEFINE (HOLE2,3); CALL ORIGIN (HOLE2,POS2);
CALL DEFINE (HOLE3,4); CALL ORIGIN (HOLE3,POS3);
CALL DEFINE (HOLE4,5); CALL ORIGIN (HOLE4,POS4);
END;

RETURN;
END HOLFIND;

WI

I Figure 3: DoubleExposure Drawing of Rectangular Box

[I51

The PCMS routine ORIGIN returns the origin vector associated with the frame of the
object pointed to by the first argument. Finally, the locations of each of the four holes, in an
ensemble of 500 boxes may be printed by attaching these semantics and executing the
RECTBOX.

DECLARE (POS 1(3),POS2(3),POS3($POS4(3)) FLOAT;
DO I-1 TO 500;

CALL BECIN(80000);
CALL EXEC(HOLFIND);
CALL,SOLID(RECTBOX,12,8,4, /9x ,Y ,Z#4/

2.5,0.3,1, Iti4LENC,RAD,NSECT+I
GAUSS(O.1/3), /ttXERRb#/
GAUSS(O.1/3), /#dY ERRt*I
RAND&2.5,2.5), /taANGERRtit/
GAUSS(0.05/3)); /~RADERRI;~/

CALL END;
PUT SKIP DATA (POS l,POS2,POS3,POS4);
END;

Execution time is about 8 minutes on an IBM 370/168. A “double-exposure” drawing
showing overlapping views of two boxes in the ensemble appears in Figure 3. This drawing

. was generated by attaching a ’ standard graphics semantic routine and calling the
RECTBOX procedure twice. The fact that graphics are produced so easily within PGMS is
of considerable help in verifying that the simulation is working properly.

One aspect of this simulation which is perhaps unrealistic is that the fixture is perturbed for
each box. in the ensemble. In an actual manufacturing operation, on the other hand, the
fixture would be locked in place, The statistical distribution,s obtained in the actual,
manufacturing operation would therefore be narrower than those derived from this
simulation.

What has been simulate& here is an ensemble of boxes produced by Independent setups as
opposed to an ensemble produced by a fixed setup. In most cases of batch production, this
simulation would be good enough for all practical purposes. One can imagine situations,
however, in which the independent setup assumption is not appropriate. For instance, if
pairs of consecutive boxes were to be attached to one another, the fact that both were
produced on the same setup might be important. For this case, the code would have to be
changed to simulate pairs of boxes instead of single boxes.

Actually, the box would probably be manufactured by trying a succession of setups until one
was found which yielded satisfactory boxes, and this setup would then be retained for the
remainder of the batch. Simulating the resulting ensemble is possible within PGMS, but it
entails modeling the conditions used to determine whether or not the setup is satisfactory.
Modeling conditional decisions is discussed briefly in the section of this paper dealing with
extensions of the Monte Carlo method.

Box and Lid Assembly

This example is concerned with attaching a lid to the box of the previous example. The lid
is 12 cm by 8 cm by 0.5 cm thick and is assumed to have been manufactured in the same
manner as the box. At assembly time, a fixture is used which holds the lid rigidly in place
on top of the box in such a way that the edges line up perfectly. The issue is whether or not
the holes in the lid are aligned sufficiently well with those in the box to allow four screws to’
be inserted. ,

A procedure which represents both the box and its lid is shown below.

BOXNLID: ENTRY (X,Y,ZBOX,ZLID,LENG,RAD,NSECT,
XERRB,YERRB,ANGERRB,RADERRB,
XERRL,YERRL,ANGERRL,RADERRL);

CALL SOLID(RECTBOX,X,Y,ZBOX,LENG,RAD,NSECT, /QBOX+/
XERRB,YERRB,ANGERRBB,RADERRB);

’ CALL ZTRAN(ZBOX);
CALL SQLID(RECTBOX,X,Y,ZLID,ZLID,RAD,NSECT, /GLIDQ/

XERRL,YERRL,ANGERRL,RADERRL);
RETURN;

. The next step is to code a semantic routine which computes the alignment errors for each of
the four pairs of holes.

ALIGNER: PROCEDURE (NODE);
DECLARE (BOX,LID) POINTER;
DECLARE NHOLE BINARY FIXED; 1

DECLARE NODE ENTRY;
IF NODE-BOXNLID THEN DO;

FOR NHOLE=I TO 4 DO;
CALL DEFINE (BOX, l,NHOLE+ 1,l);
CALL DEFINE (LID,2,NHOLE+ 1,l);
ERROR(NHOLE)-DISTOZ(BOX,LID);
END;

END;
RETURN; ’
END ALIGNER;

The subaddresses in these DEFINE statements identify frames of corresponding CYLNDR
holes in the box and lid. The function DISTOZ returns the distance from the Origin to
Z-axis (02) of these two frames.

If it is assumed that the assembly process is unsuccessful whenever any of the four screw
hole misalignments exceeds 2 mm, a simple procedure can be written to determine the
number of successful assemblies in an ensemble of 500 boxes and lids.

. Figure 4: Drmwing of Unsuccessful Box and Lid Assembly

DECLARE .ERROR(4);
DO I- 1 TO 500;

NSUCCESS=O;
CALL BEGIN{ 120000);
CALL EXEC(ALICNER);
CALL SOLID(BOXNLID,12,8,4,0.5, /~~X,Y,ZBOX,ZLIDQI

2.5,0.3,1, /s:tLENG,RA b,NSECT:rl
CAUSS(O.l/$ /ttXERRB,:k/
GAUSS(O.l/3), /tcY ERR B::!/
RA ND(-2.5,2.5), /oANGERRB<t/
GA USS(O.O5/3), /~~RADERRB~:~/
CAUSS(O.l/3), i~~XERRL::~/
GAUSS(O.l/3), /+Y ERR Ltt/

R A ND(-2.5,2.5), &~ANGERRL::~/
GAUSS(O.O5/3)); /taRA DERRL+/

CALL END;
IF ERROR(1)<.2

-.. 8c ERROR(2)<.2
& ERROR(3)<.2

. & ERROR(4)<.2 .
THEN NSUCCESS=NSUCCESS+ 1;

END;
PUT SKIP DATA (NSUCCESS);

When this prograin is executed, it determines that 27% of the assemblies would be successful.
A bout 10 minutes of CPU time are required to obtain this result using an IBM 3701168. A
drawing of one of the unsuccessful assemblies is shown in Figure 4:

Since in principle the lids are symmetric, it is also possible to generate an ensemble in which
the lids have been randomly flipped upside down or rotated a180 degrees in the horizontal

w plane between the time of manufacture and the time of assembly. Such an ensemble
simulates the common industrial practise of throwing freshly manufactured parts into atote
bin. The simulation then yields 19% successful assemblies. The reason why this percentage is
much lower than the previous one is related to the fact that the rotational error in the
fixture was assumed to be about an axis which ran through a corner of the box rather than
through its center. ,

Stanford Arm

The final example is taken from the field of computer controlled manipulators. Currently,
two manipulator arms are being used at the Stanford University Artificial Intelligence
Laboratory to study problems in industrial automation. Figure 5 shows a drawing of one of
these arms holding a power screwdriver and a screw. Although the arm had been modeled ’
much earlier by .Baumgart, El61 this picture was obtained by using PGMS procedures instead.

Figure !!k Drawing of Stanford Arm

WI

In advanced manipulator applications, it is frequently necessary to perform inspection to
measure the locations of objects or even simply to determine whether an object is present or ’
missing. For instance, since a screw can easily fall off a screwdriver, it may be desirable to
verify that the screw is Qactually still on the end of the screwdriver.

Both touch sensing and computer vision have been_ used in the past to perform this type of
inspection.[2oJ Currkntly, Boll;& is working on a more systematic approach to doing
inspection by computer vision. One of the main problems encountered in this endeavor
relates to the fact that the location of the end of the screwdriver is not known precisely by
the program, because of backlash and compliance in the manipulator. The vision program,
therefore, ,can not simply look at the nominal location of the screw, Instead, it must search
the image, over a finite region whose extent depends on the tolerance errors of the
manipulator joints.

.

The purpose of this example is to show that it is possible to do a Monte Carlo simulation of
as complex an object as a manipulatbr, without having to write down the trigonometric
formulas for the location of its gripper as a function of all the joint angles. An ensemble of
10 Stanford arms may--be modeled simply by coding

DO I-l TO 10;
CALL S.OLID(SUA RM,-4 I +RA NP(-2,2), /({JOINT ANGLE i+/

-92+RAND(-2,2), /::tJOINT ANGLE 2::~/
I 5+RA ND{-.2,.2), /ctJOINT ANGLE 3::</
-9O+RAND(-2,2), isJOINT ANGLE 4,:</
gOtRAND{-2,2), /(<JOINT ANGLE 5:::/
O+RA ND{-2,2), /ttJOINT ANGLE 601
1.5); IQGRIPPER OPENING::</

END;

It is only slightly more difficult in PGMS to model an ensemble of arms, each of which is
a holding a screwdriver with a screw. A semantic routine may then be supplied to draw the

first object in this ensemble, and for all subsequent objects to draw a little asterisk at the
location of the tip of the screw, as shown in Figure 5. Alternatively, semantics may be
provided to compute the parameters of an error ellipse in the image plane, so that a vision
program will know what,region must be searched to verify the presence of the screw.

EXTENSIONS

In all four of the preceding examples, the simulation of tolerancing was used to derive
independent distributions of resultant properties. It is also possible to derive conditional

distributions of resultant properties. The need for considering conditional distributions arises
primarily whenever there are steps in the manufacturing and assembly process which

WI

involve conditional actions. Actually, such actions are quite common in discrete parts
pt‘oduction, although they tend to be overlooked because these steps are usually implicitly
assumed.

For instance, one expects an assembly worker to know without being told that

IF the lid doesn’t fit
THEN throw it out and try another one

ELSE attach it

Alternatively, the worker might ignore any requirement of interchangeability and save the
nonfitting lid until a matching box was found. In either case, the statistical properties of the
resulting assemblies would no longer be the same. This fact is true whether or not the
conditional instructions are stated explicitly.

Not all conditional actions have the si,mple form IF . . . THEN . ..ELSE. For example, the
assembly process might involve sliding the lid until it is aligned with the box. This step
would move each Ii&by a different amount, depending on the initial misalignment of that
particular lid and box.

, In a PGMS tolerancing simulation, the addition of steps which simulate conditional actions
. is a straightforward process, provided that these actions can be stated in the form of

procedures which involve spatial transformations no parse than rotations and translations
by well defined amounts. For an IF . . . THEN . . . ELSE action, one simply adds the
appropriate IF . . . THEN . . . ELSE clause to the program. A problem arises, however, that
there are conditional actions which can not be easily expressed in the form of well defined
procedures.

A common and insidious example of such actions relates to the way parts are often
chamfered to make’ the assembly process easier. As the assembly is performed, the chamfers

e force parts into slightly different positions and alter their subsequent statistical properties.
The effect of a chamfer in locating a single pin can be expressed fairly easily in the form of
a procedure, but for more than one pin the effect of chamfering becomes very difficult to
state explicitly.

*The effect of chamfers is .a specific case of a general process which may be called fitting or
actommodatton. Case studies performed at the Charles Stark Draper Laboratory indicate that

in typical industrial assemblies, rbughly 15% of the steps involve accommodation. c223

Although this process is industrially important, it is very difficult to simulate except in the
simplest situations. For instance, it is well known that the way to attach a lid to a box is to
put all four screws in loosely and then tighten them, rather than tightening each one
immediately. Unfortunately, even in this case it is not known how to express the exact
process of accommodation in the form of a well defined procedure.

However, it is possible to approximutu many accommodation processes.. For example, in the

WI

box assembly one can say that the first screw to be loosely inserted produces a translation of
the lid such that its hole aligns with the corresponding box hole. The second screw produces
a rotation of the lid which makes the vector from the first to the second lid hole align with
the corresponding box vector, followed by a translation of the lid along this vector to make
the two alignment errors equal and opposite. The third screw only produces a translation
orthogonal to the previous vector, and the fourth screw has no effect. Clearly, this procedure
is only. an approximation to what really happens, but the chances are that it is a good
enough approximation for most practical purposes. ,An alternative approximation would be
to say that each successive screw produces a transformation of the lid to a new position such ,
that the sum of the squares of of the alignment errors is minimized. In either of these cases,
one can easily add to PGM$ proocedures which simulate the approximate accommodation
process.

Another extension of Monte Carlo tolerancing would be to simulate the process of making
measurements with imperfect measuring tools. For example, suppose a computer vision
system is used to locate the position of a hole in a part so that a manipulator can insert a
screw. This measurement is limited by the camera resolution, which may be on the order of
one picture element ii? the scanning array. The measurement is also limited by pan and tilt
errors in aiming the camera. Projecting the camera errors from the image plane back to the
actual hole in three-dimensional space will generally give an elongated region within which
the location of the hole can not be resolved. If several features of a part are located in this
manner, the position and orientation of the part itself may be derived. All of these steps can
be simulated within PGMS.

It is also possible to simulate part imperfections of a much grosser nature than those
normally considered in tolerancing. For instance, Agin has written a computer vision
program which inspects lamp bases for displaced or missing grommets. [231 In <order to
simulate an ensemble of lamp bases with an appropriate range of defects, one could
represent the generic lamp base by a routine with parameters specifying whether or not the
grommets are present.

a

LAMPBAS: ENTRY (GROM 1,X 1,Y l,GROMZ,XZ,YZ);
CALL XYZTRAN(X l,Y 1,O);
IF GROMl-1

THEN CALL SOLID(GROMMET);
CALL XYZTRAN(XZ-X l,YZ-Y 1,O);
IF GROMZ- I

THEN CALL SOLID(GROMMET);
RETURN;

Cross defects of this type are quite common in industry. The most familiar example is that
roughly 2% of all machine screws are ordinarily defective. Some have no heads, while others
have no slots or no threads. The defective fraction may be reduced by preinspection, but for
most applications the additional cost can not be justified. It is therefore worth emphasizing
the fact that errors of these types can also be simulated ‘within a Monte Carlo parts

tolerancing system. .

CONCLUSION

This paper has described a Monte Carlo approach to the simulation of tolerancing and
other forms of imprecision in discrete’ parts manufacturing and assembly. An implementation
of the method, based on the Procedural Geometric Modeling System developed earlier by
this author, is illustrated by four specific examples, one’of which was chosen from the field
of assembly by computer controlled manipulators.

There appears tb be a pressing need for simulation techniques relating to discrete parts
manufacturing and assembly. The assembly process is strongly affected by imprecise
components, imperfect fixtures and tools, and inexact measurements. It is often necessary to
design higher precision into the manufacturing and assembly process than is functionally
needed in the final product, Production costs are highly dependent on specified tolerances
and the resultant product yields.

The technique described in this paper can provide production engineers with a systematic
. way of analyzing the stochastic implications of tolerancing and other forms of imprecision.

ACKNOWLEDGEMENT

This paper was partially motivated by Russell Taylor’s work on high level languages for
computer con trolled manipulators. One of his programs determines allowed loci of

e workpieces by resolving symbolic geometric constraints. The paper was also motivated by the
computer vision research of Bob Belles, One of his programs calculates the region of an
image to be searched for a desired feature of a workpiece that has been displaced slightly
from its nominal position. Discussions with Taylor and Belles in the early stages of this work
have proved very valuable. Their results, incidentally, will be published soon as part of their
doctoral dissertations.

This work was performed at the Stanford AI Lab, as part of the Computer Integrated
Assembly Systems project headed by Tom Binford. I want to thank Peter Will, manager of
the Automation Research project at the IBM T. J. Watson Research Center, from which I
was on sabbatical leave, for making my year at SAIL possible.

Finally, I want to acknowledge the logistical assistance of Mike Blasgen and Larry
Lieberman in this work.

[241

REFERENCES

[13 W. V. Tipping, An Introduction to Mechanical Assembly, Business Books, London,
England, 1969.

c21 An Introduction to PADL, Production Automation Project Technical Memorandum
TM-22, University of Rochester, December 1974.

[31 A. A. G. Requicha, N. M. Samuel, and H. B. Voelcker, Part and Assembly Description
Languages - II, Production Automation Technical Memorandum TM-ZOa, University of
Rochester, revised November 1974.

141 Discrete Part Manufacturing: Theory and Practice, Production Automation Project
Technical Report TR-l-1, University of Rochester, 1974.

[51 Dimensionhg and Tol,erancing, American National Standards Institute Report ANSI
Y 14.5-1973, ptiblishetl by IEEE, New York, 1973.

161 Lowell W. Foster, Geometric Dimensioning and Tolerancing: A Working Guide,
Addison-Wesley Publishing Co., Reading, Massachusetts, 1970.

[71 Earlwood T. Fortini, Dimensioning For Interchangeable Manufacture, Industrial Press
Inc., New York, 1967.

[83 Harold W. Gugel, Monte Carlo Simulation With Interactive Graphics, GM Research
: Publication GMR- 153 1, General Motors Corporation Research Laboratories, Warren,

Michigan, October ‘1974.

[91 John M. Hammersley and David C. Handscomb, Monte Carlo Methods, Wiley, New
- York, 1964.

cl01 Gerald J. .Agin, Representation and Description of Curved Objects, Stanford Artificial
Intelligence Laboratory Memo AIM-173 and, Stanford University Computer Science Report
STA N-&305, October 1972.

c 111 Gerald J. Agi’n and Thomas 0. Binford, Computer Description of Curved 06jects, Third
International Joint Conference on Artificial Intelligence, Stanford, August 1973.

[I21 Ramakant Nevatia, Structured Descriptions of Complex Curved Objects for Recognition
and Visual Memory, Stanford Artificial Intelligence Laboratory Memo AIM-250 and
Stanford University Computer Science Report STAN-CS-464, October 1974.

1131 I. C. Braid, Designing With Volumes, Cantab Press, Cambridge, England, 1974.

1141 I, C. Braid, The Synthesis of Solids Bounded by Many Faces, Communications of the
ACM, Volume 18, Number 4, p. 209, April 1975.

(151 Bruce G. Baumgart, Winged Edge Polyhedron Representation, Stanford Artificial
Intelligence Laboratory Memo AIM- 179 and Stanford University Computer Science Report
STAN-CS-320, October 1972. -.,

1161 Bruce G: Baumgart, GEOMED, Stanford Artificial Intelligence Laboratory Memo
AIM-232 and Stanford University Computer Science Report STAN-CS-4 14, May 1974.

[171 David D. Grossman, Procedural Representation of Three-Dimensional Oyectj, IBM
Research Report RC-5314, T. J. Watson Research Center, Yorktown Heights, N. Y., March
14, 1975; to be published in IBM Journal of Research and Development.

[18l Mark A. Lavin and Laurence I. Lieberman, A System for Modeling Three-Dimensional
Objects, IBM Research Report RC-5765, T. J. Watson Research Center, Yorktown Heights,
N. Y., December 17, 19f5; to be published in IBM Journal of Research and Development.

-.

cl91 Mark A. Lavin, MODFEAT: A System for Naming Polyhedral Features o f
Three-Dimensional Oyects, IBM Research Report RC-5764, T. J. Watson Research Center,
Yorktown Heights, N. Y., December 17, 1975.

1201 Robert Bolles and Richard ‘Paul, TAQ Use of Sensory Feedback in a Programmable
Assembly System, Stanford Artificial Intelligence Laboratory Memo AIM-220 and Stanford
University Computer Science Report STAN-(X-396, October 1973.

1211 Robert C. Belles, Verification Vision Within a Programmable Assembly System: An
Introductory Discussfan, Stanford Artificial Intelligence Laboratory Memo AIM-275 and
Stanford University. Computer Science Report STAN-CS-75-537, December 1975.

* 1221 J. Nevins, D. Whitney,,S. Drake, D. Killoran, M. Lynch, D. Seltzer, S. Simunovic, R. M.
Spencer, P. Watson, and A. Woodin, Exploratory Resfarch in industrial Modular Assembly,
Charles Stark Draper Laboratory Report R-921, Cambridge, Massachusetts, December 1,
1974 to August 31, 1975. *

1231 C. Rosen, D. Nitzan, G. Agin, G. Andeen, J. Berger, J. Eckerle, G. Gleason, J. Hill, J,
Kremers, B. Meyer, W. Park, and A. Sword, Exploratory Research in Advanced Automation,
Stanford Research Institute Project 2591 Report 2, Menlo Park, California, August 1974.

