
Stanford Artificial Intelligence Laboratory
M e m o A I M - 2 6 4

Computer Science Department
Report No. STAN-CS-75-506

OH?EFtATIONAL REASONING
a n d

DENOTATIONAL SEMANTICS

bY

Michael Gordon

Research sponsored by

Advanced Research Projects Agency
ARPA Order No. 2494

COMPUTER SCIENCE DEPARTMENT
Stanford University

A u g u s t 1 9 7 5

OPERATIONAL REASONING
AND

DENOTATIONAL SEMANTICS
-

bY

Michael Gordon
Department of Computer Science,

James Clerk Maxwell Building,
The King’s Buildings,

Mayfield Road,
Edinburgh EH9 3JZ.

Abstract

b away from the running process - thus properties which are obvious when one thinks about

this lose the basis of their obviousness in the absence of it. To enable process-based

intuitions to be used in constructing proofs one can associate with the semantics an abstract

interpreter so that reasoning about the semantics’ can be done by reasoning about

computations on the interpreter. This technique is used to prove several facts about a

semantics of pure LISP. First a denotational semantics and an abstract interpreter are

described. Then it is shown that the denotation of any LISP form is correctly computed by the

interpreter. This is used to justify an inference rule - called “LISP-induction” - which

- formalises induction on the size of computations on the interpreter. Finally LISP-induction is

used to prove a number of results. In particular it is shown that the function eval is correct
. -

relative to the semantics - i.e. that it denotes a mapping which maps forms (coded as

e S-expressions) on to their correct values.

“Obviously true” properties of programs can be hard to prove when meanings are specified

with a denotational semantics. One cause of this is that such a semantics usually abstracts

I

--

c

I
c ACKNOWLEDGEMENTS

-
Thanks to John Allen, Rod Burstall, Friedrich von Henke, Robert Milne, Gordon Plotkin,

- Bob Tennent and Chris Wadsworth for helpful discussions and correspondence. John Allen,

Dana Scott and Akinori Yonerawa suggested improvements and pointed out errors in

- preliminary drafts of this report

-- This research was supported in part by the Advanced Research Projects Agency of the

Office of the Secretary of Defense under contract DAHC 15-73-C-0435, ARPA order no.
_-

2494.

- The views and conclusions in this document are those of the author and should not be

interpreted as necessarily representing the official policies, either expressed or implied, of

the Advanced Research Projects Agency or the US Government.

m
I.

-

w

-

-

-

-

-

-

-_

-

-

-

-

L

t

-

-

L

CONTENTS

SECTION P A G E

1. Introduction.. 1

2. Syntax of Pure LiSP ... 2

2.1. Met a-variable Conventions.. 2

2.2. BNF Equations .. 2

3. Denotational Semant its of Pure LISP... 3

3.1. Semant its .. 4

3.1.1. Denotation Domains.. 4

3.1.2. Environment Domain ... 4

3.1.3. Semantic Functions ... 4

3.1.4. Semantic Equations.. 4

3.2. Notes.. 5

4. An Interpreter for Pure LISP.. 11

4.1. Notes... 1 4

5, Correctness of the Interpreter.. 1 5

5.1. Reasoning via the Interpreter... 1 7

6. LISP-Induct ion..........................**~..~*~~~~ ... 1 8

6.1. Simple LISP-Induct ion... 20

7. The Correctness of dval and apply .. 23

8. Concluding Remarks... 2 9

9. References.. 30

-
A

.-. 1. Introduction

This paper contains examples of the use of operational reasoning to prove properties of a

¬ational semantic& By “operational reasoning” is meant reasoning which exploits notions

associated with the operations involved in running programs on interpreters. “obviously true”

properties are often rather hard to prove when meanings are specified by a denotational

semant its. One cause of this is that such a semantics usually abstracts away from the

running process - thus properties which are obvious when one thinks about this lose the

-

basis of their obviousness in the absence of it.- One way to enable process-based intuitions

to be used in constructing proofs is to associate with such a semantics an abstract

interpreter so that one can reason about the semantics by reasoning about computations on

the interpeter. In what follows this approach is used to prove several facts about a

- semantics of pure LISP. Doing this involves:

- (A) Describing a set of semantic equations for pure LISP

(B) Describing an interpreter (expressed as a calculus) for mechanically evaluating
LlSP forms.

Having done this I then prove that the denotation of a form (as specified by the semantic

equations) is always correctly computed by the interpreter. This result is then used to

formulate a special purpose induction rule for reasoning about LISP programs. This rule -

called “LISP-induction” - is induction on the length of computations on the interpreter.

Because the interpreter is correct LISP-induction is valid for reasoning from the semantic

equations. Using LISP-induction I outline how to prove the correctness of the LISP function

evai. This involves showing that the denotation of eval (as specified by the semantic

equations) is a mapping which maps LISP forms (coded as S-expressions) on to their correct

values.

-

-

-

-

-

I

-

-

.-

-

-

-

-

-

-.

-
r

-

-

-

-

-

T,

-

-

2

2. Srvntax of Pure LISP

The syntax of LISP described below is that of M-expressions as described in the manual [4].

I use the variant of BNF notation described in [9]

2.1. Meta-variable Conventions

A ranges over <S-expression> (as in page 9 of [4]>
X,f,Z range over <identifier> (as in page 9 of [4])

it”
ranges over <form> (as defined below)
ranges over <function> (as defined below)

F ranges over <standard function> (as defined below)

I use meta-variables x,f,z to range over <identif ier>; x is used in contexts where the

identifier is a form, f where it’s a funct ion and z where it could be either.

2.2. BNF Eauations

f,”
::= A 1 x 1 fn[el;...;en] 1 [e, 1+e12;...;en1+e,2]
::= F 1 f 1 X[[xI;...;x,];e] I label[f;fn] I r[f;fn]

F ::= car I cdr I cons I atom 1 eq

(The purpose and meaning of functions of the form r[f;fn] is explained in [Note 161 below)

3. Denotational Semantics of Pure LISP

The formal definition of LISP described in this section is a “mathematical semantics” of the

type developed by Scott and Strachey [S]* l have found that modelling data-types as

complete lattices [8] leads to minor technical difficulties and inelegancies [l] which disappear

if complete-posets (ie. partially ordered sets in which every directed set has a least upper

bound) are used. Consequently in what follows - and in contrast to the standard theory -

“domain” wi I I mean “complet e-poset “. The theory based on this notion of domain differs only

in obvious and trivial ways from the theory based on complete-lattices.

lf X is a set let flat(X) be the domain obtained from X by adjoining 1. to it and imposing the

ordering EX for all XCX. Thus

x6flat(X) <=> x=L o r X(X
XEY <=> x=L o r x=y

The following syntactic domains will be used later:

S=flat(<S-expression>)
Id=flat(<identifier>)

Form=flat(<form>)
FuncLibn=flat(<function>)

The semantics below should be read in conjunction with the explanatory notes that follow it.

4

-

-- 61) G[AI]p = A [Note 51

62) @Uxllp = PbdPlS [Note 61

(S3) ~Ufn[e~;...ie,lllp = ~ITrnllP(aUe,Ilp,...,~Uenllp) [Note 71

64) Wh+e ~+;enpn2111P = (aUe,,Ijp~~Ue,,np,...,(T:Ue,,IIP-)aUen,DP> [Note 8-j

(S5) 8uC8& = &S.&S) [Note 91
B[cdrl]p = +~s.*(s) [Note lo]

iJ[rc0ns]p = &~,s2:S.cons(s1,s2) [Note 11)
8[8tOml]p = &:s.#tOm(9) [Note 121

8UeiIlp = BS,,S,:S.~~(S,,S,) [Note 131

66) gufnp = p(f)plFunval [Note 141

G7) tFUA[[x+.. x,ldl~ = b ,d,:s.(fr ue b b, ix ,.I-b,/x,l [Note 151

68) !Y[rlabel[f;fn]Jjp = ~UfnlMSUfnIl/f] [note IS]

69) D[rr[f;fn]np = Y(Xv:/Enw~Frrnual).hp’:En~.~~fnljp’[vJf])~
[Note 161

3.1. Semantics

3.1 .I. Denotation Domains

D=S+Fund
S=flat(<S-expression>)

Fun#al=p’+S)

3.1.2, Environment Domain

[Note l]

[Note 21

Enu=ld+[Enu-+Dj

3.1.3. Semantic Functions

[Note 31

&Fotm+/Enu+S]
&Function+[Env+Funwal]

3.1.4. Semantic Eauations

[Note 41
[Note 43

3.2. Notes

Note I

“*I’ is the separated sum [S]. If D1,D2 are domains then:

D1+D2 = ((l,dJd@1) U {GUMW~) U (11

which is made into a domain by imposing the ordering:

LLe(n,d)
(n,d)s(n8,d8) (=> n=n’ and dsd’

If di~~i let (di inD) mean (i,dJ - i.e. the natural injection of di into D1+Dp

If dtD,+D, let

dlDi = di) if d=(i,dJj
= L , otherwise. i

dlDi is the natural projection of d on to Di.

Note 2

If L is a domain then:

f,*=((x 1 ,...,x,) I m?O and Xi(L) U (I}

L* is made into a domain by imposing the ordering:

IC(x 1 ,...,X,)

(x 1 ,...,X,)dY 1 WY m) <=> n-m and Vi, XiEyi

.-

-

-

-

5

L

--

-

1

-

-

-

:

-~

-

N o t e 3

The purpose of environments in the semantics is like the purpose of alists in interpreters.

Thus environments are used to hold the bindings of variables to their values. In LISP when a

function is bound to a name on the alist the values of the function’s free var’iables are not

determined. These values depend on the environment in which the function is activated and

this is unknown at definition time. To model this the objects which get bound to names on

environments are mappings defined on environments. These objects thus have type /Enu+D)

and so EIIV has to have the circular type ld+/Env+Dj . This kind of environment also

handles the binding of form variables to S-expressions - the binding of A to x in p is

represented by arranging that p(x)p'=A for all p’fEnv. Bob Tennent has suggested [private

communication] that this somewhat unnatural representation of form variable bindings could

be avoided by letting Env have type given by Env=ld+/S+/Env+Funvdlj].

The domain equation Env=ld+/Env+Dj may have many solutions. These solutions can be

ordered by regarding them as retracts (and hence members) of a universal space. Then the

Env intended here is that represented by the retract Y(Ae.ld+/e+D/) - see [I] or [g] for

further explanation. This minimality is needed in the proof of the Main Theorem (see below).

N o t e 4

Relative to an environment pcEnv the semantic functions (E,8 map forms e, and functions fn,

onto their denotations G[el)pG, &[rfn$Whwal respectively. The semantic equations

consist of a recursive, syntax-directed definition of (E and 8. (E[II]=L and ~[L]=A. The

“emphatic” brackets [,I are a device due to Scott to increase the legibility of complex

expressions - [...I] always enclose pieces of LISP code.

- N o t e ES

-

-

S-expressions denote themselves in all environments.

N o t e 6

-
“p(x)pjS” means the projection into S of p(x)p6D=S+FunvaZ. Since S-expressions are

constant (i.e. their meaning is environment independent) they get represented by constant

-

- -

functions in /Env+S/ (see [note 31). Thus for any P’cEnv “p(x)p’” would do just as well as

the right hand side of 62). However when f is a function name “,(f)p” is needed (see (SS)

and [note 31) and so it seems more elegant to have (s2) as it is so that it resembles (Se). As

mentioned in [note 31 this arbitrariness is eliminated if the type of Env is changed to satisfy

Env=ld+f S+/ Env+Funval]].

N o t e 7

--

If s 1 ,..., s&S then (q ,...,s&S* and for fc/S*+S) f(s, ,..., s,) means f((q ,...,s,))

Note 8

(81 1+q2Pv8”1 +an2) = if sll=~ or (sIl#T and q,fF) then L else if sl,=T then s12 else
if a2+ or (e2$T and s~~#F) then 1 else if s2,=T then s22 else

.

- if s,+ or (s,+T and s,,]#F) then L else if s,,]=T then s,,~ else L

- N o t e 0

See [note 151 for explanat

car:S+S is defined by:

ion of A.

g-(s) = Al , if s=(A,.A,);
= L , otherwise (i.e. if S=L or s is atomic),

1
i

. N o t e IO

See [note 151 for explanation of h,

cdr+WS is defined by:2 e(s) = A2 , if s-(A,.A2);
= I, , otherwise (i.e. if S=L or s is .atomic),

- Note 11

-
See [note 151 for explanation of X.

cons(s1,s2) = (s1*s2) B i f S$I a n d s~#L;cons:SxS+S is defined by:
= A , otherwise,

I Note 12

See [note 151 for explanation of A.

atom:S+S is defined by: atom(s) = T , if s is atomic;
= F , if s is of the form (s1.s2);
= L , otherwise (i.e. if s=L).

I
I - ’ Note 13

- See [note 153 for explantion of &.

-

gg;s~S+S is defined by: &I,,s~) = T , if s1 and s2 are atomic and q=s,;
= F , if s1 and s2 are atomic and q#s,;
= A , otherwise.

-
N o t e 14

, p(f)plFunvuZ i s t h e p r o j e c t i o n i n t o F u n d o f p(f)pCD=S+Funvd, Forming p(f) modeis

looking up f on the alist, applying p(f) to p to get p(f)p models looking up the free variables

in the act ivat ion environment.

. .-

-

1

-

-

-

-

i

1

-

Note 15

Suppose E(s 1 p-p ns) is an expression which takes values in the domain D2 when q,..,,~,, range

over domain D1 then XsI,..*,sn:D1*E(s 1,eea~Sn) denotes the function f:D,*+D2 defined by

f(s) = E(Slr*.epSn) , if s=(s~...s,,,) where m2n and Vi, si#l;
- A- , otherwise.

Thus &s ~,...,S,:D~.E(S~,***, ns) is a function which always returns I when one of its arguments

is 1. {this is to model call-by-value) and which can take any number of arguments In (this is

a property of LISP functions).

I shall use XS~,...,S,:DI,E(S~~..,,S~) (i.e. with h instead of AJ in the usual way to mean the

function f:Dln+D2 defined by

If ptEnv, vflEnv+D] and z<Id then

p[v/z] = Xz’:Id. If z=:I. or Z’=A then I else if z=z’ then v else p(t’)

ln (S7) I’ve used the “coercion conventions” that if s6S then p[s/z] means

p[(Xp’:Env.(s inD))/z]. Thus, as discussed in [Note 31, for the purposes of binding to

variables in environments S-expressions are represented as constant functions.
-

-

-

-

-

N o t e 16

1 0

There are two natural ways to analyse recursion. One of themis to mimic in the semantic

equations what the LISP eval function does - viz bind the function to it’s own name on the

alist. The other way is to take the denotation of a recursively defined function to be the

(minimal) solution of the equation which defines it. Both these approaches have something to

be said for them and fortunately they turn out to be equivalent in practice (what “in

practice” means will be elaborated later - it’s also discussed abstractly in [3]). To simplify

the investigation of this equivalence two kinds of recursive functions, label[f;fn] and #;fn],

are included in the syntax of LISP. label[f;fn] is given an analysis which mimics the eval

function whilst g[f;fn] receives a minimal-fixed-point treatment.

In both (S8) and (S9) I’ve used the “coercion convention” that if v~/Env+Funvalj then

p[v/f] is to mean p[(Xp~:Egv.(v(p’) inD))/f].

In (S9) Y://Env+ Fund]+/ Env+Funval/)+/ Env+Funval/ is the usual minimal-fixed-point

operator XF.&F”(I). Note that the fixed point extraction is done “before” the free variables

are looked up (i.e. the result of applying Y is applied to p, rather than Y being applied to

something which has already been applied to p). This is necessary to correctly model dynamic

binding (fluid variables).

Note also that from the fixed point property of Y we have:

MImdllP = SUfnll(pC~Ur[f;fniIl/f3)

The right hand side of this differs subtly from that of (S8).

11

4, An Intexmreter f o r P u r e LISP

The interpreter described below is designed SO that reasoning about computations on it is

convenient. Its purpose is to aid in the formulation of a special purpose induction rule for

LISP (“LISP-induction”). It is formalised as a calculus consisting of rules for simplifying terms

of the form (e 1 a> where e is a LISP form and a an alist. The rules of this calculus are

intended to correspond to the obvious simplifications that one would perform on expressions

of the form B[e]p. An example of such a simplification is:

G[rx[[x];[atom[x]+x;T+cdr[x]]][(1 2)lnk).
=cF~[atom[x]~x;T~cdr[x]]n(~[(l 2)/x])
=(t [cdr[xjJ(l[(i 2)/x])
4 [cdr[(1 2)]1](~[(1 2)/x])
=(a

Let the meta-variables p,a range over the strings defined by:

p::=A 1 <e 1 a >
a::=NIL 1 a[A/z] I a[fn/z]

p will be said to range over <term> and a over <alist? Define ‘P[p&S and U[al]<Env by

PuAn=A
Ni<e ~a>ll=~U~lJ~~Uall~

PI uNILn=I
NMMll=~U~Il~~/zl
~Ua[fn/zill=~Ua~[~Uf~~/zl

In the last two equations I’ve used the “coercion conventions” described in [note 151 and

[note 161 above.

The following definition describes a binary relation + defined on terms, p+p8 means that

p simplifies to p’. If one likes one can think of the p’s as states of a machine then ‘gp+p~gg

means “in state p move to state p”‘, final states are p’s of the form A.

_-

-

-

-

-

-

-

-

-

-

--

--

--

_-

-

-

m
-

1 2

1 shall immediately follow the definition of + with an explanation of the notation it is

written in; then I will give some notes which should be read in conjunction with the definition,

Definition I (Definition of + and 9)

-+ is the reflexive, transitive closure of +.

(W <A 1 a>4A

(P2) a(x)=A
-----w-w---

<x I a>-bA
[note 171

(F[A,i***iA,I I a> +A

< f n[e 1 i-&l I a> 4< MA 1 i-AJ I a>

[note 201

(W <~[fifnl[A~i&J I a> +<fn[A+AJ I drl?;fWf] >

I

-

-
,

-

-

-

-

-

-

-

-

Each clause Pl-PlO is a schema and the meta-variables in them range over their previously

defined sets (e.g. A ranges over <S-expression>).

A schema of the form p+p’ (i.e.Pl, P8 or Pg) means that any instance of it is a pair for

which + holds.

A schema of the form:

conditions
111---1----

P--$P’

(i.e. P2-P7, Pl 0) means that any instance of it which satisfies the conditions is a pair for

which + holds.

An example computation, which corresponds to the simplifications described above, is:

<A[[x];[atom[x]+x;T+cdr[x]]][(1 2)] I NIL)
+<[atom[x]+x;T+cdr[x]] 1 NIL[(1 2)/x]) (by P7)

-b<cdr[x] I NW 2)/x3 > by P5)
4<cdr[(1 2)] I NW 1 2)/x3 > b y P4)
-b(2) by P3)

Notice that this computation can be mechanically and deterministically generated from its

initial term - the definition of + makes explicit the intuitions which were previously used

in simplifying G[rA[[x];[atom[x]+x;T+cdr[x]]][(1 2)]n(r) above,

14

i
,

4 . 1 . Notes

Note 17

a(x) is defined by structural induction on a as follows:

N I L (x) = 1.
(a[A/z])(x) = if x=z then A else a(x)
(a[fn/z])(x) = if x=z then fn else a(x)

Thus a(x)~(~.} U <S-expression> U <funct ion? The reason P2 rather than “<x a> 4 a(x)”

is used is that with the latter if a(x or a(d=fn then (X 1 a)--$~ or (x 1 a>+fn and

neither A nor fn are terms.

Note 18

E ranges over car,cdr,cons,# om,eq. "<F[A,;...;AJ I a) +E(A,,...,A,)” won’t do because it

- would yield e.g. <cons[N:L] I a)+A - and I isn’t a term.

N o t e 18

.- The reason for the condition “[I

form:

i. e;#AJ” in P4 is to exclude unending computatlions of the

-
<fn[A,;...;A,] I a> +<fn[A,;...;A,] I a> + . . .

- and also to make + deterministic (i.e p-bp’ and p+p” => p’=p”). Thus I exclude the

nondeterminism:

<label[f;fn][A lI,d$,l I a> -I+< fnEA~;...;A,,l I ah/f1 >

--
<label[f;fn][A,;...;A,] I a> +<label[f;fn][A1;...;A,]

15

Note 20

a(f) is defined as in [note 171 (with x replaced by f in the definition of a(x)).

“< f[A ,;...;A,] I a> +<a(f)[A ,;...;A,] I a)” will not do for P6 because of the possibility that

a(f)=l or a(f)=A (cf. [note 171).

Note 2 1

It follows from PlO that Vp. p-p (take n=l in PlO) and p-p’ and p’+p” =a P-~L$~-

5. Correctness of the Interpreter

The following result shows that -+ fulfils its design requirements i.e. that (e I a> simplifies

down to A if and only if G[e]<Qf[a])=A

Theorem I (Main Theorem)

p-A <=’ @[p]=A

Proof outline

The theorem splits into two p8rt8, viz

(a) p-+A => @[rpI]=A

W @bibA *’ P-A

(a) is essentially trivial - one just checks that rules (Pl)-(PlO) preserve the denotation of

terms. I discuss how to organize this argument in section 6.1. below.

--

-

-

16

(b) is less straightforward and I shall only indicate the main idea of the proof. This idea is

due to Robert Milne [private communication] and considerably shortens the original proof

given in [11. Similar ideas have been developed independently by Reynolds[71.

T h e m a i n i d e a i s t o c o n s t r u c t p r e d i c a t e s ~form,~function, a n d veiist d e f i n e d o n

/ En&Slx<form>, /Enu~Funual)x<function’ and Enux<alist> respectively such that;

(1) gpyv,e) <=> Vp,a. [~a’i*t(p,a) => VA. [vW=A => <e I a> -VA I 1

(2) v functiOn(v,fn) (=> Vp,a. [Sp”““‘(p,a) => [v(p) is strict] a n d VA,A],...,A,.

[V(p)(A,p*,An)=A => <fn[A,;~~.;A,] I a> +A]]

(3) ‘~a’ist(p,a) <=> Vz,A. [i f a(z)=A t h e n ‘$form(p(~)I/Enu-,S/,A) and
if a(z)=fn then p function(p(Z)If Env+Funml),fn)]

I n (3) a b o v e “p(z)~/Enu~S]” a n d “p(~)~/En~~F~n~aIj)l a r e a b b r e v i a t i o n s f o r

“~p~:Env.(p(z)p’lS)” and “X~‘:E~2r.(~(z)~‘JFunval)” respectively.

From (l)-(3) it is straightforward to show by structural induction that:

(4) Ve<<form>. Sp form@ [ej,e>

(5) VfnWfunctioW. yfunction(8[fnJJ,fn)

(6) Vac<alist>. ~a’ist(N[Ta],a>

and then by taking v=@[en and p=a[[an we have by (l), (6) and modus ponens that:

(!&l]<~fUajl)=~ => (e 1 a)+A

as desired.

3

-
17

- The only non tr ivial part ot this proof is showing that there exist relations vform,

.-

pfunctlon
b

,peliSt satisfying (l)-(3). Lack of monotonicity prohibits the simple use of Y to do

this. General techniques for solving recursive predicate equations (such as (l)-(3) above)

have been developed by Robert Milne (and also by Reynolds). The reader is referred to [5]

and [73 for further details.

^-

“QED”

-
I 5.1. Reasoninfr, via the Intermeter

-
1’11 start by illustrating the use of the Main Theorem on a totally trivial example - determining

- IY[label[f;f]n(~) - less trivial examples are theorems 2, 3, 4, 5 below. Intuit ively
*

il3[label[f;f]n(l)=L as label[f;f] terminates on no arguments - to rigorise this observe that

by P8 we have for arbitrary AI,.*.,An

<label[f;f][A,;...;A,] 1 NIL> +(f[A,;..*;An] I NIL[f/f])

-
and (by P6) if p=<f[A,;...;A,] I NIL[f/fD then the evaluation of p just leads to the unending

computation:

P-+P-bP4.**

so by the Main Theorem there’s no A such that 6[label[f;f][A,;...;An]n(&A. and so :

VA 1 ,...,A,. G [abel[f;f][A,;..., n*A]n~Pl[rNILI])=~[rlabel[f;f]n(~)(A,,..,An)=~

L hence 8 [label[f;f]n(i)=L

To prove the intuit ively obvious fact that 8[label[f;f]n(I)=A without using the Main

Theorem one needs to exploit the minimality of Enu. The Main Theorem packages-up this
--

minimality in 0n easy to use form.

m

-

-
*

L-

h

-

-

-

.

r

- -_

-

c--

-

-

.

-

s

1 8

6. LISP-Induction

LISP-induction is an attempt to formalize certain kinds of intuitive arguments about ~lsp

programs. A

the last secti

that

very simple example of such an argument is the reasoning used at the end of

on to prove that ~ulabel[f;f]n(PI[ran)=~. A less trivial example is the “proof”

Va,f,fn. ~[rlebel[f;fn]D(Pr~an)=~U~[f;fn]n(~~an)

which is based on the intuition that for all A I,& if one starts “evaluating” both sides of the

equation

then either both “evaluations” will stop with the same value or both will go on for ever.

To convert this argument into reliable proof one needs a formal notion of evaluation (which

has the property that unending evaluations only arise from terms which denote I). The

definition of + is designed to provide such a notion and the Main Theorem shows that it

has the desired property.

Using + one can give a more rigorous version of the above “proof” by showing that to any

computation of the form

<label[f;fn][A1;...; nA I I a> -bpi -b~rL-+~n-bA

there corresponds one of the form

<r[f;fn][A,;...;A,] I a> -bp+b~+b-b~~'+A

and vice versa, where (roughly!) pi’ is got from pi by replacing some occurrences of label by

u and replacing some aliet bindings of the form [fn/f] by [r[f;fn]/fn].

1 9

The LISP-induction rule to be described provides a reasonably clean way of rigorously

organising such arguments. In order to state it let p’o~p mean intuitively “p’ has to be

evaluated in the course of evaluating p “* More precisely let @ be the transitive closure of

c where;

p’cp <=> either

or

or

(1) P-bP’

(2) p’(fn[e,;...;e,] I a> and p”<ei 1 a> for some i.

(3) P’=(b, 1+e i 2;...;en1+en2] I a> and P’CK 811 I a>,-,< e,,,~ I a> I
where (e,l I a> +T and Vixm. (ei, I a> +F

Thus p’cwp <=> 3pl,...,p,. p8=pI cp2cxpn=p (n>l)

LISP-induction is structural (or Noetherian) induction with respect ot the ordering 0 applied

to expressions of the form “p-A => v(p,A)” where ‘fii(p,A) is some sentence involving p

and a. Thus the rule is: *

Vp. [[Vpwp. [p-+A’ =’ W<p’,Wll =’ [P-A =’ WCp,Nl 1
- -

VP. [p=9A =’ WP,NI

By considering the various ways in which we can have p%p the above rule can be

instantiated to:

-

2 0

6 ,I, Simnle LISP-Induction

TO INFER: \dp. p-A -, v(p,A)

PROVE:

(1) WWd

(2) ‘@(<A I a),N

(3) abd=A => 3@<(x I a),A)

(4) E(A;i***iAJ =’ W<F[A+d4J I a>,N

(5) ‘fiC(<ei I A,)pAJ, ~(<fn[A+-iAJ I ahA) => ~(<fn[e+;e,] I a>,A)

(6) Vi<m.W(<ei I a>,% WKeml I a>,T), ‘rp(<e,p I ahA) => ~(([e11-)e12;...;en1~en2]

(7) W(<e I ~CA1/~J-IAn/~,,l >A =’ ‘rp((~[Cx~i***ix~Ii~I[A~i~~~iA~] I a>,A)

(8) W<fn☯A lIp-iAJ I e[fn/f]),A) => ~<(Iabel[f;fn][AI;.,.;A,] I a>,A)

(9) ~KfnCAI;4,1 I ~Mf;fn]/fl >A r> ~((r[fifnI[AIi...iA,] I a>&

I a>&

The above instance is somewhat less general than full LISP-induction and so it’s called simple

LISP-induction. Simple LISP-induction, however, is powerful enough to be used to to prove a

number of interesting facts, for example here’s the easy half of the Main Theorem:

Theorem 2

P-WI => rPupn=A

Proof

T a k e 3& to be such t h a t v(p,A) <=> !@[p]=A, then the result fol lows from a trivial

application of simple LISP-induction.

QED.

21

Theorem 3

~ur[f;rn]n(Pr[ran)=~~label[f;fn]~(~~a~)

Proof

For the induction to go through one needs to prove a stronger result. If w, w’ are forms or

functions let WNW* if and .only if w’ can be got from w by changing zero or more occurrences

of ~1 to label and zero more occurrences of label to ~1.

If a,a* are alists define aHa* <=> for all z:

(1) a(z)=A <=:> a*(z)=A (Ac<S-expression>)

.- (2) if a(z)=fn then [a*(z)=fn* or a’(z)=r[f;fn’]] where fwfn*

(3) if a*(z)=fn* then [a(z)=fn or a(z)=r[f;fn]] where fwfn*.

If p,p* are terms then pwp’ <=> [p=A,=p* or p=<e 1 a) , p’=(e’ I a*) w h e r e ewe*,a-a’ 1.

Now one can use simple LISP-induction to verify that p-A => w(p,A) where,

3$(p,A) <=’ [VP’. p - p ’ => p’++A]

The result follows.

QED.

The previous theorem can’t be generalised to:

Vp,f,fn. S~r[f;fn]np~5ulabel[f;fn]np

- A counterexample is got by taking fn=g, ~=~(~~**.~[Xp*.p*(f)p**/g][~~~~~~/f]). It is then

- straightforward to show (see [1] or [3]) that

;T.[rr[f;g]~p=~#~~carlj=0;[rlabelCf;gl~

-c Thus it’s not the case that ~[rr[f;fn]n=Sulabel[f;fn]n. A detailed and L ISP- independent

discussion is given in [3].

Because variables are fluid in LISP it isn’t true that if p,p’ agree on the free variables of fn

-
then FY[fiJp=!F[fn&v (e.g. consider fn=f, ~=~UN~L[glff[c~rig111 p

_- p*=Qi[NlL[g/f][cdr/g]n). The following definition gives sufficient conditions on a set

Zc<ldentifier> SO that if a,a* agree on Z then ~ufnn(ar[[an)=~ufnn(~ua*n).-

Definition 2

If Zc_<ldentifier> and p,p* are terms then define pzrp8 <==>

-
e i t h e r p=p*=A

-.

-

or p-(e I a>, p*-<e I a*> and (l),(2) and (3) where;
(1) Z cant ains all the free variables in e

(a variable is free if it isn’t bound by A,# or
(2) VzCZ. a(z)=a*(z)
(3) vzcz. z con ains all the free variable in a(z)t

label)

Theorem 4
I -
I P=zP’ =' [p=++A-p'+A]

- Proof

-

L

-

Use simple LISP-induction to show that p-A ==) ‘fp(p,A) where:

9$(p,A) <=’ VP'. [[IZ. ~=~p'] =' p'+A]

The result then follows from the symetry of zz.

QED

23

-,
Corollary

Let fnc<function>, a, a*e<alisf> then if there is a Z&dentifier> such that:

-

(1) Z contains the free variables of fn

(2) vztz. z con ains the free variables of a(z)t

(3) VzCZ. a(z)=a’(z)
-

Then ~Ufnl]cOITell,-~Ufnn(~U~8n)

-
Proof

-
By previous theorem (fn[A~i...iAJ 1 a> +A <=> <fn[A,i.,.iA,] I a*> +A hence result by

Main Theorem,

QED.-

-_
Results similar to Theorem 4 and its corollary are proved in a more general setting in [3].

7. The correctness of eval and apply

The properties of eval and apply which constitute their correctness are:

-

-

~Ueval[e*;a*lll(pint)-aUel](PrUan)
VA W& ~uapply[fn*;(A,...A,)ia*]n~~i~~)=~ufn~(~~a~)(A,,...,A,)

where e*,a* are S-expression representations of e and a and p int is an environment binding

the names of the various functions used in the definitions of eval and apply to their values

(see below)

-

2 4

The proof to be outlined is not an instance of simple LISP-induction but is a general

Noetherian induction with respect to the ordering 0~. The full details are very long and

boring {see [l]) and are not given here - 1 hope that 1 describe enough so that it would be

quicker for the reader to generate the proof himself than to read through it.

In fact the a b o v e p r o p e r t i e s a r e n o t t r u e for if e=x (so e*=X) a n d a=NIL[fn/x] (so

a*=((X.fn*))) then

~~eval[e*;a*]~(p,,)-fn*#~=~[rxlj(PIUali)

However if we adhere to the constraint (violated above) that an identifier can’t be used both

as a form variable and a function name in the same program then the property holds.

To enable us to say this precisely we make the following definition:

Definition 3

(e 1 a> is “nice” if the intersection of the 88tS FORMVARS, FUNVARS are empty, where;

FORMVARS={zlz is a form variable in 8 or a(z)Wform>}
FUNVARS-{zJz is a function name in e or a(r)C<function>}

The next definition extends the translation of M-expressions into S-expressions which is

given in the Manual [4] to include alists. This is necessary for the statement of the

correctness of eval and apply - viz. Theorem 5 below.

-

I

-

&

. --

-

-

3

2 5

Definition 4 (definition of e*, fn*, a*)

The S-expression representation e*, fn*, a* of e, fn, a are defined by structural induction as

follows:

e*--’

A* =(QUOTE A)
x* -x

fn[e+;e,]* -(fn* el*...en*)

C 81 1+812i-*r nl‘8 -*en2]*=(COND (01 I* e12*)w*(eni* en2*)),

fn’:

car*=CAR
cdr*=CDR

cons*=CONS
at om*=ATOM

eq*=EQ

h[[x,;...;x,];e]*=(LAMBDA (xI*...x,*) e*)
label[f;fn]*=(LABEL f* fn*)

NIL*=NIL
a[A/z]*=((z*.A).a*)
a[fn/z]*=((z*.fn*),a*) .

amtp which is specified in the next definition, is an alist containing the definitions of the

functions which make up a basic LISP interpreter - namely those functions needed in defining

eval and apply. The environment denoted by aint is Pint*

I

-

-

I. * 26

- Definition 5 (Specification Of aint, Pint)M

Pint’NUaintD

where:

where fnnemr is the definition of name given in the manual [4].

for example:

-

-

fn
OPPlY

=A[[fn;x;a];
[atom[fn]+[eq[fn;CAR]+caar[x];

eq[f n;CDR]+cdar[x];
eq[fn;CONS]+cons[car[x];cadr[x]];
eq[fn;ATOM]+atom[car[x]];
eq[fn;EQ]-+eq[car[x];cadr[x]];

T +apply[eval[fn;a];x;a]];
eq[car[fn];LAMBDA]~eval[caddr[fn];pairlis[cadr[fn];x;a]];
eq[car[fn];LABEL]~apply[caddr[fn];x;cons[cons[cadr[fn];caddr[fn]];a]]]]

fn .vo~=xc[eial;
[atom[e]+cdr[assoc[e;a]];
atom[car[e]]-+[eq[car[e];QUOTE]+cadr[e];

eq[car[e];COND]+evcon[cdr[e];a];
T +apply[car[e];evlis[cdr[e];a];a]];

T + apply[car[e];evlis[cdr[e];a];a]]]

- fn ovcon4 [[cd;
[eval[caar[c];a]~eval[cadar[c]ia];

T +evcon[cdr[c];a]]]

fnWI16 =A[[m;a];
[null[m]+NIL;

- T +cons[eval[car[m];a];evlis[cdr[m];a]]]]

27

-
c

L

-

-

8

i

.

L

-

f

-

s

L

c

L

- .

e
-

,

-

-

--

Theorem 6 (correctness of eval, apply)

lf <e I a> and < fn[A,i-iAn] 1 a> are nice then:

Proof

The theorem follows from lemma 1 and lemma 2 below.

QED.

Lemma I

< fn[A ,i-&J I a> -9 A r> aUapPly[fn*;(A,...An);a*]n(pint)=A
(e 1 a>+A => @[eval[e*;a*]ll(pint)=A

Proof

The lemma can be put into the form p+A => S/$(p,A) by defining

w(P,A) <=> i f P<fn[A,i...i nA 1 I a> +A then ~l[aPply[fn*;(A,...An);a*]~(pint)=A
and if p-<e I a)+A then aueval[e*ia*]n(~int)=A

A straight forward (but tedious) LISP-induction then yields the lemma.

QED.

Lemma 2 below is a kind of generalised converse of lemma 1. The extra generality consists

in proving the result for certain alists of the form ai,t[w,/Z,]...[Wn/tn] instead of just for ai,,t.

This extra generality is needed to enable the induction to go through.

.

-

5

-

-

-

-

I

>

-

4

-

.-

-

-

L

28

The alists in question are those of the form ai,pa’ where a’ is “safe” - here “ai,,t.a”’ i$

defined by structural induction by:

ainpNIL=aint
ai,+.(a[A/z])=(a~,t.a>CA/z]
ai,Ja[fn JZ]>+i,pd[fnlZ]

Also an alist a is called “safe” if when

Z=(assoc,pairlis,equal,null,cadar,caddr,cadr,cdar,caar,evlis,evcon,eval,app

t h e n : Vz<Z. a(z)=L.

IlYl

These definitions imply that if Z is as above then for any safe a: ai,,t=Z(ai,,t.a). This fact needs

to be used in the proof of lemma 2. below.

Lemma 2

If <fn[A,;...iA,J la> and<4 a) are nice and a’ is safe then:

< apply[fn*;(A 1 .-&ha]
< eVal[e*;a*]

P r o o f

ai,,t.a’> +A => ~[rfn~(W[ral])(A,,...,A,)=A
ainpa’> -+A => @[el(N[al)=A

The lemma can be put in the form:

P-A =’ Wp,A)

by defining

%&(p,A) <=> if p”(apply[fn*;(A,...A,);af] I aint.a’)+A (w h e r e a8 is safe)
t h e n ~ufnn(Pl[ral])(A,,...,A,)rA

and if p-<eval[e*;a*] I ai,,pa’)+A (where a’ is safe)
then G[en(rn[an)=A

This can then be proved by a straight forward (but extremely tedious) LISP-i nduct ion.

QED.

--

- * 8. Concluding Remarks

Although these proofs formalize intuitive arguments their size, when all details are filled in, is

excessive. As these details are fairly mechanical and don’t require creative acts for their

generation a proof production system (such as FOL at Stanford or the new LCF at Edinburgh)

should be able to help us cope with them. Another possibility is that abstract “high level”

notions can be developed which encapsulate some of the facts (proved here for LISP) in a

language independent form. A start at this has been attempted in [3]. Abstract notions help

in the handling of arge masses of detail by assisting in the isolation of those things which are

I anguage specific from those which are more universal. When the proofs of language

independent facts are factored out from the proofs of the theorems described above the

c latter are made shorter and more direct (see [3]). The formulation of such high level,

language independent notions should also assist in the design of proof construction systems -

research into proof generation needs to proceed hand in hand with research into the

structure of the proofs whose generation is desired.

.-
_

--

--

-

-

-

.

-.-

30

8. R e f e r e n c e s

[l] G o r d o n , M.JC (1973) M o d e l s o f p u r e LISP. Experiment al Programming
Report s:No.3 1, Department of Machine Intelligence, School of Artificial Intelligence,
University of Edinburgh.

[2) Gordon, M.J.C. (1975) O p e r a t i o n a l R e a s o n i n g a n d Denotational
Semantios. Presented at the International Symposium on Proving and Improving
Programs, Arc-et-Senans, France (proceedings available from IRIA). Revised as Memo
AIM 264, Computer Science Department, Stanford University.

[3] Gordon, M.J.C. (1975) Towards a Semantic Theory of Dynamio Binding.
Memo AIM 265 , Computer Science Department, Stanford University.

[4] McCarthy, J. etal. (1969) LISP 1.5 Programmer’s Manual. MIT Press.

[S] Milne, R. (1974) The formal semantics of computer languages and
their implementations. Oxford University Computing Laboratory, Programming
Research Group, Technical Monograph PRG- 13 (available on microfiche),

[6] Reynolds, J.C. (1972) Notes on a Lattice-Theoretic Approach to the
Theory of Computation. Systems and Information Science, Syracuse University.

[7] Reynolds, J.C. (1974) On the Relation between Direot and Continuation
Semantics. Second colloquium on Automata, Languages, and Programming.
Saarbrucken.

[8] Scott, il. (1974) Data Types as Lattices. TO appear as Springer Lecture Notes.

[9] Scott, D. and Strachey,, C. (1972) Towards a Mathematical Semantics for
Computer Languages. Proc. Symposium on Computers and Automata, Microwave
Research lnst it ut e Symposia Series, Vol.2 1, Polyt ethnic lnst itut e of Brooklyn.

-

