
Stanford Artificial Intelligence Laboratory
Memo AIM-265

August 1975

Computer. Science Department
Report No. STAN-CS-75-507

TOWARDS A SEMANTIC THEORY
of

DYNAMIC BINDING

bY

Michael Gordon

Research sponsored by

Advanced Research Projects Agency
ARPA Order No. 2494

COMPUTER SCIENCE DEPARTMENT
Stanford University

-

\ _’ ‘, ‘?
_ -_ ,

TOWARDS A SEMANTIC THEORY
OF

DYNAMItiINDING

bY

Michael Gordon
Department of Computer Science,
James Clerk Maxwell Building,

The King’s Buildings,
Mayfield (Road,

Edinburgh EH9 3JZ.

Abstract

The results in this paper contribute to the formulation of a semantic theory of dynamic

binding (fluid variables). The axioms and theorems are language independent in that

they don’t talk about programs - i.e, syntactic objects - but just about elements in

certain domains., Firstly the equivalence (in the circumstances where it’s true) of “tying

a knot” through the environment (elaborated in the paper) and taking a least fixed point

is shown. This is central in proving the correctness of LISP “eval” type interpreters,

Secondly the relation which must hold between two environments if a program is to

have the same meaning in both is established. It is shown how the theory can be

applied to LISP to yield previously known facts,

KNOWLEDGEMENTS

Thanks to John Allen, Rod Burstall, Friedrich von Henke, Robert Milne, Gordon

Plot kin, B o b T e n n e n t a n d C h r i s W a d s w o r t h f o r h e l p f u l discussions a n d

correspondence. J o h n A l l e n , D a n a S c o t t a n d A k i n o r i Yonezawa s u g g e s t e d

improvements and pointed out errors in preliminary drafts of this report,

This research was supported in part by the Advanced Research Projects Agency of the

Office of the Secretary of Defense under contract DAHC 15-73-C-0435, ARPA order

no. 2494.

The views and conclusions in this document are those pf the author and should not be

interpreted as necessarily representing the official policies, either expressed or implied,

- of the Advanced Research Projects Agency or the US Government.

L

f
L

L
L
I
t

c

f

i-

L

------ - _

CONTENTS

SECTION

6.

5.3,1,

5.3.2.

5.3.3.

5.3.4.

Environment Domain.~.........~.~..~~~~..~~....~.~....~~~........~...............~~...~....~~~~..........~...,,~~,~ 1 3

Existence of Predicates _.r........1~.r............~....~...................~..................~.~........,,.,..,.,,.,,...,,,......,.,.~~~,~~~ 1 8

;L Introductionl

The art of semantics is now sufficiently developed that most computer languages can be

given concise, elegant and intuitive formal descriptions. T h e t h e o r y o f t h e s e

de$CriptiOnS is well enough understood that useful facts - such as the correctness of

implementation8 - ‘are fairly straightforward to prove. Unfortunately proofs tend to be

very long and the results obtained rather lacking in generality. For example the proof of

correctness of an implementation for one language has to be. redone for a similar

implementation of another., Of course once -the proof idea is known no real creative

acts are needed in applying it and thus a certain amount of generality is. obtained.

However this generality isn’t of a type that’s easy to use (except, pehaps, by people

with considerable knowledge of the underlying theory). A more direct way of being

general is to isolate explicitly the assumptions used and then to prove the results from

these, Then to apply such a result ‘one just needs to check the language satisfies the

appropriate “axioms” - and this will normally be much less demanding than redoing a

whole proof by analogy with an existing one.

ln this note I’ve formulated abstract versions of two results about languages which use

dynamic binding of free variables. Initially these were proved for LISP (they were

needed in proving the correctness of an implementation). The abstract vers ions

described below can be instantiated to yield the LISP ones. At hough the two results

proven are completely language-independent (in that they don’t talk about programs -

i.eJ synt attic object8 - but just about elements in certain domains) they aren’t as

general as one might hope. Some situations in which dynamic binding is used and which

intuitively should fall under their compass don’t. This is a defect of the present work - l

don’t think it’s a necessary difficulty.

2

2. Informal Discussion of Results

When reasoning about programs it’s often useful to be able to exhibit the denotation of

a recursive procedure as the least fixed point of some functional. Doing this enables,

for example, computation-induction to be used. The first result to be discussed helps

with this as it concerns the equivalence (in certain circumstances) of “tying a knot”

through the environment (elaborated below) with taking a least fixed point. Besides

being of interest in its own right, this result is at the heart of the correctness of LISP

evaI type interpreters. ,Hopefully the abstract version wiill assist in proving the

correctness of similar interpreters for other languages.

The way recursive definitions are handled by many LISP implementations is to bind the

body of the function to its own name on the alist. This creates a circularity or “knot” in

_ which places inside the function body (namely recursive calls) point back to the

beginning of the function, Now the standard analysis of recursion is via the Y-operator

(i.e. in terms of least fixed points) and consequently in proving the correctness of

“knotting” interpreters with respect to standard semantics it’s necessary to ascertain

the conditions under which “knotting” and fixedpointing are equivalent. Contrary to what

one might expect they aren’t always the same. This is shown below,

The second result concerns what re!ation needs to hold between two environments a#

(alists in the case of LISP) for a form e to evaluate to the same values in both a and a#.

Call this condition “a=‘a’“.

3

A first guess might be that the two environments must agree on the free variables of e

(as is the case for terms in predicate-calculus or the h-calculus). This won’t do

I-.. ’
however for although a and a8 might agree on e’s free variables the things they bind to

these might depend on other variables not free in e and on which a and a8 differ (e.g. if
e=x, a and a8 both bind x to y but a binds y to 1 whilst a8 binds it to 2). What is

clearly needed is that a and a’ agree on e’s free variables and on the variables free in

the things bound to these variables .*. ,.. etc.

To formulate this for LISP one just needs a recursive definition like:

a=@a8 <=> Vx. [x free in e ==> a(x)=a’(x) and a=g(X)a8]

Now given a syntax for e’s its easy to formalise “x free in e” - the difficulty arises if

one wants a syntax independent definition. What’s needed is an abstract notion of

e - free-ness applicable to elements of the type denoted by e (and ‘hopefully denoted also

by programs from languages other than LISP). I describe such a notion below.

3. Formalization

3.1. K n o t s a n d Fixed-Pointy

Before proceding with abstract formulations of the above it’s necessary to describe the

environments needed to handle dynamic binding. Let D be an arbitrary domain of

expression values and let Enu=fd+V~ be the associated domain of environments,

Elements of VD are - in the case of dynamic binding - denotations of objects which may

contain free variables and so might still depend on the environment. Hence Vo=Env+D

and thus Enu must satisfy En~=ld+~E~~+,D].

4

L. It turns out to be necessary (see lemma 8 below) to require in addition that if

p@nu t h e n p is st r ic t i.e. ~(J&J. t h u s i f /D1+DJ i s t h e d o m a i n , o f s t r i c t
L_.4

continuous functions from 01 to D2 then Enu must h a v e t y p e sa t i s f y i ng :

Em=ld+/ Enu+D).

From this one can immediately formulate what it means for “knotting” and fixedpointing
to be the same viz. we require for vW0 and pthu:

+(p[vfx])=Y(F,(v))p w h e r e Fx(v)=~v8.~p8.v(p8[v8/x])
t t

knot ’ fixedpoint

here p[v/x] is p updated to bind v to X. Unfortunately this equality isn’t true in

general.

For example if:

Then it turns out that v(p[v/x])=&U=Y(F,(v))p.

For we have: ~<P~~l~l>=~P~~l~l~~Y~~pcv/~l~
-P(YNP[VlXl)
=(Xp’.p’(x)p)(p[vlx]~
=MvlabQP
=V(P)
=P(Y)P
=(xP’.P’bdP~P-
==PoaP
=Op ‘.d)p
=d

(where ycld)
(where L#dcD)

(by definition of v)

(by definition of p)

(by definition of v)
(by definition of p)

(by definition of p)

And-as Y(F,(v))~-U,F,(V)~(~)~ and

Fx~v~n(~)p=~ implies

5

F,(~)~+~(s)p=F,(v)(F,(v)~(l))p

=v~PF,w~~~/xI~
=~p[~,~v~“~~~/~]~~~~~~[~,~v~~~~~/x]~ (by definition of v)
=(~P~.P~(x)P)(P~F,(v)~(~)/xI)
=F,(vP(I)~=L

(by definition of p)

It follows by induction on n that: Vn. F,(v)n(~.)p=~ and so Y(F,(v)jp=~ .

-
In [l] and [2] it is shown that for v’s and p’s which are the denotations of l&p

functions and alists respectively the equation v(p[v/x))=Y(F,(v))p does in fact hold.

The proof used was very specific to LISP (being essentially an induction on the size of

. computations on a certain abstract interpreter). Now hopefully the result should hold

for dynamic binding in general rather than just for LISP. Thus the problem arises of

i.
isolating and stating those properties of dynamic binding which, when possesed by v

1 a n d p, entail v(p[v/x])-Y(F,(v))p. TO do th is we need to in t roduce recurs ive ly

L
defined (but not necessarily monotonic) relations of the type first studied by Milne [S]

and Reynolds [7]. Using these we can then provide a (partial) abstract characterisation

of dynamic binding by defining a notion of “regular” for which:

v, p regular ~>~v(p[v/X])~Y(F,(v))P -

L From now on xIx8,x8’ ,..., y,y’,y” etc. will range over Id. X,Y will range over subsets of

II
L

I d . ps8,p88will r a n g e o v e r Enu. v,v’,v” will range over Vo=Enu+D and d,d8,d8’ will

range over D.

6

Using techniques developed by Robert Milne of Oxford [5] one can show that there

exist predicates of types:

qEnu x Enu
dxcVD x VD (one for each xeld)
+cEnu x Enu
+cvD x vo

which are directed-complete (i,e, if they hold of each member of ‘a directed set then

they hold of the union) and satisfy:

L

bP’ <=’ vx. p(x)a”p’x)
wXv8 <=> Vp,p’. [p o p ’ =, v(P[v/x]~ 5 v’(p’[v’lx])]
P’P’ <=’ vx. p(x)+p’(x)
v*v’ <=’ Vp,pY [pap’ =, v (p) E v’(p’)]

L One can then show that:

I

l :

i
v+v 3, wxY (F,(v))
Ff’*v =n> Y(Fx(v8)j~xv

L And as it also turns out that p*p8 => pap8 we have:

L
t

Thus a definition of “regular” which works is given by;

Pefinition 1

i
v:Enu+D and p:Enu are regular <=* WV and pep

To apply this to LISP one just shows that the denotations of forms and alists are

regular, this is done in section 5.

In the next section proofs of the above assertions will be given relative to the

existence of the predicates. This existence (which can’t be shown with the Y-operator,

as the necessary functionals aren’t continuous) will be proved in section 6.

7

3.2. Eauivalent Environments

_. _ The formulation of the result about free variables also requires the use of Milne stylew

recursive predicates viz.:

@ g VD x (XlXgid}
sx s Enu x Enu (one for each XgId)

Where intuitively @(v,X) means the free variables of v are included in X and p=Xp’

means p and p’ “strongly” agree for all x6X. Formally we require that:

@(v,X) <=> VY,p,p’. [Xc_Y => [p=Vp’ =a v(p)=v(p’)]]
pzxp8 (=> VXCX. p(x)=p’(x) and Q)(p(x),X)

In section 5 below I’ll show that if e is a LISP form which denotes @Eel] and if

vs(e)={+ is free in e} then @(GKe],vs(e)). From this it follows (via the definition of

c

P =v*(@)p 8) t hat ;

Vp,p’. [p=“*(‘)p’ => fE~e](p)=~KeR(~8) 1
. .

In particular if e has no free variables then vs(e)={} and (since it’s clear that for any p

and p8: p=“p’) we have G[el](p)=@(re](p’).

Somewhat less trivially: if VxWs(e). p(x)=p’(x) and also p(x) is a constant function (i.e.

is an environment independent q u a n t i t y) t h e n a g a i n p=v*(r)p8 and so

G[el](p)=G[el(p8). This last example corresponds to the case for static binding - i.e.

when objects have all their free variables bound by the time they themselves are

bound. The existence of 0 and sx will be discussed in section 6.

8

--. 4, P r o o f s

c. Readers from now on are assumed to be familiar with notations commonly employed in

the literature on Mathematical Semantics.

A “domain” is a partially ordered set in which each directed subset has ! least upper

bound. This notion of domain is used (rat her than complete lattices) for minor and

nonessential technical reasons (see [l] for a discussion).

The domain intended by Enu=ld*/ Enu+D/ i6 the minimal solution qf the equation i.e. if

id,d are retracts of a universal domain (eg Scott’s 0,) which represent Id and D

respect ive ly (in t h e sence t h a t Ids{xlx=id(x)) and Dz{xlx=d(x)}) then

Y(he.id+(e+d)) r e p r e s e n t s E n u . (h e r e a+b==Xu.Xx.b(u(a(x))) and

_ a+b-Xu.Ax.b(str(u)(a(x))) w h e r e str(u)~xx.(x3l~l,u(x))). F r o m t h i s minimality it

follows that there are mappings Xp.p,:Ent+Enu such that:

In fact if Enu is represented as above then p,=(Xe.id~(e~d))‘(I)(p), For vC/Enu+Df

v, is defined by Vn(p)=V(pJ. (P4) can thus be written as: p,+,(x)=p(x), and it is easy

to show (see [l] for details) that: p[V/X]n+lrPn+l[Vn/X].

I shall prove [VW’ =B va~Y(F,(v))] by showing (by induction on n) that [v+v8 =>

v,a~Y(F,(v~))] and then take a limit. Similarly [WV’ => Y(F,(v))axv8] will be

proved by showing that for all n: [v+v8 => F,(v)~(L)(v)+~ 1.

9

The following rat her ad-hoc looking definition enables the clean statement of some of

the lemmas below:

Definition 2

F;Vo+VD i s “ i n v a r i e n t a t x” *=> Vp,v. F(v)(p[F(v)/x])=v(p[F(v)/x])

The useful applications of this definition are given in the next lemma.

Lemma I * .

For all x (Xv.v) and (xv.Y(F,(v))) are both-invarient at x.

Proof’

Trivial for (xv.v), for (xv.Y(F,(v)) use the fixed-point property of Y .

. QED.

Lemma 2

If F is invarient at x and WV’ then Vn. vpXF(v8).

Proof

n=O: Must show qpXF(v8)

i.e. PQP’ => vs(~[vslxl) 5 FWNp[FW/x])
i.e. pap8 => v(J.) E v’(p[F(v’) /xl)
OK as VW’ and ~~p[F(v’)/x]

n>O: Assume true for n-l. Let pip*. Must show v,(p[v,fx]) E F(v’)(p[F(v’)lx])

i.e.v(p,,[v,,~~/xl) E ~~(p[Ftv’)/~])
nemi ~n[vn-, /x1~~[fW)/x]
need v,,,~~~F(v’) - OK by induction.

QED.

10

Lemma 3

If F is invariant at x

Proof

Trivial from lemma 2

QED.

Iand VW’ then wxF(v8)

as v-u,v, and Q” is directed-complete.

Lemma 4

vx.. [v*v’ => VQ”V’]
v x . [WV’ =, VQ~Y(F,(V~)) 1

Proof

I
b

i

Trivial consequence of lemmas 1 and 3 ,

QED.

Lemma S

i.
L

If F is invarient at x and VWP then Vn, F,(v)~(J.)oxF(v#). e

Proof

n=O: Trivial

n>O: Assume true for n-l. Need pip’ =>

i.e. pap’
F,(v)n(~)(~~F,~v)n(r)/xl) s F(v’)(p[F(v’) / x])

=, ~~~[f,w-‘~~~/x]~ E v’(p[F(v’)/x])
OK if F,Jv)FI(I)~~F(v~) - true by induction

QED.

Lemma 6

If F is invarient at x and WV’ then Y(F,(v))QxF(v~).

Proof

Trivial from lemma 5 as Y(Fx(v))=UnFx(v)n(l) and ax is directed-complete,

QED.

11

I Lemma 7

vx. [WV‘ =a Y~F,~v))~~v~]
w - vx. [: WV =, Y(F,(v))~xY(F,(v~))]

Proof

Trivial application of lemma 1 and lemma 6.

QED.

T h e o r e m I

If v and p are regular then v(p[v/x])=Y(F,(v))p

Proof

i

c
L

.

i *

L

t

By lemma 5 and lemma 7 we have:
W,(vwxv
v~~W,W)

hence from the definition of ~~
- v<F,cv>>cprY(F,(v))/x~) E V(P[V/XI)

V(PCV/XI> 5 y~F,(v))~pcY~F,(v))/x~~
hence

~c~,c~>,cP~~~~,~~~~~~I~~~~Pcv/~I~
Finally, using the fixed-point property of

W,WP=V~P[V/XI~

QED.

Y on the left hand side of this, we get:

b 5. Application to L I S P

b In this section D will be specialized to a domain appropriate for pure LISP and then the

abstract results described above will be shown to hold of the denotations of LISP

programs.

The semantics of LISP used here will only be described in barest outline, For furthur

details, motivation and justification see [l] and [Z].

1 2

in the manual [4] and in the notation of [9]> is given

-.-.
8 :F A 1 x 1 fn[e,;...;e,] 1 [e, 1+e,+..;en1+en2]

fn ::= F 1 f I X[[xli-.ixn]ie]) label[f;fn]
F ::= car I cdr 1 cons I atom I eq

where the ranges of the variables e,A,x,fn,F,f are as follows:

.A ranges over <S-expression> (as in page 9 of [4])
X, f,Z range over <identifier> (as in page 9 of [4])

Yn
ranges o v e r <form> - (as defined above)
ranges over <function> (as defined above)

F ranges over <standard function> (as defined above)

l use meta-variables x,f,z to range over <identifier>: x is used in cant exts where the

identifier is a form, f where it’s a function and z where it could be either.

. - 5 .2 . Some Notat ion

In the semantics below:

flat(S)=S U { I} ordered by MS. J. E 8.

1s 1 ,eeeBsn.E (8 1 pe..,Sn) = ASI peapSne(Sl=A or S~TI. or . . . or sn=L + .I. , E (S 1 ,...,s, 1)

car,cdr,cons,ptom,eq are the’appropriate functions on S=flat(<S-expression>).

Whenever an express ion v o f t y p e S , [Env+S) o r /Env+Funval] occurs

in -a context requiring something of type /Enu-Ul] then v means (i.e should be

“coerced” into) (Xp.vinD), (hp.v(p) inD) and (hp.v(p) inD) respectively.

.

S.3 . Semantfos

I *
-- k .3.1. Denotation Domshsm

D=S+Fuwal
L_ S=flat(<S-expression>)

Funual=/S*+Sj

Ei .3.2. Environment Domain

. .-

B:Fotm+Ener+S]
&Function+f Env+Funval)

.._. 6.3.4. Semantic Eauatfons

61) G[A-jlp = A
,

(S2) a,Mlp = PbdPlS

65) S[rcarJp = a
@[cdrnp = cdr

fY[c0nsJp = cons
8(rat6mJp = Btommeqnp - gg

Lb-- W) 8[rfnp = p(f)plFunual

IS7) QEX[[X1i-*x lae3nP - Xs,,~~.,sn:s~~UeIlp[8,jxll...Cs,/x,ln #

68) 8[rlabel[f;fn]np ,= Y(F,@[rn&p

13

1 4

Theorem 2 below shows that the denotations of LISP, forms and functions are regular

I and so Theorem 1 can be applied to them.

T,heorem 2

Proof

A straightforward induction works, The details are as follows:
Assume pip*. l must show <EUelp 5 G[eJpc and SUfnllp E &[fCJp#.

(1): B[Aljp=A 4 A=G~e~p‘

(2): Quxnp=podplS

L.

I* 1
L

t

~~x~p’-p~(x)p#p
Now pap’ => PwJ”P’h) => Pod~P[pbd/x]) E p’od(p’[p’(x)jx])

=> P(X)(P) E ~‘bc)p’ by lemma 8 below

_ (3): G[fn[e l,,...;o,lllP=~U~~llPcaIT~, IIp,...,WlXllp>
E !YUfn$v<aI[e, lp:...,Q&+Jp*)
=(EI[fn[e,;...;eJ~p#

L
t

(4): G[[el pe i2i~..;~~i~~~2lllp=(~U~il~p~(~U~,2llp,~~~,~U~n,~p~~U~~2~p~
s ~NIh l IJPI-)~Uei211p*,.~.,~Uen, I]pW[e,,ljp*)
=(E[r[e1 1+ei2i-*t nl-8 +en21 llp*

(5): lY[Fljp=F E F=8[Fnp’

L

.

(6): 8[f]p=p(f)plFun
8[f]p’=p’(f)p’lFun
and p(f)p s p’(f)p’ as in (2) above,

(7); ~[r~[[X~;...;Xn];~]~p=~S~,~~.,Sn.~~~~p[S~fX~]...[sn/xn]
~~X[[Xi;...jX,];~]~jp'pxsl ~~d@ldP‘b~ /XJ&n/Xn]
SO it suffices to show p[s~/X~].*~[sn/Xn]~p8[s~/x~]~~~[sn/xn]
and for this it suffices to show Xp.(q inD)~“‘Xp,(si inD)

i.e. Pap8 =’ (xp*si>Cp[Chp*Si>/Xi]) 5 (Xp*Si)(p’[(Xp*si)/Xi])
i.e. pap’ => si E Si - which is true,

15

(8): BUIabeI[f;fn]np=Y(F~(~~fnB))p
~ulabel[f;fn]ljpl=Y(F~(~~fnn))~8
hence result by lemma 7,

QED.

Lemma 8

Proof

Follows trivially from definition of “p[p(x)/x]“ and strictness of p,

QED.

L Theorem 3 below shows that i f vs(e) is the set of free variables i? e then in the

L

abstract sense discussed above the free variables of @[en “we included in” vs(e).

. The following lemma is needed for the proof. The definitions of @ and tx are on page 7.

L e m m a 9

L (1) Vv,X,Y. [@(v,X), XGY =’ W&Y) 1

r (2) Vd. @(Op.d),O)

(3) vv,x,x. [fwv,X) =B wY(F,w),x\fx~) I

Proof

(1): Trivial,

(2): Trivial.

(3): I show @(v,X) =B @(F,(~)~(l),Xu(x}) by induction on n. Assume @(v,X),

n=O: #(L,X\(x)) is clearly true.

16

n>O: Assume true for n-1.
~(F,(v)y~~,x\(x)) <=> p=x’Q8 => F,(~)~(l)p~F,(v)~(l)~~

<z:, pd\r”)p~ => v~~[~~v~“-‘~r~lx]~~v~p’CF,~v~“-‘(~)/x]).
(3: p=X\blp~ =:> pCF,(v)n-‘(l)/x]=Xp~[F,(vjn-l(l)/x])

which is true by induction and (1) above.

QED.

Theorem 3

VeE<form>. W[eJ,vsb))
VeWfunct ion>. ~~~~ffd,vs(fn))

Proof

A straight forward structural induct ion works. Let vs(e)sX.

e=x:
Must show ~=~p’ => p(x)p=p’(x)p’. NO W vs(e)={x)c>(so if p=Xp~:

PW=P’(~) and Wbd,Xl hence p(x)p~p(x)p~=p’(x)p’. .

\
e=A:
Must show p=Xp~’ 7~ ~~A~p&~A~p8 - which is clearly true.

e=f n[8 +..;e,]:
we have by induction that @@[fn&vs(fn)) and W[ei],vs(e)). ’

Hence by lemma 9 @@Iffn],X) and Wue,n,X) as vs(fn),vs(eJ&e)&
So if pzxp’ then 8$fnnp=8[fn&V and (Eaei]p=G[eiJp’
and hence Gle&=G[en$.

o=[e, 1+e12;...;enL~en2]:
Argument as above.

Now let vs(fn)c)(.

fn=f:
Simi tar to “e=x” case above. ,

.
fn=F:
Similar to %=A” case above,

m

-_

-

--

1.

. .

1 7

f n=A[[x ,;...;x,];e]:
8 UA[[x 1;e.. xnl;dl~ * XSI,*.*,8n:S*~~eIJp[81/X,]***[SnfXn]
vs(fn)=vs(e)\{x 1 ,***&J SO v4MW 1, &}*
NOW by lemma 9(1,2) if Y=XU{x,,...,xn) then

P=‘P’ =’ PCsll~~l*~~C~nl~~l~yP8[~~l~~3.,.[~nJ~~]
SO as WU~ll,vs0~: ~Ueljprs,~x,i.~g[s~fx~i=~Ue~~~[s,/x,~...[s~fxn~.
fn=label[f;fn,]:
We have by induction 9(8[fn, n,vs(fn,)) where vs(fnl)\(f)=vs(fn)~X.
So by lemma 9(3) and induction @@[fn&vs(fn,)\{r))
hence @@[rfnn,X).

QED.

AS an application one can show that adding new definitions to an environment doesn’t

change the values of the old ones as long as previously used variables aren’t

I overwritten. This is an important lemma needed in proving the correctness of evaI,

.
Here it’s a trivial consequence of Theorem 3 but originally (see [l]) it needed a long

ad-hoc proof which confused general arguments with LISP specific ones. To see hoti it

follows consider an environment p which defines a set of functions all of whose free

i variables are included in XsId. Suppose x is a new function not included in X, We wish

I to show that if e is a form (or function) then as long as vs(e)sX (i.e. e only uses the

old functions) we have for any v: @[enp=6$enp[v/x]. But this is now trivial for

L
L ’

~(@[re&X) and p=‘p[v/x]. Saying this formally yields the following theorem (in which

“p[v/x]” above is replaced by “p8”),

18

Theorem 4

suppose p,p8~Enu, ewform> are such that for some X& we have:

(1) VxCX.3fnpf unction% p(x)=p’(x)=@[fn,] and vs(fn,)sX.
(2) vs(e)gX

then a[e&=a&JJpe.

Proof

by theorem 3 @(@[e&X) and p=‘p’. The result follows from the definition of i9,

QED.

6, Existence of Predicates

. In all the above the existence of the predicates 0,~‘) +,#,zx has been assumed,
L

t
However this existence cannot be deduced immedeately from the recursive definitions

L

/

8s the predicates being defined arn’t necessarily monotonic . The existence proofs to

be described are directly based on techniques developed by Robert Milne [s], Similar

l- methods have recently been independently discovered by Reynolds [7]. For the current

L purposes it’s only necessary to know that the required predicates exist, however

Milne’s work shows one can expect them to be unique also. I havn’t checked this for

L the predicates used here. .

L We define by induction on n predicates:

0, s EnvxEnv
aXn g voxvo

19

and then set:

pap’ <=> Vn. panp’
vaXv8 <=> Vn. vaxnv8

i t f o l l o w s (d e t a i l s b e l o w) t h a t Q,Q’ sat is fy the desi red equat ions and are

directed-complete.

Definition 3

pQop’ <=> Vxl p(x)Qxnp’(x)
VQ”0V’ <=> V(l[V,lX]) E V8(I[V8/X])
VQXn+ 1 V’ <=> Vp,p’. [pQnp’ r=’ Vn+,(P[VjXl) 5 v8(P8fv8/x])]

/ The following two lemmas are needed to prove Theorem 5 below,

Lemma IO

(1,) VP~P’* C PQn+IP’ =’ PQnP8 I

(2,) “P,P’* C PanP’ =’ Pn+lQn+lP’ I

(3 ,) VVpV’. [Vaxn+l V’ =’ VoxnV’]

(4,) VV,V’. [VaXnV’ =’ Vnaxn+I V ’] ’

Proof

I s h o w t h a t (30) p (40)) (3J=‘! 1,) 8 (4J->(&J j (2nv,)=‘(3J p (1+,)=‘(4J

(3,): Must show vaxIv’ => vaXOv8. Clearly LQ~J. and we have:
VOX 1 V’, JA& => V,(L[V/X]) 5 V’(L[V’/X]) ’

=’ V(L[V,/X]) E V’(L[V’/X])
<=:> vdOfp

20

-- (4,): M u s t s h o w v~~~v’ =, v,px,v8.-
Assume vaxBv8 and pdsp8.

--_ Must show v,,(p[v,/x]) 5 v8(p8[v8/x])
c

i.e. v(L) E v’(p’[v’/x])
but V(I) f W&&c]) E v’(L[v~/x]) 5 v8(p8[v8/x]).

(3n)=‘(ln): Assume (3,). TO show (1,) let pan,,p8,
Must show pa,,p’ i.e. Vx.p(x)~~,p~(x).
But if POn+,P’ then VX.p(x)QxWIP’(X) SO VX;P(X)a”,P’(X) by (3,).

(4J=>(2n): Pa#’ <=’ VX*p(X)ax&‘(X)

=, VX*Pb4”Q”n+,P’bc) by (4,))
=’ vX*Pn+,(X)axn+,P’(X)
=’ vx*Pn+~4n+~P’

L

r.
L

L

(2n,,)=>(3J: Assume (2n,,)* TO show (3,) let vQ’n+,v’ and Pa,,-,p’.
Then PnQnP’ from (2n,,).

SO Vn*,(pn[V/X]) E V’(p8[v8/X]~
i.e. V(pn[Vn/X]) E V’(p’[V’/X])

hence Vn(p[V/X])~V(pn[Vn-~/X])

5 v(P nWxl>
5 v’(p’[v’/ xl).

L
1

I

(1+,)=>(4n); Assume (In-i)s TO show (4,) let VQ~~V’ and p,,p8.

Then PQn-IP’ SO v,,<P[v/x]) E v’(p[v’/x])
hence (Vn)n+ 1 (P [Vn/X])=V(P n[vn- l/x])

=v,(PCvlxl~
5 v8t P [v8/x])

L

QED. -

-_- Lemma Ia
*

. _.
If (v,} is directed then [[k, V,axnV8] => [(U~V,)Q~,V~] 1,

Proof

Cases on n:

n=O: v,+v# (=> v&[v,~/x]) 5 v(p [v/x])

80 u,v,(~[u,v,,/xl~ 5 v8(p[v8/x]).

21

n>O: Let PQn-IP’ then VEX. v,n(p[vJx]) ,e v8(p8[v8/x])

$0 (u&V0Jn(P[U,V,/X]) 5 v8(p8[v8/X]) -
hence LIdV,axnv8.

. Q and ax are directed-complete and satisfy:

pQp’ (=’ v x . p(x)Q”p’(x)
VQXV8 (=, Vp,p8. [pop’ =’ HP iv/x3> E v’(p ‘Cv8/x]l~]

?. Proof

L

To show ax directed-complete we have:

L
L

Vd.vd~xv# (=> k.Vn. VJI~~V#,
(=> Vn.Vd. vdaXnv# _
=> VI% Ll&V&aXnV’ by, lemma i 1,

(=> U&W’

Showing [[Vd.~~~v~,] => [v~~(U&J]~ is trivial.

1
r-

The difected-completeness bf Q follows directly from its definition and the
directed-completeness of ax for all x.

22

TO prove the rest of the theorem we have:

pqY <=> Vn.Vx. p(x)d*,p’(x)
<=a Vx.Vn. p (x)axnp’(x)
<=’ vx. p(x)Q”p’(x)

To show vaXv”=> vp,p’. [JVJP’
Then Vn. VQ’,+ 1 v’,p ap’

=a v(p[v/x]l 5 v8(~@[v8/x])] assume wxv an’d p4p’.

so V,+,~Ppf/~l~ E v8<P8cv81xl>
hence unioning over n: v(p[v/x]) E v8(pB[v8fx]).

To show Vp,p’- [pq’ => v(p[v/x]) ,c v’(p’[v’/x]>] => v*I”v’ ‘assume
PQP’ => v(p[v/x]) 5 v8(p8[v8/x]). I show Vii. v~~,,v’ by induction on n.

n--O: LaL so v(L[v/x]) 5 V’(L[v’/x]) SO v(I[v~/x]) E v<A[v/x]) 5 v’(L[v’/x])
so VQXgjV.

n>O; By lemma 10; pap’ => p~,,-~p’ => p,,~,,p’ => ‘dm. p,,~,,,p’.

.
L

so ppp’.

Hence v(p,[v/x]> c v’<p’[v8/x]l so V,(P[V,/X]) 5 V(P,[V/Xl) g V’(P’[V’/x]).
Thus w~,,v’.

L So Vn. VQ’,V* and hence vaxv8.

t
The construction of @ and Fx ’IS very similar to the construction above. As before we

I

t

start by defining “finite” approximations to the relations viz.

Definition 4

@,(v,X) <=> VY,p,p’. [XGY =’ [p=Ynp’ =’ v,(p)=v,(p’)]]

r

L
p=xQp# = t r u e

P=Xn*IP’ <=> VXCX. p(x)=p’(x) and @,(p(x),X)

We then prove a lemma similar to lemma 10 viz.

23

Lemma 12

_- (1,) vv,x. [@,,#Qo =’ w,w 1

. .

_ .

(2,) vv,x. [@,W) => ~~+~bJo I
(3”) VP,P8,X. c P=Xn+,P8 =’ P=xnP’ 1

(4,) VP,P8J* c P=x”P8 -’ Pn=Xn+,P8 1

Proof

-Same as lemma 10 (mutatis mutandis).

QED.

-

From this it follows that if we define @ and zx by:
L

. _ @(v,X) <=> Vn. ‘@,(v,X)
pZxp8 <=> Vn, pZxnp8

then @ and =x have the desired properties.

7. Concluding Remarks

We have presented above a partial axiomatization of dynamic bind/ng. What has been

shown is that if vf/Enw+D/ satisfies v+v (i,e. is regular) and Q(v,X) for some XsJa

then useful theorems follow. What is left open is just how many other axioms will

eventually be required. To answer this we need first to know which theorems we want

and to answer this we must attack “real” ,problems such as the correctness of compilers

and interpreters. Doing this should reveal the general theorems about dynamic bin&g

. that must follow from any adequate theory.

-

24

The theorems proved here are not yet general enough. For example if we consider

the obvious extension of the semantics to handle funargs (see [11) then the proofs

that GEeI] and @(Tfnl] are regular fail, in fact by replacing the occurences of ” 5 I’

in the definitions of a,ax and + by another predicate (which needs to be defined

recursively) it’s easy to cover this c a s e . Unfor tunate ly I don’t at present see a

uniform way of defining a,~’ and + to cover ail useful D.

Having to separately prove the existence of all predicates is a big nuisance, One

step toward a general justification of -recursive predicate definitions has been

provided by Milne and Reynolds. Both give uniform accounts of how to construct

recursive predicates from their defining equations. In fact the constructions given

above are (more or less) instances of Miines techniques. It would help a lot if

syntactic criteria on definitions could be developed to decide if the things purported-

to be defined actually exist. Milne [private communication] has made progress toward

this by anaiysing the structure of some of the expressions which occur in definitions

and showing that these legitimate instances of his general construction.

I It’s clear that many of the above proofs can’t be done in existing fomalisms (eg LCF)

- the required predicates can’t be defined in them. One way to fix this would be

to develop extensions, another would -be to develop a translater from proofs using

predicat ee to proofs which don’t. The latter probably won’t be adequate because

theorems. may require the use of predicates in their statement at the general level

(even if ail their useful instances don’t)‘. ,

25

8, References

[I] Gordon, M,J,C, (1973) Models of pure LISP. Experimental Programming
. Report s:No,3 1. Department of Machine lnt elligence, School of Artificial Intelligence,

University of Edinburgh.

[2] Gordon, M.J.C. (1975) Operational R e a s o n i n g and Denotational
Semantios. Presented at the International Symposium on Proving and Improving
Programs, Arc-et-Senans, France (proceedings available from IRIA). Revised as
Memo AIM 264, Computer Science Department, Stanford University.

[a] Gordon, M.J.C. (1975) T o w a r d s a Ssmantio Theory of Dynamir\
Binding. Memo AIM 265 , Computer Science Department, Stanford University,

[4] McCarthy, J. etaI. (1969) LISP I.6 Programmer’s Manual, MIT Press.

[5] Milne, R. (1974) The formal semantios of oomputer languages and
t h e i r implementations. Oxford University Computing Laboratory,
Programming Research Group, Technical Monograph PRG-13 (available on
microfiche).

[S] Reynolds, J.C. (1972) Notes on a Lattioa-Theoretic Approach to
the Theory of Computation. Systems and information Science, Syracuse
University.

[71 Reynolds, J.C, (1974) O n thp Relat ion b e t w e e n Dire& a n d
Continuation Semantios. Second colloquium on Automata, Languages, and
Programming. Saarbrucken.

[8] Scott, D. (1974) Data Types as Lattioes To appear as Springer Lecture
Not es.

[9] Scott, D. and Strachey, C-(1 972) Towards a Mathematioal Semantics
for Computer Languages. Proc. Symposium on Computers and Automata,
Microwave Research. Institute Symposia Series, Vol.21, Polyt ethnic In&it ut e of
Brooklyn.

-

