





























1. : Introduction |

SECTION 1

INTRODUCTION

This document describes the UUQOs (monitor calls) available to users of the Stanford Artificial
Intelligence Laboratory timesharing system. Additional general information relevant to the use of
UUOs is contained in this introductory section, and some useful tables are included in the
appendices. This manual supersedes SAILON 552 by Andy Moorer (Monitor Manual, Chapter

11).

The reader is assumed to know the PDP-10 instruction set and format, data types and assembly
languages. However, the aspects of these sub jects that are relevant to this manual are explained in
Appendix 3. The user who is new to the PDP-10 should read that appendix before going any
further. The experienced user may skip to Section 1.6, Understanding this Manual.

I.1 UUOs (Un-Used Operation codes)

UUOQOs are monitor calls which make use of instruction codes that would otherwise be unused or
illegal. The opcodes from 000 to 077 are not used by any machine instruction, and opcodes from
700 to 777 are input/output machine instructions, which are normally illegal in user programs. All
these opcodes trap to the monitor, which can then take whatever action it deems appropriate.
Taking advantage of this situation, the system designates some of these opcodes to be monitor calls
for certain common functions such as 1/O. Thus whenever a UUO is encountered in the
instruction stream, the monitor is called to execute the function corresponding to the particular
UUO. When the function has been executed, control returns to the user program. Some UUOs
may take skip returns; that is, control does not always return at the instruction immediately
following the UUOQ, but sometimes at one of the next instructions after that one. The individual
writeups explain when a UUO skips; unless otherwise described, a UUO’s return is always at the
instruction immediately following the UUOQ.

Some UUQOs take arguments or returh values in memory cells. In such cases the cells can be -
accumulators (ACs), but a block of such cells must not extend beyond the last accumulator (octal 17)
because words 20 through 37 in a user’s core image are used by the system for special temporary
storage of sets of ACs. (Words 40 through 137 are used by the system to store information about
the job. This part of a core image is referred to as the Job Data Area; the data stored here is
~described in' Appendix 4.)

Note also that some UUOs have unused argument fields.. Such a field should be made zero so that
Af at some later time it becomes used for a new feature, an old program using that UUQO will still
work.

Some of the opcodes not defined by the system are available to the user for defining his own special
purpose UUOs. The method for defining these UUOs is explained in Section 14. The
categories of opcodes that are used for UUOs are:



2 Introduction 1.1

8oo always illegal,

881:837 user-definable UUOs,
8408:077 system-defined regular UUOs,
788:777 system-defined 10T UUOs.

The IOT UUOS are available only when the program is not in IOT-USER mode; in JOT-USER
mode these opcodes are machine 1/O instructions instead. A user program will not be in
IOT-USER mode unless it has done something special to get into that mode. For a complete
explanation of IOT-USER mode, see Appendix 3.

Finally, a specia! feature allows the user to have normal system-defined UUQs trap to a given
location in the user program instead of being executed by the system. For details of this feature,
see the UUOSIM UUO on page 131.

1.2 Extended UUOQOs

In order to define more UUOs than there are opcodes available, two primary methods are
employed that allow a single opcode to represent many different UUQ functions. The first of these
methods is to use the value of the accumulator (AC) field in the instruction to specify one of 20
(octal) possible UUOQs for a given opcode. Thus, for example, the OUTSTR UUO (which types
out an ASCIZ string on the terminal) is invoked by specifying the opcode 051 and the AC field 3.
There are currently six opcodes that use the value of the AC field in this manner. Each of these
opcodes has a generic mnemonic which, together with a specific value for the AC field, can be used
to indicate a specific UUQ. In addition, each combination of generic mnemonic and specific AC
field has a specific mnemonic which also can be used to indicate the UUQ. Opcode 051 has the
generic mnemonic TTYUUO, and TTYUUO with an AC field of 3 has the specific mnemonic
OUTSTR. Thus the following three lines of code are equivalent. (ADR is an argument of this
UUQ; it specifies the address of the ASCIZ string to be typed out.)

OUTSTR ADR
TTYUUO 3,ADR
951148, ,ADR

Note, however, that not all of the mnemonics are known'b'y all of the assemblers or all of the
debuggers. FAIL, however, gets its UUO mnemonic definitions directly from the system and thus is
always up to date, even just after a new UUQ has been added.

1.3 CALLs and CALLIs

The second method of defining many UUOs with the same opcode has two versions. In one of
these, the address field of the UUO points to a word which contains the sixbit name of the UUO
function desired. In the other version, the address field of the UUQ is itself the number of the
function desired. The opcode in the first case is 040 and its mnemonic is CALL; the opcode in the
second case is 047 and its mnemonic is CALLI (for CALL Immediate).



1.3 CALLs and CALLIs 3

CALL [0P=049]

e - - - o - - = o~ - i S D Pm = G - - - e - - - - - - - -

CALL AC, [SIXBIT /<name>/]}

CALLI . [0P=847]

o - ] T — - - " ——— - = = - - - - - - -

CALLI AC, <number>

Exactly the same UUO functions are available through these two methods. Thus, the following
two lines of code are functionally equivalent; each will cause execution of the EXIT UUO.

CALLI 12
CALL [SIXBIT /EX1T/]

Since there are these two versions of calling the same UUOs, the following fact should be noted.
When you use a CALL instead of a CALLI, not only do you need an extra word in which to store
the name of the CALL function, but also (and more importantly) you force the system to look up
the function name in a table in order to find out the function number. This means that using
CALLs instead of CALLIs creates a substantial amount of extra work that could be completely
avoided. In addition, it is easier to use CALLIs instead of CALLs because, in FAIL and MACRO,
if you use the name of a CALL as an opcode, the appropriate CALLI will be generated. (In
MACRO, only the DEC CALLIs are predeﬁned) For example, the following two lines will
produce the same machine code.

CALLI 12
EXIT S

Thus the CALL UUQ is essentlally obsolete, It is mentloned here mainly for completeness sake.
Please use CALLIs!

1.4 UUO Trapping and User-Defined UUOs

The method employed by the PDP-10 to trap to the monitor when an unused opcode is
encountered is the following:

1. The effective address calculation for the instruction is carried out as usual with the
address field, index field and indirect bit in the instruction and in any words referenced
indirectly by the instruction. '

2. Bits 0 to 12 (opcode and AC field) of the instruction are deposited in bits 0 to 12 of user
or monitor location 40 (depending on whether the opcode represents a user or a monitor
UUOQ). The calculated effective address from 1 above is deposited into bits 18 to 35
(address field) of the same location 40. Bits 13 to 17 (index field and indirect bit) of this
location are cleared.

3. The instruction at location 41 (user or monitor as above) is then executed (as if from an
XCT instruction). This location usually contains a JSR instruction to jump to a



4 Iotroduction 1.4

subroutine to interpret the UUO. The JSR saves the program counter (which points to
the instruction immediately following the UUO) for returning to the program containing
the UUO.

Thus, for a user to define his own UUOQs (selected from opcodes 001 to 037), he need only deposit a
JSR or similar instruction in user location 41 to jump to the subroutine that will interpret his user
UUOs. The instruction in location 41 should be one that saves the program counter for returning.
For instance it could be a PUSH J if you have a stack.

Note: Because the effective address calculation has already been completed by the time a UUQ’s
function is executed, what the monitor (or a user’s UUO code) sees in the address field of a UUO
is this effective address. In the UUO writeups in this manual, the two expressions the effective
address of the UUO and the address field of the UUO mean the same thing, namely, this final value
of the effective address calculation.

(in the Stanford system, UUOs trapping Into the monitor actually go to absolute 140 and 141
rather than 40 and 41 although user UUOs do trap to user 40 and 41.)

1.5 DEC vs. Stanford UUOs

UUOs with opcodes 040 through 077 and CALLIs with numbers O through 44 are essentially
standard DEC UUOs modified for use at Stanford. (Some have been modified completely out of
existence.) The exceptions are the TTYUUOs (opcode 051) with AC fields 14 through 17 and the
SPCWAR UUO (opcode 043), which are special Stanford UUOs. All of the IOT UUOs (opcodes
over 700) and all CALLIs with numbers from 400000 up are also special Stanford UUOQO:s.

1.6 Understanding this Manual

In each of the sections that follow, a collection of related UUOs is explained along with the system
concepts involved. Preceding the writeup for each UUO are 1) a line containing the UUQ’s
mnemonics and numerical codes and 2) a sample usage (calling procedure) to which the writeup
will often refer. For numerical codes, the abbreviation OP stands for the operation code field, AC
for the accumulator field and ADR for the effective address of the UUO. For CALL/CALLI
UUOs, the numerics will be those of the CALLI.

The phrases AC left and AC right mean, respectively, the left half of AC and the right half of AC.

Wherever there is a data block of length N used or set up by a UUO, the words of the block will
be referred to as word 0 through word N-1 or sometimes (usually with short blocks) as the _ﬁrst word
through the Nth word. Please note the difference between these two terminologies.

A range of bits or words will often be referenced by an expression of the form "X:Y", where X and
Y are numbers. This represents all values from X through Y. For example, "bits 18:26" means
bits 18 through 26.









9. General 1/O0 7

SECTION 2

GENERAL INPUT/OUTPUT

The purpose of input/output (I/O) is to transfer data between the computer's memory and an
external device such as a tape, a disk, a printer, etc. The UUOs are set up to allow 1/O with a fair
amount of flexibility and device independence. I/O here is done on a very low level and involves
three basic phases: initialization of the device, transfer of the data, and releasing of the device.
Anather phase, file selection, is necessary for the disk and other directory devices.

There are other simpler forms of 1/O for certain devices (including terminals); 1/O for those
devices is explained in later sections.

The basic phases of 1/O can be seen in the corresponding UUOs, so | will give an example
sequence of the UUOs used in I/O. Since much of the /O done by programs uses the disk, I will
include the file selection phase in the example below. Note that this example is not a complete
program; it contains only some excerpts involving the use of UUOs. This is intended to introduce
you to various 1/O concepts which will be explained in great detail in the remainder of this section.

INIT 1,10 1This initializes the disk (DSK) on channel 1 in
SIXBIT /DSK/ s mode 18 and specifies an output buffer header at
OBUF, ,9 i location OBUF. Upon an error in the execution

HALT : of this UUO, the program will HALT,

ENTER 1,FILE ;This opens the file specified at Iocatioﬁ FILE for
HALT . s output on channel 1; this will HALT on any error.
QUTPUT 1, ;This is used to write out data on channe! 1.

CLOSE 1, s1This closes the file open on channel 1.

RELEAS 1, ;This releases the device on .channel 1.

In general 1/O, the methods for doing output are very similar to those for doing input.
Consequently, the following discussion wiil describe the basics of input; minor differences for doing
output will usually be mentioned in parenthetical remarks. Any significant differences will be called
to your attention.

2.1 User I/O Channels

A program is allowed to use up to 20 I/O devices at the same time. In order to keep straight which
device an 1/O UUO is meant for, each device in use is assigned a channel number. The channel
number, which can be any number between 0 and 17 inclusive, is specified by the user when he
initializes the device. Subsequent operations involving that device refer only to the channel
number and not to the name of the device. The channel number is chosen by the user and has



8 General I/O J 2.1

significance only to the program in which it is assigned. Furthermore, when a device is released,
the channel number is disassociated from it; so if the device is to be used again, it must be
initialized again with a new (possibly the same) channel humber.

A single 1/O channel may not be used for both input and output at the same time, except on the
disk in the special Read-Alter (RA) mode, which is explained on page 24.

2.2 Data Modes

When you are doing 1/O, you must select the data mode to be used. The mode indicates how the
data is to be transferred: primarily, whether the data transfers are to be buffered and, if so,
whether the data is made up of characters or of full words.

In buffered mode, the system transfers data between the device and some buffers in your core area.
A transfer of this type is initiated for input by the INPUT UUO and for output by the OUTPUT
UUO. To get data from a buffer on input or to put data into a buffer for output, you simply do-
ILDBs (input) or IDPBs (output) with a byte pointer that is set up by the system. The data is thus
handled a byte at a time, with the bytes being either characters (7 bits each) or full words (36 bits
each); the mode determines the byte size. When a buffer is used up, you give an INPUT UUO to
get another buffer of data (or an QUTPUT UUO to write out a buffer of data). The buffers you
use are set up by the system in the form of buffer rings. Buffer rings will be described in detail in
Section 2.4, but now back to data modes.

The alternative to buffered mode is dump mode. To read (write) in dump mode, you tell the
system where in your core image you want the data to go (come from) and how many words are to
be transferred. This is done with dump mode command lists, which will be explained in Section

23

The basic data modes are listed in the following table and described below. (There are many
special modes for specific devices; these modes are described in Section 13, which deals with

device-dependent features.)

Mode Name Type of transfers

0 ASCII Buffered characters (7-bit byte pointer)
I ASCII LINE Buffered characters (7-bit byte pointer)
10 IMAGE Buffered words (36-bit byte pointer)

13 IMAGE BINARY Buffered words (36-bit byte pointer)

14 BINARY Buffered words (36-bit byte pointer)

16 DUMP RECORD  Unbuffered

I7 DUMP Unbuffered

ASCII mode (mode 0) is used for inputting (outputting) text. You get (put) one ascii character at a
time from (into) your buffer by using the byte pointer. (Note: For TTY input in ASCII mode, an
INPUT UUO will not return until your TTY buffer is full (holding =95 characters) or 1Z
(control-meta-linefeed on the displays) is typed. However, TTY 1/O is usually done with the
special UUOs described in Section 3.)



2.9 Data Modes 9

ASCII LINE mode (1) is the same as ASCII mode except for TTY input. There it means that an
INPUT UUQ will return when an activation character is typed or when the buffer is full,
whichever comes first. (Normally the activation characters are carriage return, linefeed, altmode
and control characters.) :

IMAGE mode (10) is similar to ASCII mode except that the bytes are 36 bits instead of 7. When
you do an ILDB (IDPB) you get (put) a whole word from (into) the buffer. You can read text files
in this mode, in which case you will get 5 characters at a time.

IMAGE BINARY (13) and BINARY (14) modes are the same as IMAGE mode except for the
paper tape reader and punch and the XGP. See Section 13.4 for the use of mode 13 with the
XGP, and see Section 13.7 and Section 13.8 for the meanings of these modes with paper tape
1/O.

DUMP mode (17) is used to do 1/O without buffering. With each INPUT or OUTPUT UUO,
you must give the address of a dump mode command list, which specifies how many words are to
be transferred and where in your core image they are to come from or go. The INPUT or
QUTPUT UUO does not return until the transfer is complete.. Dump mode command lists are
explained below.

DUMP RECORD mode (16) is the same as DUMP mode for most devices. However, with output
on magnetic tapes in DUMP RECORD mode, the data from each dump mode command is written
on the tape in 200 word records, whereas in DUMP mode the data from each command is written
in one large record.

2.3 Dump Mode Command Lists

The effective address of an INPUT or OUTPUT UUOQ in dump mode (16 or 17) must be the
address of a dump mode command list. This list consists of up to 100 dump mode commands, each
of which takes one word. The end of the list is indicated by a zero word after the last command.

In the left half of a dump mode command word is the negative of the number of words to be
transferred, and in the right half is the address of the word before the first word in your core image
to which (from which) the data is to go (come).

(This is the standard dump mode command format. Some devices like the TV cameras and the
AD converter take non-standard dump mode commands. See the individual device descriptions in
Section 13.)

In the assembly languages, there is a pseudo-op called IOWD that generates dump mode

commands. The line
IOWD N,LOC :
generates a word with -N in the left half and LOC-| in the right half. As a dump mode

command, this will cause N words to be transferred to (from) the block consisting of locations LOC
through LOC+N-1.



10 General 1/O 2.3

Each dumip mode command in a list causes a separate I/O transfer to take place. In particular,
with record devices (like the disk, dectapes and magnetic tapes) each command is executed from the
beginning of a record. For example the command list:

T0WD 109, A
[0WD 188,8
0

will read 100 words from one record and then 100 words from the next record, ignoring all but the
first 100 words of each record.

Consecutive commands in a list are usually fetched from consecutive words. However, if the left
half of a dump mode command word is zero, then that word is taken not as a command, but as a
pointer to the next command word, which is then fetched from the location specified by the right
half of that word. (Of course, if the right half is zero also, then that word marks the end of the
command list.) For example, the two command lists given below (beginning at LIST1 and LIST?2,
respectively) are equivalent.

LIST1: 10WD 289,L0C1
10WD 208,L0C2
(%

LIST2: 10WD 288,LOC1
: LIST2B

I
I
|
| LIST2B: 10WD 2@8,L0C2

i e -

The only difference is that in the second example, the commands are in two different places instead
of being directly in line. Either of these lists would cause 200 words to be transferred to (from)

LOC! and then 200 words to (from) LOC2.

2.4 Buffer Rings

When you are doing input (output) in one of the buffered modes, a ring of buffers is set up by the
system for storage of data in your core image. This allows you to empty (fill) one buffer while the
device is filling (emptying) another buffer independently.

A buffer ring consists of some number of buffers with each one containing a pointer to the next.
The last buffer contains a pointer to the first; hence it is a ring. The user can specify the number
of buffers in a ring with the INBUF and QUTBUF UUOs (see Section 2.9), or he can accept
the system default number of buffers, which is two. The current buffer in a ring is referenced
through a three word block called the buffer Aeader. When you initialize a device in’buffered
mode, you give the address of a three word block where the buffer header is. The system will
initialize the header when it sets up the buffer ring.

The buffer header contains 1) a bit indicating whether the buffer has ever been used, 2) a pointer
to the buffer the user is currently emptying (filling), 3) the byte pointer that is used for loading
(storing) data from (into) the current buffer, and 4) a count of the number of bytes left in the
current buffer. Normally only the byte pointer and the byte count are needed by the user. The



2.4 Buffer Rings 11

byte pointer is in the second word of the header and the byte count in the third. The first word
contains the use indicator in the sign bit (400000,0 bit) (which is set to | when the buffers are
created and cleared to zero when the first INPUT or OUTPUT UUO is given) and the buffer
pointer in the right half. For input, the byte count is the number of bytes of data left in the buffer;
for output it is the number of bytes not yet filled with data by the user. The byte pointer is set up
so that you can get (put) the next byte by doing an ILDB (IDPB). When you initialize a device in
buffered mode, the system clears the buffer header and then sets up the size field of the byte
pointer. If you so desire, you may then change the byte size to any size you want, and the system
will do the right things. (The system actually uses the byte size in the byte pointer to calculate the
byte count.) Finally, whenever you do an INPUT or OUTPUT UUO, the system updates the
entire buffer header before returning control to you.

2.5 Buffers

The first three words of each buffer are used by the system and. contain no data. The first word
contains the device 1/O status word (explained in Section 2.6) for the device at the time the
buffer was transferred. The left half of the second word has the size of the buffer not counting the
first two words, that is, the number of data words in the buffer plus one. The right half of the
second word holds the address of the next buffer in the ring (which may be the same buffer). All
pointers to buffers, bath in the buffer header and from one buffer to the next, point not to the first
word of the buffer but to the second word, where the pointer to the next buffer is. The sign bit
(400000,,0 bit) of the second word in a buffer is set to 1 by the system when the buffer is full of
data and cleared to 0 when it is empty.

The right half of the third word holds a count of the number of words of data actually contained
in the buffer. The left half of this word is reserved for bookkeeping use by the system. On output
the word count is computed from the byte pointer in the buffer header unless the IOWC bit in the
device status word (see Section 2.6) is on, in which case the value in the third word of the buffer
is taken as the count. That means you must specifically place the word count there yourself. Many
devices (including the disk) will not take a word count larger than their standard buffer size.
There are at. least two devices that will accept buffers of any size: terminals and magnetic tapes.
For other devices, consult the individual device writeup in Section 13.

The illustration on the next page shows the structure of a buffer ring with two buffers.












25 Files 15

Octal Assembly language

file name: 624144080868 SIXBIT /RAD/
extension: 719060006088  SIXBIT /Y/
date word: 90000RYCBRE 9

PPN: pPPR410BR4243  SIXBIT / A BC/

where 62 is the octal value for "R" in sixbit, 41 is the octal value for "A" in sixbit, etc.

Disk File Protection System

Each file on the disk has a nine-bit protection key that indicates who may do what to the file. A
one in the first bit (400 bit) position means that the file dumping program DART (that provides file
backup on magnetic tape) should never dump this file. A one in the second bit (200 bit) means
that COPY should not delete this file without getting special confirmation; this prevents accidental
deletion of a file with the monitor DELETE command. The remaining seven bits (177 bits) are
broken Into three groups: the third bit (100 bit) tells what the owner of the file may do to the file,
the middle three bits (070 bits) tell what a PPN consisting of the owner’s programmer code and a
different project code may do with the file, and the last three bits (007 bits) tell what anyone else
may do. Corresponding bits in these last two groups mean the same thing but for the two different
classes of users. The sole bit in the first group means the same as the third bit in each of the other
groups but applies to the owner of the file.

In each group, a one in the first bit position (the 4 bit) means that the users corresponding to that
group are not permitted to change the file’s protection key. This is called protection protection. A
user is always permitted to change the protection keys of his own files. A one in the second bit
position (the 2 bit) means that the corresponding users may not read the file. This is called read
protection, and, again, a user may always read his own files. A one in the third bit position (the 1
bit) means that the corresponding users may not write, alter or delete the file. This is called write
protection. '

Here is a summary of the nine protection bits.

Bits Octal Meaning

0 400 Dump never (DART only).

l 200 Delete protect (COPY only).

2 100 Write protection for the file’s owner.

3:5 070 Protection, read, and write protection for PPNs consisting
of the owner’s programmer code and some other project
code. '

6:8 007 Protection, read, and write protection for others.



16  General I/O . 2.7
Disk Project-Programmer Names

When you reference a file on the disk, you must specify the project-programmer name of the file's
owner. If the file is your own, this can be done by indicating a PPN word of zero. Sometimes,
however, you would like a program to act as if it were logged in under a different PPN. This can
be accomplished with respect to file references through the use of Disk PPNs and the DSKPPN
UUO. Each job has associated with it a Disk Project-Programmer Name (the Disk PPN) that is
used whenever the PPN word for a disk file specification contains zero. Your Disk PPN is set to
your real PPN when you log in and can be changed with the monitor ALIAS command; it can also
be changed or retrieved with the DSKPPN UUO. Thus if you specify a file with a zero PPN, the
project-programmer name of your Disk PPN will be assumed for the file. This method does not,
however, allow you violate any protection keys for the files you reference. These protection keys are
applied to your real (logged in) PPN to see if you are permitted the kind of access you are
requesting for the file.

DSKPPN (OP=047, ADR=4888711 CALLI 488871
------- HE)VE AC, [<code>]
DSKPPN AC,
Code Meaning
B Return own Disk PPN in AC.
-1 Reset own Disk PPN to logged in PPN,
g,,n Return the Disk PPN of job n.
<proj>,,8 Set own Disk PPN to: <proj>,,<logged in prog. name>.

<proj>,,<prog> Set own Disk PPN to that in AC.

The DSKPPN UUO is used to change or retrieve your Disk Project-Programmer Name or to
retrieve the Disk PPN of someone else. The action taken by this UUO is determined by the code
in AC. If AC contains zero, your current Disk PPN is returned in AC. If AC contains -1, your
Disk PPN is reset to your logged in PPN. If AC contains a job number, the Disk PPN for that
job is returned; if the job is not logged in, zero is returned. If the right half of AC contains zero
and the left half is non-zero, then the project part of your Disk PPN is set to the project specified
by AC left and the programmer part is set to the programmer code under which you are logged in.
If-both halves of AC are non-zero and AC doesn’t contain -1, then your Disk PPN is set to the
PPN specified by the whole AC. No error checking is done to make sure AC holds a legal or
existing PPN.



2.8 ' Initializing a Device 17
2.8 Initializing a Device

There are two UUQOs available to initialize a device: the INIT UUO and the OPEN UUO. Either
of these UUQs can be used; the only difference between them is the format for passing parameters
to the system.

Each of these UUOQs tells the system what device you want to use, what mode you want to use it in,
where your buffer headers are, if any, and what channel number you want to associate with the
device. If the device is a non-sharable device (such as the line printer, a terminal, a dectape or a
magnetic tape) which is not available now, the system will normally type out a message asking if
you will wait for it. However, the following bits in the data mode half word which you specify
when you attempt to initialize the device can be used to indicate special action to be taken.

Bits Octal Meanings of I's in the initial data mode
26 0,,1000 Wait automatically until the device is available.
217 0,400 Take error return automatically if the device is busy.

This bit takes precedence over bit 26.

If you want to have your program wait automatically without your being asked, you should have

bit 26 (the 1000 bit) on in the data mode half word. If you would like to get the error return

automatically when a device is busy, you should have bit 27 (the 400 bit) on in the data mode.

The automatic error return bit takes precedence over the automatic wait bit. Note that these two

bits (26 and 27) are among those reserved for device-dependent features. Thus, if you have either .
of these bits on when you Initialize a device, you should use the SETSTS UUOQO (explained in

Section 2.14) to turn them off after you get the device unless you want the particular features they

represent for that device. See the device writeups in Section 13 for the meanings of these bits for

the individual devices.

A device can be referred to by either its pAysical name or its logical name. The physical name of a
device is the permanent name given that device by the system. A logical device name is a
temporary name that can be specified with the monitor ASSIGN command. Device names (physical
or logical) are stored left-justified in sixbit representation. For example, the device DTAI is
represented by the octal number 446441210000, which can be set up by the SIXBIT pseudo-op in
the assembly languages, ie, SIXBIT /DTAIl/. If a given device name is both a physical name (of
one device) and a logical name (of another device), the logical name takes precedence.






2.9 Setting Up Buffer Rings I9
2.9 Setting Up Buffer Rings

For buffered 1/O, a buffer ring must be set up in your core area. Unless you issue an explicit
buffer-creating UUO (described below), or make the buffer ring yourself (very carefully!), the system
will set up a buffer ring for you when you first give an INPUT or OUTPUT UUOQ. That is, if a
device open in buffered mode has no associated input (output) buffer ring when the first INPUT
(OUTPUT) UUQ is given, the system will set up a two-buffer ring before carrying out the normal
function of the UUO. To do buffered input (output), you must have given the address of the
input (output) buffer header when you initialized the device.

Whenever the system sets up a buffer ring for you, it places the ring at the address contained in
JOBFF in your job data area (see Appendix 4). You may cause your buffers to be set up
anywhere in your core image by temporarily changing JOBFF to point to the place where you want
the buffers to be. If there is not enough room between JOBFF and JOBREL for the number of
buffers you request, your core image is automatically expanded to make room. After the ring is set
up, JOBFF is left pointing to the first word beyond. the ring and your buffer header is made to
point to the first buffer in the ring.

The following UUOs cause a buffer ring to be set up, and they permit specification of a
non-standard number of buffers and non-standard sizes.

- INBUF (0P=864]

INBUF <channel numbers>,<number of buffers>

The INBUF UUO causes an input buffer ring to be set up in your core area and to be associated
with the specified channel. The effective address of this UUO is interpreted as the number of
buffers the ring is to have. If the effective address is zero, two buffers are set up (the same number
of buffers you would get if you did not give this UUO at all).

OUTBUF (0P=865]

OUTBUF <channel number>, <number of buffers>

The OUTBUF UUO causes a ring of output buffers to be set up exactly as INBUF does for input
buffers.



20 General 1/0 2.9

UINBF (0P=784]

UINBF <channel number>,ADR

ADR: <number of buffers>
<number of words of data in each buffer> + 1

The UINBF UUO causes an input buffer ring to be set up in your core area and to be associated
with the specified channel. The effective address points to a two word block. The first word of this
block contains the number of buffers to be in the ring (zero means two), and the second word
contains a number which is one greater than the humber of words of data in each buffer.

Some devices (including the disk) do not accept nonstandard buffer sizes. Devices that will accept
nonstandard sizes include terminals and magnetic tapes. For other devices see the individual
device descriptions in Section 3.

UOUTBF (0P=785]

UOUTBF <channel number>,ADR

ADR: <number of buffers>
<numher of wWords of data in each buffer> + 1

The UOUTBF UUO causes a ring of output buffers to be set up exactly as UINBF does for input
buffers.

BUFLEN (0P=047, ADR=408842) CALL] 480842

- MOVE  AC, [<device name in sixbit, or channel numbers]
BUFLEN AC,

The BUFLEN UUO tells you the standard buffer size for the device specified by the contents of
AC. AC should contain either the name (logical or physical) of the device or the number of the
channel on which it is open. The buffer size, which is returned in AC, is one greater than the
length of the data portion of a buffer that would be set up if you did an INIT and then an
INBUF or OUTBUF for the particular device. This is the number you would need to use to set
up a standard size buffer with a UINBF or a UOUTBF UUO. The total number of words each
buffer would take up is two greater than this number (see Section 2.5). If there is no such device,
zero is returned in AC.



2.10 Opening Files 21
2.10 Opening Files

After initialization of a directory device, a particular file on the device must be opened (i.e,
selected) before any 1/O can take place. Opening of a file for input is done with the LOOKUP
UUQ; opening of a file for output is done with the ENTER UUO. The RENAME UUO is
available for changing a file’s name or specifications (date written, protection, etc.) after the file has
been opened. RENAME is also used to delete files.

If you initialize a directory device and attempt to transfer data with an INPUT (OUTPUT) UUO
without having done a LOOKUP (ENTER), the system will type out a message and require you to
type in a filename so that a LOOKUP (ENTER) can be done before the data is transferred.

For non-directory devices, the UUOs LOOKUP, ENTER and RENAME are no-ops; they always
take the success (skip) return.

LOOKUP {OP=876)

LOOKUP <channel number> ADR
<error return>

ADR: <file name in sixbit>
<file name extensian in sixbit>
<this word is ignored>
<project-programmer name in sixbit>

The LOOKUP UUO opens for input the file specified by the four-word block pointed to by the
effective address of the UUQ. The first word of the block should contain the sixbit name of the
file to be read; the second word should contain the sixbit file name extension in the left half. If the
clevice is the disk, the fourth word of the block should contain the project-programmer name for
the file or zero; zero will cause your current Disk PPN to be assumed for the file (see page 16). The
right half of the file extension word is ignored as is the whole word following the extension word.
For dectapes the project-programmer name is also ignored.

If the LOOKUP is successful, the skip return is taken and some information about the file is
returned. If the file does not exist or if some other error condition arises, then the error return (no
skip) is taken and, if the device is the disk, an error code is returned in the right half of ADR+1
(the rest of the block is unchanged). The error codes for LOOKUP, ENTER and RENAME are
explained in a table on page 25. No error codes are returned for dectapes.

After a successful LOOKUP of a disk file, the following information is returned in the LOOKUP
block. The word at ADR+2 contains: the file's protection in bits 0:8 (777000,0 bits) the data mode
in which the file was written in bits 9:12 (740,,0 bits), the file's time written in bits 13:23 (37,,770000
bits), and the file’s date written in bits 24:35 (0, 7777 bits). These values are stored in the directory
when the file is created and may be changed with the RENAME UUO (see page 23). (The date
written is in system date format which is explained under the DATE UUO on page 85. The time
written is in minutes past midnight on the date given. The protection bits are explained on page



22  General 1/0O 2.10

15 and the data mode is explained in Section 2.2) The word at ADR+3 contains the negative
swapped word count, that is, the negative of the number of words in the file, with the left and right
halves exchanged. (The word count is returned in this strange format to be compatible with DEC’s
format.) Finally, the right haif of the word at ADR+I contains, in system date format, the “creation
date” of the file, which is a slightly less than well defined quantity. The date written in ADR+2 is a
much more significant date.

Here is a summary of the information in the block after a successful LOOKUP on the disk.

ADR: ‘<file name>
ADR+l: <file name extension>,,<"creation date">
ADR+2: <Bits B8-8 (77708@,,8 bits): protection;
bits 9-12 (7408,,8 bits): data mode;
bits 13-23 (37,,7780008 bits): time written:
bits 24-35 (8,,7777 bits): date wuritten>
ADR+3: <negative swapped word count>

WARNING! You may not do two consecutive successful LOOKUPs for the disk with the same
four-word block without restoring the project-programmer name in the fourth word of the block
after the first LOOKUP! The negative swapped word count probably will not represent the PPN
you want!

After a successful LOOKUP on a dectape, the following information will be found in the
LOOIKUP block:

ADR: <file name>

ADR+1: <extension>,,<number of first block of file>

ADR+2: <date file wuritten>

ADR+3: <uwhatever was in 4th word of ENTER bliock when the file was created>

ENTER {0P=8771

ENTER <channe! number>,ADR
<error return>

ADR: <file name in sixbit>
<file name extension in sixbit>,,<creation date>
<protection key in hits 8:8 (777609,,8 bits)>
<project-programmer name>

The ENTER UUO opens for output a new file with the specifications given in the four-word block
pointed to by the effective address of the UUQO as indicated above. For a disk file, the time and
date written are set to the current time and date when the ENTER is done, and the file's protection
is set from bits 0:8 of ADR+2. If the device is a dectape, the words at ADR+2 and ADR+3 are
copied into the dectape’s directory with the exception that if bits 24:35 (0,,7777 bits) of ADR+2 are
zero, the current date is substituted for this 12-bit field before the word is written into the directory.
For the disk, if the PPN is zero, your current Disk PPN is assumed. If the ENTER is successful,
the skip return is taken and exactly the same information is returned in the block as after a
successful LOOKUP (see above and note that for a new file the word count is zero). If there



2.10 Opening Files 23

already was a file with the given name, its creation date is returned; otherwise the specified creation
date (zero means today) is returned. If the ENTER fails for any reason, then the no skip error
return is taken and, if the device is the disk, a code is returned in the right half of ADR+1 (the rest
of the block is unchanged). The error codes for LOOKUP, ENTER and RENAME with the disk
are explained in a table on page 25. No error codes are returned for dectapes.

An ENTER can fail for a number of reasons. It will fail if the file name is zero, if the PPN (or
Disk PPN) is illegal, if the file already exists and is write protected against you, if the file is already
open for output (by anyone), if the device is a dectape which is already full, or if you have already
done a LOOKUP on this channel and the filename for the ENTER does not agree with that given
in the LOOKUP (see Read-Alter mode for the disk on page 24).

With a successful ENTER of a disk file, if the file specified already exists, then that file will be
replaced with the new file when the new file is closed. Until that time, any attempt to read the
specified file will access the old file. After the new file is closed, any attempt to read the specified file
will get the new version; the old version will stay around only long enough for anyone still reading
it to finish. :

RENAME [0P=055]

S i i S e e e e e i b

RENAME <channel number>,ADR
<error return>

ADR: <neu file name or zero for deletion>
<neu file extension>,,<ignored>
<new protection key, mode, time and date last written>
<project-programmer name>

The RENAME UUOQ is used to change the name, extension, protection key, mode, or time and date
written, or a combination of these, for a file, or to delete a file. This UUO must be given after a
successful LOOKUP or ENTER has been done on this channel and may be given after a CLOSE
UUO (see Section 2.12) for this channel. After an ENTER, a CLOSE is necessary before
RENAME! As with LOOKUP and ENTER, if the project-programmer name is zero, your current
Disk PPN is assumed.

If the file name specified is zero, and if the effective PPN matches the PPN of the file open on this
channel, then that file is marked for deletion. This means that as soon as no one is reading the file,
it will go away. (After a file has been marked for deletion, anyone attempting to start reading it
will not find it.)

If the file name is not zero, then the name, extension and protection key for the file open on this
channel are all changed to those specified in the four-word block. Also, if bits 9:35 at ADR+2 are
not all zero, then the mode and time/date written of the file are set to those specified by these bits
(9:12 are mode; 13:23 are time; 24:35 are date). Note that you cannot rename a file to a different
disk area (different PPN); if the effective PPN is different from the files original PPN, the file will
be lost. .



24 General 1/O 2.10

If the RENAME is successful, the skip return is taken. Otherwise, the no-skip error return is taken
and (for the disk) an error code is returned in the right half of ADR+l, with the rest of the block
left unchanged. The meanings of the possible disk error codes for LOOKUP, ENTER and
RENAME are explained in a table on page 25.

Read-Alter Mode

There are two basic methods of updating data in a file. In the first, the file is copied, with
appropriate changes, into a new file with the same name. This is accomplished by doing a
LOOKUP of the old file on one channel and an independent ENTER of the same filename on a
different channel. When the new version of the file is closed, the old version will be deleted (after
all read references to it are finished). This method requires the whole file, however, to be read in
and written out again even if only a little of the data in the file is to be changed. The second
method allows you to open an already existing disk file and to change data in it in place, without
rewriting the whole file. This method of file manipulation is known as READ-ALTER (RA) mode.
When you have a file open in this mode, you may do (on the same channel) both input and output
with Lhe file. To open a file in this mode, you do a LOOKUP of the file and then an ENTER of
the same file on the same channel. If both the LOOKUP and the ENTER are successful, then the
file will be open in RA mode. If you give a different filename for the ENTER than you used with
the LOOKUP, the ENTER will fail with an error code of 6 (see table below). In RA mode, at the
moment any data is written out, that data overwrites whatever was there before. So if the file does
not get closed thereafter, the new data will still have replaced the old data in the file. Data can be
written into selected parts of a file by use of the random access UUOs USETI, USETO and
UGETTF (see Section 2.13). While a file is open in RA mode, anyone attempting to do either a
LOOKUP or an ENTER of that file will get the FILE BUSY error return (code 3, see below).
Also, an attempt to open a file in RA mode (by doing an ENTER after a successful LOOKUP) will
also fail with the FILE BUSY error return if anyone else is reading or writing the file.









2.11 Transferring Data 27

ouT {0P=0571]

OUT <channel number>,ADR
<success return>
<error return>

The OUT UUO causes some data to be written out from your core image to the device open on
the given channel. In buffered mode, the buffer pointer, byte pointer and byte count in the buffer
header are set up for the next buffer that you may fill and the device is started up to empty the
buffer you just filled. The first OUT UUO you give in buffered mode, however, does not cause
any data to be written out, only the buffer header to be set up with the buffer pointer, byte pointer
and byte count for the first buffer for you to fill.

In dump mode ADR is taken as the address of a dump mode command list (see Section 2.3) that
indicates what data are to be written out; the UUO does not return until the transfer is-complete.

In buffered mode, if ADR is non-zero, this UUO does not write out your current buffer but instead
switches you to the new buffer ring pointed to by ADR. (ADR should be the address of the second
word of a buffer in the ring.) Your buffer header and some internal system data are ad justed so
that you will next be filling the first buffer in the new ring. The buffer ring you are switching to
must be completely set up with the buffer-to-buffer pointers and the buffer sizes in the second word
of each buffer. The purpose of this feature is to let you switch among several output buffer rings if
you so desire. Note, however, that when you switch rings there is no provision for forcing data still
in buffers in the old ring to be written out.

As with the IN UUO, if any of the error bits IOBKTL, IODTER, IODERR, IOIMPM or
IODEND (see Section 2.6) are on at completion of the UUQ, the UUO skips. Otherwise, the direct
return (no skip) is taken.

OUTPUT [0P=867]

OUTPUT <channel numbers>,ADR

The QUTPUT UUOQ does exactly the same thing as the OUT UUO except that no error checking
is done and the UUO never skips.

WAIT (OP=047, ADR=18] CALLI 18

- - - ———— - - - - - - - - - - - - -

WAIT <channel numbers,

The WAIT UUO simply waits for all I/O on the channel indicated by the AC field to finish.
Normally, when a device is open in buffered mode, the system does I/O with your buffers while
your program is running. This means that only the buffer pointed to by your buffer header can be






2.i2 Terminating I/O 29

RELEAS (0P=671]

RELEAS <channel number>,<c|ose-i'nhibit flags>

(<close-inhibit flags>:
1 (bit 35) inhibits clasing output,
2 (bit 34) inhibits closing input.)

The RELEAS UUO does a CLOSE of the given channel with the given <close-inhibit flags>
specified by the effective address (see the CLOSE UUOQ above) and then frees the channel number.
Thus, after giving this UUQ, you must do another INIT or OPEN to do any more I/O on this
channel. '

oo,
The RESET UUO (see page 126) simulates a RELEAS <channel>,3 for every chinnel you have
open. The normal EXIT UUOQ (that is, "EXIT 0,") simulates a RELEAS <channel>,0 for every
channel you have open (see page 125).

REASSI (OP=B47, ADR=21] CALLI 21

MOVE  AC, [<jaob number>])
MOVE  AC+l, [<device name in sixbit, or channel number>]
REASSI AC, y

The REASSI UUO is used to turn over a device you are using to another job. Accumulator AC
should contain the number of the job to whom you wish to give the device, and accumulator AC+1]
should contain the logical or physical name of the device or the channel on which it is open. This
UUOQ gives the same results as the following sequence: 1) you release the device with both input
and output inhibiting, 2) you deassign the device with the monitor DEASSIGN command, and
3) the job indicated assigns the device with the monitor ASSIGN command.

If the job number you give is not that of a logged in job, then this UUOQO will return with
accumulator AC set to zero. If the device is not assigned to your job, or if the device may not be
reassigned at this time, then the UUO will return with accumulator AC+1 set to zero (which might
be confusing if you specified channel zero in AC+1). .

2.I13 Random Access to Files

A disk or dectape file consists of a series of 200 word records. Often, these records are read (or
written) sequentially from the beginning of the file to the end. But sometimes one wishes to read or
alter only selected parts of a file. Three random access UUQs are provided to allow the user to do
exactly that. To do random access input or output, you must specify which record you want to
reference next. On the disk, the records of a file are numbered consecutively from 1 to n, where



30 General I/O 2.13

the file is n records long. (Hidden records can precede logical record | of a disk file. The hidden
records have non-positive logical record numbers. See the disk file record offset feature on page
143) On dectapes the records of a file are physical blocks and are numbered differently; for a
precise explanation of dectape files, read Section 13.5.

For each disk file open, the system maintains a pointer to the record that will be referenced by the
next INPUT or OUTPUT UUO. For each dectape file open, the system maintains two pointers,
one for input and one for output. The following three UUQs set these pointers to specific values,
If you try to set the record pointer for a disk file to a value less than that of the first physical record
in the file, you get the first physical record instead. If you try to set it to a record beyond the end of
a disk file, you get the first record after the last record in the file (and IODEND in the device status
word is turned on; see Section 2.6). If you try to set it to a value greater than the number of the
last physical block on a dectape, IOBKTL will be turned on in the device status word; thus the
error return will be taken with the next IN or OUT UUO.

USETI (0P=074]

USET! <channe! number>,<record number>

The USETI UUO prepares you to read from a file at a specific record. You must have a file open
for input on the channel indicated by the AC field. The record pointer for the file (input block
pointer for dectape files) is set to the value in the address field of the instruction and the status of
any input buffers is set to unused. The IODEND bit in the device status word is cleared unless
you have selected a record beyond the end of a disk file.

Note that the record number in a USETI for the disk is taken as a signed 18-bit number in
twos-complement notation; see the record offset feature on page 143.

USETO (0P=075]

USETO <channel number>,<record number>

The USETO UUO prepares you for writing into a file at a specific record. You must have a file
open for output on the channel indicated by the AC field. This UUO forces out the data in any
output buffers that have not yet been written and then sets the record pointer for the file (output
block pointer for dectape files) to the value in the address field of the instruction. The status of any
output buffers is set to unused.

Note that the record number in a USETO for the disk is taken as a signed 18-bit number in
twos-complement notation; see the record offset feature on page 143.



2.13 Random Access to Files 31

UGETF <channel number>,ADR

The UGETF UUO prepares you.to extend the file open on the given channel. It forces out the
data in any output buffers that have not yet been written. Then, for the disk, the record pointer is
set to the number of the record after the last record of the file and IODEND is turned on. For
dectapes, the output block pointer is set to the number of the next free block you may write on. In
either case, the number of the record (or block) so selected is returned in the word pointed to by the
effective address of the UUO. The status of any input or output buffers is set to unused.

2.14- 1/O Status Testing and Setiing

There are various pieces of information one can find out about an I/O device or about a logical
I/O channel, namely: the 1/O device status bits (explained in detail in Section 2.6), the channel use
bits (explained below), the device characteristics (explained below), the physical name of a device,
and the number of people waiting to use a given device. This section describes the UUOs used to
get and/or set these.

GETSTS {0P=862]

GETSTS <channel number>,ADR

The GETSTS UUO puts the 1/O device status word for the device open on the indicated channel
into the word located at ADR. See Section 2.6.

SETSTS (0P=868]

SETSTS <channel number>,<status bits>

The SETSTS UUO waits for the device open on this channel to become inactive and then sets the
right half of the 1/O device status word for this device from the address field of the UUO. See
Section 2.6.


















3. TTY I/O 87

SECTION 3

TTY INPUT/OUTPUT

The terminal is one of the most important 1/O devices for the user. He controls his programs by
typing in various commands, and the programs type back certain things to keep him informed.
This section explains several UUQOs that are provided to make terminal I/O control flexible but
simple. The word TTY is used in this manual to mean a user terminal of any type, whether
display, teletype or pseudo-teletype.

3.1 TTY Echoing and LF Insertion

The system provides two services to terminals doing input. The first is that characters typed in are
normally sent back to the terminal in order for the user to see what he has typed. This is called
echoing of input. The second action taken on input is that normally, when the system receives a
carriage return from a TTY line, it inserts a linefeed after the carriage return. Thus the user does
not have to type a linefeed (hereafter abbreviated LF) after each carriage return (hereafter
abbreviated CR). The LF is put into the terminal’s input buffer just as if the user had typed it; it
is also usually echoed to the terminal. i

T hese actions can be modified by the user to suit his particular purposes. Echoing can be turned
off in two different manners. The first of these is intended for terminals that always print each
character typed. If the system were to echo characters to this kind of terminal, each character
would appear twice. This method of turning echoing off causes all echoing to be suppressed except
for echoing of LFs inserted after CRs. Bit 15 (4,0 bit) in the line characteristics word (see the
GETLIN UUO on page 40) indicates the state of this type of echo suppression. This bit can be
set and cleared by the monitor commands TTY NO ECHO and TTY ECHO, respectively.

The second type of echo suppression is designed to be used by programs that, for whatever reasons,
do not want typed-in characters to appear on the terminal. This method turns off all echoing
except when TTY input is going to the monitor rather than to the program. The state of this type
of echo suppression is indicated by the NOECHO bit (bit 28--the 0,200 bit) in the TTY I/O status
word (see Section 2.6 and Section 2.14); when the NOECHO bit is on, echoing is suppressed. This
bit can be turned on or off only by UUO, currently only by the CTLV UUO (see page 47), by the
PTJOBX UUO (with the DOFF and DON functions--see page 56) and by the INIT and
SETSTS UUQs. PT JOBX is the recommended UUO for this purpose. A RESET (see page 126)
clears this bit, thus turning echoirig back on. (A program can also disable just the echoing of the
CONTROL and META bits; see the NOECHB bit in Section 13.2.)

insertion of linefeeds after carriage returns is affected by three factors: 1) whether TTY input is
going to the monitor or to a user program, 2) whether the terminal is a pseudo-teletype (see Section
3.5), a display or a teletype, and 3) the value of bit 16 (2,0 bit) in the TTY line characteristics
word (see the GETLIN UUO on page 40). LFs are always inserted after CRs on III and Data



38 TTY I/O 3.1

Disc displays. For other TTYs in the normal case, LFs are inserted after CRs. They are not
inserted if both 1) bit 16 in the line characteristics word is on and 2) either the terminal is a
pseudo-teletype or input is going to a user program. Note that pseudo-teletypes (PTYs) are
initialized with bit 16 on; thus LFs are normally not inserted after CRs on PTYs. Bit 16 in the
characteristics word can be changed only by UUQ, currently only by the SETLIN UUO (see page
42) and the PTSETL UUQ (see page 54).

3.2 Codes Returned for Characters Typed

When a character is read from a TTY, the 7-bit Stanford ascii code for that character is returned
in bits 29:35 (0,177 bits) (see the Stanford ascii character set in Appendix 7); in addition,
characters read from displays are returned with the CONTROL and META keys represented as
bits 28 (0,200--CONTROL) and 27 (0,400--META). Furthermore, when control-Z is typed on a
teletype and read by any of the UUOs described below, the value returned is 612, which is the
code for control-meta-linefeed from displays. Thus the end-of-file character always appears as the
same code regardless of the type of terminal on which it was typed. Note that when characters are
being read from a TTY by means of the INPUT or IN UUOs described in Section 2, only 7 bits
are returned for each character (the CONTROL and META keys on displays are lost), and the
EOF characters (control-Z and control-meta-linefeed) do not appear as characters at all--they merely
set the EQF bit in the TTY 1/O status word.

33 TTYUUO

~The most important UUOQ is probably TTYUUO (known some places as TTCALL). This is an
extended UUO with many different functions. With a couple of exceptions, which are noted, these
functions all operate on the terminal attached to the job giving this UUOQ.

TTYUUO  [0P=051]

- —————- - o= Sa - - ———— - = —— " O > s - - - = - - -

TTYUUD <function number>,ADR

TTYUUO uses the accumulator field of the instruction to determine the particular function to be
executed. Each of these functions is described separately below.






40 TTY I/O 3.3

INCHWL [0P=051, AC=4]) TTYUUO 4,

INCHWL ADR

The INCHWL UUO waits until an entire line (ended by carriage return, linefeed, altmode or a
control character) has been typed and then returns a single character right-justified in ADR. This
is called l/ine mode and should be used instead of character mode (as in INCHRW) whenever
possible. In character mode you cannot always backspace over mistyped characters because your
program may already have eaten them up; in line mode you can backup as far as the last
activation character.

INCHSL [OP=@51, AC=5) TTYUUO 5,

INCHSL ADR
<return if no entire |ine has been typed yet>
<success return> .

The INCHSL UUO looks to see if an entire line has been typed, and if so, returns one character
right-justified in ADR and takes the skip return. If an entire line has not yet been typed, the direct
return is taken and ADR is not changed.

GETLIN {0P=051, AC=6] TTYUUO 6,

GETLIN ADR

The GETLIN UUOQ can be used to find out what terminal a job is attached to, if any, and what
the characteristics are for any terminal. If the original contents of ADR are less than zero, then the
characteristics for your own terminal are returned in ADR. If ADR originally contains the number
of a TTY line (a number between zero and the maximum legal TTY line number), the
characteristics of that terminal are returned in ADR. If ADR originally contains a number greater
than the maximum legal TTY line number, then zero is returned in ADR.

If a job requests the line characteristics for its own terminal, and if that job is detached, that is, not
attached to any terminal, then a -1 (all bits on) will be returned as the line characteristics. You
should check for this condition before testing any of the particular bits or you will be deceived by a
detached job.

If the characteristics word is not -1, then the right half contains the line number of the terminal
and the left half contains the characteristics of the terminal, as explained below.

Note: 1f the terminal is a pseudo-teletype (see Section 3.5) controlled directly or indirectly
(through a chain of pseudo-teletypes) by a Data Disc or 1II display, then the Data Disc bit (bit
4--the 20000,0 bit) or the III bit (bit 0--the 400000,0 bit) will be on in the characteristics for the
pseudo-teletype.



3.3

Bits

11

12

13

Octal
400000,0
200000,,0

100000,,0

20000,,0
10000,,0
4000,,0
2000,,0

1000,,0

400,0

100,,0

40,0

20,0

TTYUUO

Meanings of I's in TTVY line characteristics word
The terminal is a III display.
The terminal is the PDP-10 console teletype (CTY).

Carriage returns are made into multiple carriage
returns in order to allow the teletype carriage to reach
the left margin before the next character reaches the
teletype. This bit can be set and cleared with the
monitor commands TTY FILL and TTY NO FILL,
respectively, and with the SETLIN and PTSETL

- UUOs (see below and page 54). Data Disc and III

displays are not affected by this bit.

The terminal is a Data Disc display.

The terminal is a model 37 teletype.

The terminal is a ‘pseudo-teletype (see Section 3.5).
The terminal is an IMLAC.

The terminal is a pseudo-teletype and is controlled by
a job connected to the IMP. This means the PTY’s
job is being run through the ARPA network. This
bit can be set and cleared with the SETLIN and
PTSETL UUO:s.

Pseudo-teletype input wait will be terminated by TTY
input also (see the PTRDIW UUO on page 52).
This is the PTYWAKE bit; it can be set and cleared
with the SETLIN and PTSETL UUOQs.

The terminal is in special activation mode. This
means that line mode input will be activated by the
characters whose bits are I's in the special activation
table. This bit can be set and cleared with the
SETLIN and PTSETL UUOs. A RESET (see page
126) clears this bit, as well as resetting your special
activation table to the standard special activation
table. See the SETACT UUOQ on page 44.

The last character typed was a rubout, and a
backslash will be typed out when'a character that is
not a rubout is typed.

The terminal is in full-character-set mode. When this
bit is off, lower case letters are automatically changed

41






3.3 “ ' TTYUUO 43

RESCAN [OP=051, AC=18] TTYUUD 18,
-------- F;ééa\lrl-/-\[?];?“ g s+ ADR is ignored if it is zero -
ADR: <uord for returned character count>

The RESCAN UUO attempts to back up your TTY input buffer pointer to the beginning of the
previous monitor command typed in. By using this UUO, a program started up by a monitor
command can re-read the command line that started it. In fact, this UUO can be given over and
over to read the command line several times. If this UUQO is given with a non-zero effective
address, then the number of characters over which the pointer is backed up is returned in the word
pointed to by the effective address.

W arning: If more than a buffer full of characters have been typed since the beginning of the last
monitor command, then the characters you get after giving this UUQO will not be from the
command. The pointer into the buffer will simply have been set to the value it had at the
beginning of the command; the command itself may have been overwritten by other text typed in
more recently, in which case you will be reading garbage after giving this UUO.

CLRBFI [OP=B51, AC=11] TTYUUO 11,

i e = - = = = = = e

CLRBFI

The CLRBFI UUO clears your TTY input buffer. This is used mainly to throw away any
characters the user has typed ahead when a fatal error occurs.

CLRBFO (OP=851, AC=12] TTYUUO 12,

e = e e

CLRBFO

The CLRBFO UUO clears your TTY output buffer.

INSKIP [OP=B51, AC=13] TTYUUD 18,

- e e e = h - - - - o - - - -

INSKIP <flag>
<return if no characters have been typed>
<success return>

The INSKIP UUO tells you if the user has typed anything which you have not yet read. If the
low order bit of the address field <flag> is on, then this UUQ checks for a whole line having been
typed; otherwise it checks for anything having been typed. If something has been typed, then this
UUQO skips; if not, the direct return is taken.



44 TTY I/O 33

INWAIT [OP=0851, AC=14] TTYUUD 14,

- ——————— - - = ———— - " - - = - - - - - - -

INWAIT ADR

The INWAIT UUO just waits until a full line has been typed in. Then if the address ADR is
non-zero, the number of characters in the last line re-edited (1[I and Data Disc terminals only) with
a control-CR or with a PTLOAD UUO (see page 55) is returned in the word at ADR. In other
words, if you give a PTLOAD UUQ and then do an INWAIT ADR, you will get in location ADR
the number of characters in the re-edited line. If you are not at a III or Data Disc display, or if
you did not re-ec.t a line somehow, the number placed in ADR will be meaningless.

SETACT [0P=@51, AC=15] TTYUUO 15,

SETACT [0OLD,,NEW]
OLD: <4 word block to receive the current activation table>

NEW: <4 word block to provide a new activation table>

The SETACT UUO is used to retrieve and/or change the activ'atiqn table used in Special
activation mode. An activation table consists of 4 words, with one bit for ea¢h character and a
couple of extra bits thrown in for some special effects. The first three words plus the high-order 20
bits of the fourth word (total of 128 bits) specify which characters are activation characters (bit 0 of
first word represents ascii 0, bit | represents ascii 1, etc.). The activation characters are defined to
be those characters whose bits are 1 in the activation table. The meanings of the low order bits of
the fourth word are given below:

Bits Octal Meaning of I's at end of fourth word

35 0,1 Suppress activation on characters with control bits
except for those characters that would activate
without any control bits. See also bit 33 below.

34 0,2 Disable control-carriage-return from giving back the
last line typed.

33 0,4 Always ‘activate on characters that have both
. CONTROL and META on, regardless of setting of
bit 35 above.

This UUO takes the current activation table and places it in the four words at OLD, then sets up
the new activation table from the four words at NEW. If either address OLD or NEW is zero, the
corresponding function of this UUO is omitted. Thus if OLD is zero, the old activation table is
not returned, and if NEW is zero, the (old) activation table is not changed.

Your special activation table is initialized by the system so that all characters except letters and






46 TTY 1/O 3.4

3.4 Miscellaneous TTY UUOs

TTYMES (OP=047, ADR=488047] CALLI 4808047

MOVED AC,ADR
TTYMES AC,

<error return>

ACR: <number or physical name of destination tty>
ppccce, ,MESS - juhere ppccce is a B-digit octal number

MESS: ASCl1 /...message.../

The TTYMES UUO can be used to type out an ASCII string on any terminal. Unlike the
OUTSTR UUO, TTYMES allows the message to start in any byte of a word. The end of the
message is indicated by a null (zero) byte or by exhaustion of an explicit character count.

Upon call, AC should contain the address of a two word block. The first word of this block should
contain either the name (physical or logical) of the destination terminal, e.g, SIXBIT /TTY2l/, or
the number of the destination terminal, e.g,, 21. The second word of the block should contain in its
right half the address of the ASCIl message. The first six bits of the left half (pp in the sample
call above) indicate the position (within the first word) of the first character of the message in
normal byte pointer format; that is, pp is the number of bits to the right of the first byte of the
message. If the position field contains zero, then 44 is assumed; that means the first byte of the
word at MESS is the first character in the message. The remaining twelve bits of the left half (ccce
above) may contain either the number of characters in the message or zero. If the count field
contains zero, then the count is effectively set to infinity. Characters are sent to the destination until
either the character count runs out or a null (zero) byte is encountered in the message. Thus, if you
don't wish to calculate the length of your message, you can use a zero count and a null byte at the
end of the message (i.e,, use an ASCIZ string). :

If you try to send a message to a nonexistent terminal, you get the error return. You aiso get the
error return if the message can'’t be sent right now (for instance, if the TTY's output is being held)
unless the terminal is your own, in which case this UUO waits until it can send the message.






48 TTY I/O 3.4

TTYI10S {0P=847, ADR=4BBB14] CALLI 480814

MOVE  AC, [<job number or eixbit device name>]
TTYIOS AC,

The TTYIOS UUO returns the 1/O status word of the device indicated by the contents of the AC.
If AC contains a logical or physical device name, that device's status word is returned. If AC
contains a job number, then the status word of the terminal belonging to that job is returned; if
that job has more than one TTY, then there is no telling which one’s status word will be returned.
The 1/O status vord is returned in the AC; if there is no such device, -1 is returned. The
meanings of some bits in the right half of the device status word are explained in Section 2.6.
Other bits for specific devices are explained in the device writeups in Section 13.

GETLN {OP=B47, ADR=34] CALLI 34

GETLN AC,

The GETLN UUO is used to find out the physical name of the terminal attached to your job.
The name (in sixbit) is returned in AC. If the job is detached, zero is returned.

3.5 Pseudo-Teietypes

The pseudo-teletype (PTY) is a special system concept designed to allow users to have control of
more than one job at a time. A PTY is like a physical terminal in almost all respects. However, a
PTY is controlled by the job which created it, and no other job can access it. To type characters on
a PTY, the controlling job does character output to the PTY; and to see the characters typed out on
a PTY, a job does character input from the PTY. If you send a new PTY the character "L"
followed by a carriage return and linefeed, a job will begin logging in on the PTY. You can run
programs and communicate with the monitor through a PTY just as you can through a physical
terminal, but PTYs are controlled by program rather than by keyboard. Thus, a single job
(attached to a terminal or even detached) can control one or more PTYs and hence one or more
other jobs, which themselves can control other PTYs.

Just as each physical terminal has a unique line number, so does each PTY. Currently the line
numbers assigned to PTYs begin with 121 and go upward. The PTYs have physical:device
names, just like other terminals; for example, the physical name the PTY on line 121 is SIXBIT
ITTY121/. There is a maximum number of PTYs that the system can support at any one time
and this maximum is currently 24. .

PTYs have line characteristics just as other terminals do (see the GETLIN UUO on page 40).
When a PTY is initialized (with.the PTYGET UUQ), it is set up with the following bits on in the
characteristics word: 6--PTY, 10-(this bit is used by the system) and 16--linefeeds are not inserted
after carriage returns. You can of course change certain bits in the characteristics word to suit your



3.5 Pseudo-Teletypes 49

purposes. This can be done for a PTY with the PTSETL UUO (see page 54) just as SETLIN
(see page 42) does it for other terminals.

When you output characters to a PTY, those characters will be echoed by the monitor as usual and
will thus appear in subsequent inputs that you do from the PTY. You can turn off the automatic
echoing by the usual means for doing so with terminals; namely, you can turn on bit 15 in the
PTY's line characteristics, (this inhibits echoing so that only linefeeds inserted after carriage returns
get echoed), or you can have the job that is running on the PTY do a CTLV UUO (see page 47),
which eliminates all echoing except while the PTY is in monitor mode. You can get the same effect
as doing a CTLV (to turn echoing off) but more easily by using the PT JOBX UUO with the
control function DOFF. This will always turn echoing off, whereas CTLYV inverts the state of
echoing, turning it off when it is on and on when it is off. The control function DON for
PT JOBX can be used to turn echoing back on. The PTJOBX UUO is explained on page 56.

PTYUUO

The UUO that is used to communicate with PTYs is PTYUUO, which has many different
functions that it can perform, including reading from and writing on a PTY.

PTYUUO [0P=7111

e e - -

PTYUUD <function number>,ADR

ADR: <PTY's |line number>
<other data depending on the function>

PTYUUO is an extended UUQ that uses the AC field to determine which of many possible
pseudo-teletype functions is to be executed. Each of these functions (which are described in detail
below) expects a two word block to be pointed to by the address field of the instruction. The right
half of the first word of this block should contain the line number of the pseudo-teletype for which
the UUO is intended (except with PTYGET which returns this line number). The second word is
a data word that is used or returned by the UUO.

Doing PTYUUOs to Physical TTYs

It is sometimes useful for a program to be able to type things into its own TTY input buffer just as
if the user had typed them. This can be done with PTYUUOQ by specifying a PTY line number
of zero in the word at ADR. When this word is zero, the PTY function is executed with your
terminal instead of with a pseudo-teletype. Thus, if you do output to a PTY with a line number of
zero, the characters will go to your terminal’s input buffer (into your line editor if you are on a III
or Data Disc display) just as if you had typed them.









52 TTY 1/O 3.5

PTRDIW [OP=711, AC=5] PTYUUO 5,
-------- PTROLM ADR
ADR: <PTY's line number>

<one 7-bit character is returned here>

The PTRDIW UUO reads one 7-bit character from the output buffer of the PTY whose line
number is.in ADR and returns the character in ADR+l. If there are no characters in the PTY's
output buffer, thi: UUO waits for the PTY to do some output and then returns the first character.

If the PTYWAKE bit (bit 9--the 400,0 bit) is on in the line characteristics word for your terminal
(see the GETLIN UUO on page 40), then this instruction will return when a character is typed
either on the PTY or on your terminal. If the first character typed is from the terminal, a zero will
be returned in ADR+1 and no characters will have been read from either the terminal or the PTY.
In this manner, you may walt for either PTY or TTY input.

PTWRIS (0OP=711, AC=6] PTYUUO 6,

-

PTWR1S ADR
<return if character not sent>
<success return>

ADR: <PTY's |ine number>
<9-bit character to be sent>

The PTWRIS UUO sends the 9-bit character right-justified in ADR+! to the PTY whose line
number is in ADR. If the character can be sent, the skip return is taken. If the PTY's input
buffer is already full, the character is not sent and the direct return is taken. The CONTROL and
META keys which display lines have are represented by bit 28 (0,,200--CONTROL) and bit 27
(0,400--META) in ADR+1.

The [ESCAPE], [BREAK] and [CLEAR] characters (as available on Data Disc and III display
keyboards) can be sent with this UUO (or with the PTWRIW UUO below) by having ADR+]
contain 0,,10042 for [ESCAPE] or 0,,1004[ for [BREAK] or 0,,10044 for [CLEAR). Also, if bit 23
(0,,10000 bit) is on in ADR+1, then the character represented by the low order 7 bits (if not 41, 42
or 44) will be sent to the PTY preceded by the [ESCAPE] character; and if both bits 23 and 24
(0,,14000 bits) are on, then the character In the low order 7 bits will be sent preceded by the
[RREAK] character. In either of these two cases, if the character in the low order 7 bits is not an
[ESCAPE] or [BREAK] keyboard command and is not either 4[, 42 or 44, then this UUO
becomes a no-op, taking the skip return. Also, if the PTY specified is not a display, then only the
low order 7 bits (bits 29:35--the 0,177 bits) of ADR+] are used; no [ESCAPE] or [BREAK]
commands can be sent for teletypes. (Imlacs can send 8 bits; the 0,200 bit on an Imlac means that
this character should not be checked against the special activation table even if the Imlac is in
special activation mode.)



35 Pseudo-Teletypes 53

PTWRIW {OP=711, AC=7} PTYUUO 7,

= = " an A% 4 An = - = G 4 Gm = an = An 5 A8 G G - - Yo on -

PTWR1W ADR

ADR: <PTY's |ine number>
<9-bit character to be sent>

The PTWRIW UUO sends the 9-bit character right-justified in ADR+] to the PTY whose line
number is in ADR. If the PTY’s input buffer is already full, this UUO waits until there is room
and then sends the character.

This UUO interprets the character in ADR+l exactly as the PTWRIS UUO does. See the
PTWRIS UUQ above for the details of sending the [ESCAPE], [BREAK] and [CLEAR]
characters to a display’s input buffer.

PTRDS [0P=711, AC=18] PTYUUD 18,

e e am o = - A = = A om Am A = G = = S 5 R 5 e = R W D e b = = - = - -

PTROS AOR

ADR: <PTY’s |line number>
<address or byte pointer for returned string>

The PTRDS UUO reads all the characters that are in the output buffer of the PTY whose line
number is in ADR and returns these characters as an ASCIZ string at the location indicated by
ADR+1. If bits 6:17 (7777,0 bits) in ADR+1 are not all zero, the word at ADR+] is taken as a byte
pointer to be used to return the ASCIZ string, with the byte pointer incremented before the first
character is deposited. (Before the byte pointer is used, the size field is set up for 7-bit bytes and
the index and indirect fields are cleared.) If bits 6:17 of ADR+l are zero, the ASCIZ string is
returned such that the first byte is in the high-order 7 bits of the location pointed to by the right
half of ADR+1.

PTWRS? (OP=711, AC=11] PTYUUO 11,

- e e A = - = = A0 AR 4 5 D P 4 Am 45 eGP 45 = G5 = o = an G5 = GD o= 4B 4B @ o= = en Gr am am

PTWRS7 ADR

ADR: <PTY's line number> !
<address or byte pointer for string to be sent>:

The PTWRS7 UUO takes the ASCIZ string specified by ADR+1 and sends it to the PTY whose
line number is in ADR. This UUO waits as necessary until the whole string has been sent. If bits
6:17 (7777,0 bits) of ADR+1 are not all zero, then ADR+| is taken as a byte pointer to be used to
access the string, with the byte pointer incremented before the first character is loaded. (Before the
byte pointer is used, the size field is set up for 7-bit bytes and the index and indirect fields are
cleared.) If bits 6:17 are zero, the string is assumed to start in the high-order 7 bits of the word
pointed to by ADR+|.



r

54 TTY 1/O 3.5

PTWRS9 [0P=711, AC=12] PTYUUO 12,
------- PTURSI ADR
ADR: <PTY's |ine number>

<address or byte pointer for string to be sent>

The PTWRS9 UUO does the same as PTWRS7 except that the string sent is not a standard 7-bit
ASCIZ string, but a string of 9-bit characters terminated by a zero (null) character. The two high
order bits (400 and 200 bits) in each 9-bit character represent the CONTROL and META keys,
respectively, which Data Disc and 1II display keyboards have. As with PTWRS?7, ADR+! can
contamn either a simple pointer to the string or a byte pointer to it.

This UUO 1s important because octal code 003 (8 or control-C) daes not mean control-C if you are
sending this string to yourself (line number in ADR set to zero) and you are at a III or Data Disc
display. The code representing control-C in that case is 600, which takes 9 bits to represent. The
code 600 works as control-C for all PTYs, so it can always be sent instead of 003 to stop a job.
Note that you must send two 600s (two control-C’s) to stop a job immediately. Another method for
stopping a PTY is to use the PT JOBX UUO with the HALT control function; see page 56.

PTGETL [OP=711, AC=13] PTYUUD 13,
i PTGETL ADR
ADR: <PTY’s line number>

<PTY’s iine characteristics word is returned here>

The PTGETL UUO returns in ADR+] the line characteristics for the PTY whose line number is
in ADR. The meaning of the line characteristics word is explained under the GETLIN UUO on

page 40.

Note: If a pseudo-teletype is controiled directly or indirectly (through a chain of pseudo-teletypes)
by a Data Disc or III display, then the Data Disc bit (bit 4--the 20,0 bit) or the III bit (bit O--the
400000,,0 bit) will be on in the characteristics word for the pseudo-teletype.

PTSETL (OP=711, AC=14] PTYUUO 14,

- - - - - - - - - - - G G = G S G G G . G S e . . . - - -

PTS&TL ADR
ADR: <PTY’s |ine numbers>
<new |ine characteristics desired>

The PTSETL UUOQ sets the line characteristics for the PTY whose line number is in ADR from
the word at ADR+l. In the line characteristics word, only bits 2, 8, 9, 11, 13, H_, 15 and 16






56 TTY 1/O 3.5

PTJOBX (0P=711, AC=16] PTYUUOD 16,

. - ——— " " - — Y - - - - - - -

PTJOBX ADR

<error return for HALT and CONT--no job iogged in>
<error return for CONT--job cannot be continued>
<success return for CONT>

ADR: <pseudo-teletype |ine number>
<index, or sixbit name, of controi function>

Controi functions:

I ndex Name Function Success Return
1 HALT Stop the pty's job. ) skips
2 - CONT Continue the pty's job. doublie skips
3 DOFF Turn off echoing of input to ptg. no skip
4 DON Turn on echoing of input to pty. no skip
5 LOGIN Log in a job on pty. skips
6 IWAITS Skip 1f pty waiting for input. skips

PTJOBX is the extended PTY job control UUO. Any one of several control functions can be
exercised over a PTY without sending it any character strings. The control is exercised over the
job running on the PTY whose line number is in ADR; a zero line number means the control is
exercised over your own job. This is a good ‘method for turning on and off the cchoing of .input to
your job.

The word at ADR+] should contain either the index or the sixbit name of the control function
desired. The currently available control functions are listed above with their names and indices.

The HALT function takes the skip return on success and the direct (error) return if there is no job
logged in on the PTY. If you HALT your own job (PTY line 0) this way, your terminal is left in
user mode and you cannot type commands ta the monitor; you must type control-C to get out of this
condition.

The CONT function takes the double skip return on success, the direct return if there is no Jjob
logged in on the PTY, and the single skip return if the job cannot be continued.

The DOFF and DON functions always take the direct return; DOFF sets bit 28 (0,200 bit) in the
TTY I/O status word (thus turning off echoing) and DON clears this bit (turning echoing back on).
See Section 3.1 for the meaning of this bit. .

The LOGIN function logs the PTY in under the PPN of the controlling job and copies the
controlling job’s Disk PPN and privileges; the job number of the new job is returned at ADR+1
and the skip return is taken if the job gets successfully logged in. If there is already a job logged
in on the PTY, that job's number is returned in ADR+1 and the direct return is taken. (This is a
good way to find out the number of the job logged in on a PTY.) If there is no job logged in on
the PTY but there are no job slots available, zero is returned in ADR+1 and the direct return is
taken.









4. Display Output 59

SECTION 4

DISPLAY OUTPUT

The availability of displays for output provides great fiexibility and convenience in many
programs. This section explains several UUOs that allow the user to determine what will appear
on a display. These UUOs include: the PPIOTS to select and position various pieces of paper on
your screen; the PGIOTs and UPGIOT to run display programs on Data Discs and IIls and to
select from various pieces of glass on llls; DDCHAN to acquire and manipulate extra Data Disc
channels; VDSM AP to select the sources for the picture on a Data Disc display; ADSM AP to select
the sound source to be connected to the speaker associated with a given display; and a few other
related UUOs.

This section does not discuss how to program the III or Data Disc display processors. These
processors are explained in Appendix | and Appendix 2, respectively. However, since the two
display processors are somewhat different in their operation, I shall attempt to explain for each how
it works and how it interacts with the system so that you can understand what the various UUQOs
are intended to do. Some references are made to specific IIl or DD instructions; these are all
explained in the above-mentioned appendices.

4.1 TII Displays

The III display processor runs continuously, executing display instructions from main memory.
The code it executes is located in system free storage. Any change to a single word of this code will
cause the resultant display to change. A user-written III display program can be run by using the
UPGIOT UUO. (The III instructions are explained in Appendix 1) UPGIOT takes as
arguments the location and length of the display program to be run. The system copies the display
program out of the user's core image into free storage, making transformations such as address
relocation.

The system uses the first word in your program to interface with other display programs; you must
include an extra word at the beginning of each III display program you write. To exit from the
middle of your display program, insert a HLT instruction. Otherwise, you should simply plan to
fall through to the end of your program. You need not have a HLT at the end.

Every job running on a IIl is permitted to have up to 20 independent display programs. A III
display program is called a piece of glass, and each piece of glass (hereafter abbreviated POG) has
a number between 0 and 17 inclusive. RAID uses POG 17; please note the obvious conflict if your
program uses this POG too.

You may choose which of your pieces of glass are to be visible and which are to be invisible. The
display code for an invisible POG continues to reside in system free storage but is simply not
executed; you may reactivate it at any time.



60 Display Output 4.1

The only III instruction that is illegal in a user display program is the JM$ instruction. To get the
effect of a JMS, use the JSR and/or SAVE instructions (see Appendix 1).

You are not allowed to display anything on someone else’s I1I unless you are privileged. You may
display on a III that is not in use.

4.2 Data Disc Displays

The Data Disc (DD) display processor works by storing complete TV pictures bit by bit on a disk.
The disk we have has =64 tracks; two tracks are needed to hold a complete picture. Thus =32
complete TV images can be stored on the Data Disc. Each combination of two tracks that makes
up a whole picture is called a Data Disc channel. The Data Disc hardware reads the disk and puts
out a TV signal for each channel. Each TV signal can then be routed by the vxdeo switch
(controlled by software) to any combination of TV monitors (Data Disc displays).

When the DD processor executes a program, the resultant picture changes are recorded on the disk,
and the displayed picture changes. The Data Disc display processor does not execute the same
display program continuously like the III. processor. The only way to make a DD picture disappear
is to explicitly erase it from the disk by means of a DD program (from either the system or a user).

There is no such thing as a piece of glass on a DD display. Also, you should not include an extra
word at the beginning of 2 DD display program as you do for III display programs; every word of
a DD display program is executed as a display instructior. (The DD instructions are explained in
Appendix 2).

More words of warning:

The DD processor executes your'dispiay program directly from your core image. No address
relocation is done; thus jumps will not work correctly since their destination addresses are taken as
absolute!

Your Data Disc display 'progfam should end with a HALT instruction; if it does not, the system
will zero the last word of the program to make sure it halts.

Finally, you may do a channel select only to your own main channel or to an extra DD channel
that you own or are permitted to write on. If you have no channel select in the first 10 words of
your DD program, the system will select your main DD channel for you. (On the DD display
processor, only the first channel select in a program will work; so any channel select beyond the first
10 words will be ignored.) In addition, a select of channel 0 will get your main DD channel. Thus
to select the real channel 0, you select channel 40. You see, 40 is non-zero so6 you don’t get your
main channel, but only the low order 5 bits of the channel number are used in the select (since
there are only =32 channels). You can always select channel 40+C and be assured of getting
channel C. However, if you select a channel that you are not allowed to write on, the select is
changed to your own main channel. In all of these cases where the system selects your own main
DD channel for you, it does so by starting the DD processor at a special two word block that
contains a channel select in the first word and a jump to your pregram in the second word. -



4.3 ' Page Printer Manipulation 61
4.3. Page Printer Manlpulation

Your page printer is the part of the monitor that prints text on your display screen. Normally your
entire screen is used by the page printer. However, you may have up to 20 logical pieces of paper,
numbered from 0 to 17 inclusive, to which TTY output and echoing of input may be directed, and
each of these pieces of paper may be placed at any part of the screen. You select the piece of paper
(hereafter abbreviated PP) which Is to be used currently, and all TTY printing and echomg will go
to that PP until you select some other PP. Initially, PP 0 is selected.

PPIOT (0P=702]

- - — - - - -

PPIOT <function>,<argument>

PPIOT is an extended UUQ that uses the AC field to determine which of several page printer
functions is to be executed. The individual functions are described separately below.

PPSEL [0P=782, AC=8] PPIOT 8,

PPSEL <piece of paper number>

The PPSEL UUOQ selects the piece of paper whose number is the effective address of the
instruction. This number should be between 0 and 17, inclusive. Piece of paper number zero is
the one normally selected for you. After you give this UUO, all your TTY printing and echoing
will go to the specified piece of paper. This UUO deactivates all other PPs as if you had done a
PPACT UUO with only this PP specified. See the PPACT UUO below.

PPACT [0P=782, AC=1] PPIOT 1,

PPACT <piece of paper activation map>

The PPACT UUO is used to display selected pieces of paper. The effective address of the
instruction is interpreted as a bit map indicating which pieces of paper are to be displayed. A one
in bit 18+N will cause PP number N to be displayed. Thus bit 18 (400000 bit) of the effective
address is for PP 0, bit 19 (200000 bit) for PP 1, etc.

On the IIIs any PPs turned off by this UUO will disappear. However, on the Data Discs those
PPs will not disappear; you must erase them explicitly if you no longer want them displayed.






4.3 : Page Printer Manipulation 63

The information returned in the table is indicated below, where PP means piece of paper and PG
means piece of glass. To get the same information for some other job, use the PPSPY UUO (see

page 64).
Words Value

0 <POG activation bits>,<PP activation bits>
These are in PGACT and PPACT formats. See these two UUOQ:s.

1 <number of the currently selected PP>

2 Bit 0 (400000,,0 bit) is 1 if the Data Disc page color is green on black.
Bit 1 (200000,0 bit) is 1 if your screen has been erased by an escape
command since you last gave this UUQ.

Bit 2 (100000,,0 bit) is 1 if you are on a Data Disc display.
Bits 18:35 (the 0,777777 bits) hold your line editor Y-position in
LEYPOS format. See the LEYPOS UUO below. '

3:22 <Y-position>, <G = 1000 + L>
' There is one word here for each PP; in word 3 is the status for PP 0,
word 4 for PP I, etc. The <Y-position> is in DPYPOS format, G
means number of glitches, and L means lines per glitch. See the
DPYPOS and DPYSIZ UUOQOs above.

23 Bit 0 (400000,,0 bit) is 1 if the size of the currently selected PP was last
set by keyboard command rather than by UUO.
Bit 1(200000,0 bit) is the same for the Y-position of the current PP.
Bit 2 (100000,0 bit) is the same for the line hold count.
Bit 3 (40000,,0 bit) is the same for the glitch hold cqunt.
Bits 9:17 (777,,0 bits) have the actual line hold count.
Bits 18:26 (0,,777000 bits) have the actual glitch hold count.
Zero in either of these hold counts means that that hold count is not
being used.
Bits 27:35 (0,777 bits) hold the character (mcludlng control bits) that
activated the last line re-edited with a control-CR or with a PTLOAD
UUO (see page 55).

LEYPOS [OP=7082, AC=B] PPIOT 6,

LEYPOS <Y-position for line editors

The LEYPOS UUO sets the Y-position of your line editor to that specified by the effective address
of the instruction, which is interpreted in DPYPOS format (+1000 is top of screen, -1000 is bottom).
A Y-position of zero does not mean the middle of the screen, but instead means return the line
editor to the bottom of your page printer (its normal location).






4.4 Running Display Programs 65

UPGIOT [0P=703]

UPGIOT <piece of glass numbers>,ADR

ADR: <flags>,,<address of display program>
<length of display program in words>
<transfer-in-progress flay, if bit B in ADR s on>
<address of low order |ine command, if bit 1 in ADR is on>

The UPGIOT UUO (also known as DPYOUT) causes a display program to be run. If you are on
a Data Disc, the program is assumed to be a Data Disc display program and thus is run on the
Data Disc display processor. If you are on a III terminal, the program is run on the III display
processor. If you are on a pseudo-teletype (PTY) which is owned either directly or indirectly (that
is, through a chain of PTYs) by a job running on a display, then the program is run on that
display, whether it be III or Data Disc.

If the display program is to be run on a I, the AC field of the instruction indicates which piece of
glass the program is to be run as. If the program is intended for a Data Disc display, the AC field
is ignored. '

The address field of this UUO points to a data block, of which the first word contains the address
of the display program that is to be run and the second word contains the program’s length in
words. .

For Data Disc programs there are some other optional parameters which you may specify. If bit 0
(400000,0 bit) of the word at ADR is on, then the display program is run in overlapped mode.
This means the UUO will return without waiting for the display program to finish. (However, it
will wait for any previous DD program to finish.) In this mode the word at ADR+2 is set hon-zero
while the program is being sent to the DD processor and is set to zero when the program has
finished. Thus you can test to see if the program has completed; you shouid not change any part of
the display program until ADR+2 has been set to zero. Also, if you indicate a DD program length
of zero in ADR+1, no program will be run at all, but the UUO will not return until any previous
DD program has finished,

If bit 1 (200000,0 bit) at ADR is on, the display program is run in double field mode. This is
useful for writing text on a Data Disc channel. Normally you have to send text to the DD
processor twice, once for each of the two tracks that make up the DD channel. In these two passes,
you would indicate two line addresses that are the same except in the low order bit position. In
double field mode, the system sends the program to the DD processor twice, once with the low order
bit of the line address select set to zero and once with it set to one. The original value of this bit
when you give the UUQ is irrelevant and its final value is unspecified. The low order line address
select must occur as the third command in the word pointed to by ADR+3. This feature will not
work properly if you have more than one line address select in your DD program.

For details on the format of a display program, see Section 4.1 for IIIs and Section 4.2 for Data
Discs. For descriptions of the instructions for the two display processors, see Appendix 1 and
Appendix 2.



66 Dispiay Output 4.4

PGIOT (0P=715])

PGIOT <function>,<argument>

The PGIOT UUO is an extended UUO that uses the AC field to determine which of several
display functions is to be executed. The individual functions are described separately below. Of
these, the PGSEL, PGACT, and PGCLR UUOs are meanlngt‘ul only for IIIs and are no-ops when
given on Data Discs.

PGSEL (OP=715, AC=8] PGIOT 8,

PGSEL <piece of glass number>

The PGSEL UUO causes the piece of glass whose number is the effective address of the UUO to
be seiected. This means that the UPGMVM and UPGMVE UUOs (see page 67) will refer to
this piece of glass until the next PGSEL .is given.

PGACT [0P-715. AC=1] PGIOT 1,

-------------------- - o s on o e om0 > O D o > - o > O - -

PGACT <plcce of glaes activation map>

The PGACT UUO s used to select which pieces of glass are to be displayed. The effective
address of this UUOQ is interpreted as a bit map; a one in bit 18+P will cause piece of glass number
P to be displayed, and a zero will cause that piece of giass to be invisible.

PGCLR (OP«715, AC=2] PGIOT 2,

The PGCLR UUO causes all of your pieces of glass to be cleared. This means that the system free
storage that was allocated for these PGs is freed and whatever was displayed by them disappears
never to be seen again. This UUO does not affect your page printer at all.









Bits Qctal
28:29 0,300
20.25 0,77

0 400000,,0
1 200000,,0

After execution of this UUO (except for a release all channels or a get any channel failure), the AC

Extra Data Disc Channels

Meanings of bits in a Data Disc channel request

Operation.
B8 = release channel 2 = get status
1 = get channel 3 = set status

A get channel will fail if the requested channel is
unavailable. A set status will fail if the channel
doesn'’t belong to you. These two commands skip on
success; otherwise, the direct return is taken.

Channel number. Values 0 through 37 specify a
particular DD channel. In a get channel request, the
value 77 specifies any channel. In a get status or set
status, 77 means your main channel. In a release
channel, 17 releases all channels assigned to the job.
Other values for the channel number are undefined.

Privacy flag. A one in this bit means no one else can
look at this channel.

Write permission. A one in this bit means that other

jobs may write on this channel.

69

contains the channel number in the right half, the privacy and write permission status in bits 0

and 1, plus the channel use in bits 10:17 (377,0 bits). A value of zero in this use field means the

channel is free; | through 77 mean that it is an extra channel belonging to that job number; 100
through 177 mean that it is the main channel for the TTY line whose number is 52 less than this

number; 200 through 377 are for special channels, such as the one used by the system to advertise

free DD terminals.

The RESET UUO (see page 126) releases all of your extra DD channels.

Example: To request a private channel that only your job can write on.

MOVE  AC, (4806088,,177]

DOCHAN AC,
JRST  LOSE
WIN: 3o'c

If you get to WIN, the channel number will be in the right half of AC and the left half will have

the sign bit on with your job number in bits 10:17.






4.6 The Video Switch 71

channel map, as described above; the meaning of the <switch request> in the left half is explained
below. If you specify a TTY lne that is not a TV monitor, then -1 is returned in the AC.
Qtherwise, the new map for the mdicated monitor is returned in AC.

Bits Octal Meanings of bits in a video switch request

11:17 1770 TTY line number of the DD display to be switched.
Zero means your own TTY line. Other lines
associated with TV monitors (26 through 117) may be
switched only if they have no job logged in.

9 400,,0 Shacdow line map. If this bit is on, then the UUO
will refer to one of the six unused TV lines rather
than to a normal TV monitor. The number in bits
11:17 should be in the range 0:5 and specifies which
one of these six lines is to be mapped or examined.

0 400000,,0 Temporary/permanent flag. Zero means make a
: temporary change; one means make a permanent
change. '
6:8 7000,,0 Operation.

0 = Get map. The current channel map of the
indicated line is returned in the AC, and the
direct return (no skip) is always taken.

I = Set channel map from word at ADR. This
operation skips if it is entirely successful.

2 = Add specified channels. Bits 0:31 of the map at
ADR are "or"ed into the current map. If bits
33:35 of the map at ADR are not all zero, they
replace the corresponding bits in the current
map. This operation skips oni complete success.

3 = Delete channels (inverse of 2). The
complements of bits 0:31 are "and"ed with the
old map. If bits 33:35 in the new map are not
all zero, this field is cleared to zero, which
selects the null TV channel. This operation
can fail only on a busy line number. It skips
on success.

4 = Reset map. In temporary mode (per bit 0), reset
the map to the permanent one. In permanent
mode, reset the map to the main channel alone.
This operation can fail only on a busy line
number. It skips on success.

5:7 = Undefined.

An attempt to map someone else’s private channel to any display will fail. However, each channel
being mapped is considered separately, and a mapping operation 'may successfully map some
channels while failing on others. If the mapping operation fails on at least one channel, then the






4.7 The Audio Switch 73

permitted to inhibit beeping on his display’s speaker. Furthermore, the personnel paging system of
the labaratory uses the audio switch to make paging announcements over users’ speakers, and these
pages may also interrupt a user's selected sound source. Thus the following system has been
implemented to allow each user to decide what will interrupt his audio switch connections.

Four possible dispositions are allowed for handling audio interruptions; for each connection, one of
these is selected for paging interruptions and one for beep interruptions:.

INTERRUPT

OON’ T INTERRUPT

INTERRUPT WITH EXTENDED DURATION
DELAY BEEP

Interrupt means that if an interruption comes along, the connection will be momentarily changed
until the beep or page ends.

Don’t interrupt means ignore all interruptions; no change will be made even momentarily to the
audio switch connection.

Interrupt with extended duration means allow interruptions to take place but extend the duration of
the connection. This is meaningful only for temporary connections.

Delay beep means postpone any beep interruption until the expiration of the connection. This
again applies only to temporary connections, and further is not a defined disposition for paging
interruptions.

ADSMAP {OP=047, ADR=400110] CALL| 408118

B R e b e e e e Y

MOVE AC, [<audio siritch connection>)
ADSHMAP AC,

The ADSMAP UUO is used to connect a specific sound source to a display’s speaker or to find out
the status of a display's audio switch connection. The job giving this UUO must be attached to a
display terminal for this UUO to do anything; also it is not possible for a job to affect the audio
switch connection for any display but its own.

If AC contains -1, the audio switch connection is reset to the current permanent connection.
Otherwise, the value in AC specifies either the temporary or permanent connection and indicates
whether that connection is to be changed or just its status returned. If a temporary connection is to
e madle, the duration of the new temporary connection must be given in the right half of the AC;
this duration is in units of 1/4 second. The various fields of AC are interpreted as follows:












5, Upper Segments 77

SECTION 5

UPPER SEGMENTS

Programs may be split into two discontiguous parts. The first part goes from user address zero to
an address called the job’s protection constant. This address, whose low order 10 bits are always
1777, is contained in the word at JOBREL in the job data area (see Appendix 4). The second
part, if it exists, starts at user address 400000 and goes up to the program'’s second protection
constant, which is kept in the right half of JOBHRL in the job data area. This second part of a
program, when it exists, is called the upper segment, second segment or high segment of that job.
The first part is usually called the lower segment and is the controlling job. An upper segment
cannot execute code except when attached to a lower segment.

An upper segment can be shared by several jobs; this saves core by eliminating all but one copy of
the same piece of code. However, it uses up an extra job siot because each upper segment is given
a separate job number.

Since upper segments are sometimes shared, they can be write protected to prevent any job from
changing the code and/or data in a segment, which, after all, may be part of another job. Write
protection is just an option, however, and shared segments are not required to be protected. The
SETUWP UUO is used to change an upper segment’s write protection status. The sign bit of
JOBHRL will be on when your upper segment is write protected.

Another use of upper segments involves having several of them which are attached by a lower
segment one at a time and detached when the next one is needed. For a job to be run, it must be
entirely in core, including its attached upper segment, if any.

Upper segments have a protection scheme similar to that used on the disk. Each upper segment
has a nine bit protection key which indicates who may use that segment and how they may use it.
The nine bits are in three groups of three bits each. The first group tells what the creator PPN
may do with the segment, the second group tells what others with the same project as the creator
may do, and the third group tells what anyone else may do. Within each group, the first bit is
unused, the second bit is read protection and the third bit is status change protection. Read
protection prevents you from attaching to the segment; status change protection prevents you from
changing the name, write protection status, core size, or protection of the segment.

5.1 Making and Killing Segments

There are three ways you can become attached to an upper segment. You can run an SSAVEd
program (i.e, one that was saved with its upper segment), in which case you will get the segment
that was attached to the program when it was saved; or you can attach to an already existing upper
segment; Or you can create a new upper segment. :



78 Upper Segments 5.1

Every job, including upper segments, has a list of credentials. These include the job name, the
pro ject-programmer name of the source dump file of the current program, the physical and logical
names of the device the dump file was on, the creation date of the dump file and the protection.
The protection for a lower segment will always be 000 unless it has been changed by the SETCRD
UUO (see page 88), which can also be used to set the protection and cyeation date for an upper
segment. When you cause a new upper segment to be created, its credentials are copied from your
job. For a given job, all of the credentials except the protection are set from their values for the
dump file which holds the current program. If the dump file was SSAVEd, then the upper segment
will be initialized to the same protection it had when it was saved. The lower segment is set up
with protection 000.

Let me explain this a bit further with some examples. If you run a system program, your job name
will be the file name of the dump file on [1,2], your job PPN (not to be confused with your
logged-in PPN) will be 1,3, your job physical device name will be DSK, your logical device name
will probably be null, and your job creation date will be the creation date of the dump file. If you
run a user program from, say, the disk area [ABC,DEF], then all this stuff will be the same except
that your job PPN will be ABC,DEF.

The LINKUP UUO is used to search the system for an upper segment with credentials that match
those of your job. The SETPRO UUOQ (see page 81) can be used to set an upper segment’s
protection. The SETCRD UUOQ (see page 88) can be used to set the creation date and protection
either for a lower segment or for an upper segment.

When you are finished with an upper segment, you should kill it. This means that it will go away
(g1ving up its job number) unless someone else is still using it.

The following UUOs are used to create, kill, attach and detach upper segments and to change the
size of an upper segment.

LINKUP [OP=B47, ADR=400623]1 CALLI 480823

L INKUP

<errar return>

The LINKUP UUO attempts to find an already existing upper segment with the same job name,
date of creation, and other credentials as your job has. (The list of credentials required for an
upper segment to match your job is given above) If such an upper segment is found which is not
protected from you, it is attached to your job and the skip return is taken. If there is mo such
upper segment, you get the direct (error) return. Any segment you were attached to when you gave
this UUQ is killed before all this happens.



Making and Killing Segments 79

S.ﬂ

REMAP (OP=847, ADR=37] CALLI 37

MOVE AC, [<urite-protect flag>,,<highest address in |ower>]
REMAP AC,

<error return>

The REMAP UUO causes your core image to be broken into two segments. The address
contained in the AC right is taken as the address of the last word to be in the lower segment. The
next word becomes the first word in the upper segment and its address becomes 400000. If the sign
bit of the AC is on when this UUO is given, the upper segment will be write protected.

Before your core image is broken, an automatic LINKUP is attempted in order to find an already
existing upper segment with your credentials; see the LINKUP UUO above. If one is found, the
part of your core image that would otherwise have become your upper segment is discarded and
your core size reduced appropriately before attaching to the already existing upper segment.

If this UUQ is successful, the skip return is taken and the job number of your upper segment is
returned in AC. If the automatic LINKUP fails and there are no more job numbers left to create
a high segment under, or if there is something illegal in your specifications, the direct (error) return
is taken.

Any upper segment you are attached to when you give the REMAP UUO is killed before anything
else is done.

CORE?2 (0P=847, ADR=400015] CALL1 488815

MOVEIl AC,<highest upper segment address desired>
COREZ AC,
<error return>

The CORE2 UUOQ is used to change the size of your upper segment. The address in the AC is
interpreted as the highest address you want in your upper segment; this address, if non-zero, is
ORed with 1777 and the 400000 bit is ignored. If the AC contains zero, any upper segment you
have will be killed (unless it is protected from you, in which case it will simply be detached from
your job) and the skip return will be taken.

If the AC contains a non-zero number and you do not have an upper segment, an upper segment
of the specified size will be created for you. If you already have an upper segment, its size is
ad justed to that specified by the number in the AC. If this UUO is successful, the skip return is
taken. If there is not enough core to grant your request, or if the segment is protected from you,
the direct (error) return is taken. Unless you are killing your upper segment (with a zero in AC),
this UUO returns with the AC containing the total number of 1K blocks available to a single user
program, counting both upper and lower segments.






Getting/Setting Segment Status 81

o
N

5.2 Getting/Setting Segment Status

The following UUQOs are used to find out and/or change the protection, name and other
information associated with an upper segment.

SETUWP (OP=R47, ADR=36] CALLI 36

MOVET AC,<zero for unprotect, non-zero for protect>

SETUWP AC,
<protection violation return>

The SETUWP UUO is used to write protect or unprotect your attached upper segment. If AC
contains zero, the segment becomes unprotected; otherwise it becomes protected. If this UUO is
successful, the skip return is taken. If the segment is protected from you, then you get the direct
(error) return. If you have no upper segment, you always get the skip (success) return. The sign
bit of JOBHRL in the job data area is a one if your upper segment is write protected.

UNPURE [OP=847, ADR=408102] CALLI 488182

UNPURE

<error return>

The UNPURE UUO is used to unprotect your upper segment. If you are sharing a
write-protected upper segment with other users, this UUO will create an unprotected copy of that
upper segment (assigning it a new job number), detach you from the old segment and attach you to
this new segment. If you are the sole user of a write-protected upper segment, this UUO will
simply unprotect that segment. The skip return will be taken upan success, at which time your
upper segment will not be write protected. If there are no job numbers available for a copy of
your upper segment, or if you cannot be granted enough core, the direct (error) return will be
taken. If you have no upper segment, or if your upper segment is not write protected, you always
get the skip (success) return. '

SETPRO {0P=047, ADR=400020) CALL1 400028

- o o o - = - - - - - - - - - -

MOVE  AC, [<Bits 8:8 = neu prot key; bits 38:35 = job no.>)
SETPRO AC,

<error return>

The SETPRO UUO can be used to change the protection key of any upper segment not protected
from you. Bits 30:35 (0,77 bits) in the AC should contain the job number of -the upper segment
whose protection you wish to change, where zero means your own attached upper segment; bits 0:8





















88 Information 6.2

SETNAM [OP=847, ADR=43] CALLI 43

- - e e b = = o~ —— = —— - - = - -

MOVE  AC, [<sixbit job name>]
SETNAM AC,

The SETNAM UUO is used to change your job name to that given in the AC. Any job name is
legal.

SETCRD (OP=B47, ADR«4080873] CALLI 488873

MOVE  AC, [<new protection and creation date>]
SETCRD AC,

The SETCRD UUQ is used to set the protection and creation date of either your lower segment or
your upper segment. The new protection and creation date are taken from the AC specified in the
UUO. If any of bits 0, 3 and 6 (444000,,0 bits) are ones, the protection and creation date of your
upper segment are set, otherwise the protection and creation date of your lower are set. Bits 0:8
specify the protection, bits 13:23 the time of creation (in minutes after midnight) and bits 24:35 the
date of creation (in system date format). Bits 0, 3 and 6 (444000,0 bits) are turned off before the
protection is stored. If bits 13:35 are all zero, the current time and date will be used. The
protection and creation date are used mainly in conjunction with linking to or creating an upper
segment; see Section 5 on upper segments.

SETPRV [0P=847, ADR=480866] CALLI 488066

MOVE AC,<privilege bits you want>
SETPRVY AC,

The SETPRV UUQ is used to find out and/or change your privileges. AC should contain either
-1 or the privilege bits you want. If AC contains -1, then your privileges will not be changed.
Otherwise, an attempt will be made to set your privilege bits to those indicated in AC. New
privilege bits will be granted only if either 1) you currently have the privilege privilege (bit 0--the
400000,,0 bit represents the privilege privilege) or 2) JBTSTS indicates that you are an accounting
program with JACCT set. However, the system will be glad to turn off the bits for any privileges
you wish to surrender. Under any circumstances, the resultant settings of your privilege bits will be
returned in AC. For the meanings of the various privilege bits, or to request privileges, see any
system programmer.



6.2 Job Information 89

SLEVEL (OP=847, ADR=488044) CALLI 408844

MOVE! AC,<job number>
SLEVEL AC,

The SLEVEL UUQ is used to find out a job's current service level. AC should contain the
number of the job whose service level you want to know; a zero job number means your own job.
The service level (in percent) of the job indicated will be returned in the left half of AC; the right
half will contain the job number. If you specify an illegal job number, zero will be returned in
AC.

RLEVEL [OP=847, ADR=480054] CALLI 4680854

MOVEI AC, <programmer name>
RLEVEL AC,

The RLEVEL UUO is used to find out how much service level is reserved for the current hour by
a particular programmer name. The programmer name should be in the right half of AC; the
service level (in percent) is returned in the left half of AC. The right half of AC is unchanged by
this UUQO unless the reserved service level is zero, in which case zero is returned in the whole AC.
The original value of AG left is ignored by this UUO.

6.3 Looking at the Monitor

Here are some UUOs used to examine various parts of the monitor.

NAMEIN (OP=047, ADR=488043) CALLI 488043

MOVE AC, (<sixbit job name>]
NAMEIN AC,
<error return - code in AC>

The NAMEIN UUO is used to determine if there are any jobs in the system with a particular job
nname. AC should contain the job name you are interested in. If there is exactly one job with the
given name, the skip (success) return is taken and the job number of the job with that name is
returned in the AC. Otherwise, the direct (error) return is taken and a code is returned in AC; a
code of | means that there is no job with the given name, and a code of 3 means that there are two
or more jobs with that name.






6.3 Looking at the Monitor 91

17 1,,0 JWP This upper segment is write protected.
This bit is meaningful only if bit 8 is on,
that is, only if this job is an upper

segment.

20 0,,100000 JLOCK  The job is locked in core by the LOCK
UUO; see page 133.

23 0,,10000 FBINP The job has a fast band transfer in
progress. See Section 10.

24 0,,4000 FBERP The job had an error on the last fast
band transfer. See Section 10.

30:35 0,77 ' Job number of this job's upper segment,
if any; this field Is zero if the job has no
upper.

SWITCH (OP=047, ADR=20] CALL! 20
TR SWITCH AC,

The SWITCH UUQ returns in AC the current setting of the PDP-10 console data switches.

CALLIT (OP=847, ADR=488874) CALL! 480074

= e S e o - — = = = = o = - 4 - S B - . -

MOVE  AC, [<opcode, CALLI number or UUD mnemonic>)
CALLIT AC,

The CALLIT UUQ is used to find out the opcode corresponding to a given UUO mnemonic or to
find out the mnemonic for an opcode or CALLI number. AC should contain the opcode, CALLI
number or sixbit mnemonic of the UUO you are interested in. The result is returned in AC: for
UUO mnemonics, the opcode is returned (i.e, a full 36-bit instruction including relevant AC or
address fields);, for opcodes the most specific sixbit mnemonic is returned (e.g., opcode 051000,,0
returns 'INCHRW?’ and 051040,0 returns 'OUTCHR’), unless bit 17 (1,0 bit) was on originally in
the AC, in which case the generic mnemonic is returned (eg, opcode 051001,0 returns
'TTYUUQ');, for CALLI numbers, the sixbit CALL name is returned (eg., 0,400003 returns
'SPCWGQ’). If the given mnemonic, opcode or CALLI number is undefined, zero is returned.

This UUO works by first checking bits 13:16 (36,0 bits) in the AC. If these bits are all zero, the
argument is assumed to be an opcode; if any of these bits is non-zero, the argument is assumed to
be a sixbit mnemonic. Thus any one- or two-character mnemonic will be mistaken for an opcode;
however all UUO mnemonics are three or more characters. Also, all irrelevant fields in the
argument must be zero to avoid confusion.



92 Information ¥ 6.3

SETPR2 (OP=047, ADR=400052) CALLI 4808052

MOVE  AC, [<prot>,,<reloc>]
SETPR2 AC,
<error return>

(Low order bit of <prot> on means urite protect "upper segment;"
low order bit of <reloc> on means <reloc> is in relative mode.)

The SETPR2 UUQO sets your second protection/relocation register in order to simulate the
possession of an upper segment. There are two purposes for doing this: the first is to allow you to
look at any part of core, particularly at the monitor, efficiently; the second purpose is to enable your
job to address part of your core image as if it were in an upper segment (addresses over 400000)
even though it isn't. The table in Appendix 5 tells where in the monitor you can find various
interesting pieces of system information which you can access by using this UUO.

Note: Any attached upper segment (real or simulated) that you have will be killed when you give
this UUO. See Section 5 on upper segments. Also, both the RESET UUO (see page 126) and the
DETSEG UUOQ (see page 80) undo the effect of SETPR2.

At the time this UUOQ is called, AC right should contain the relocation you wish to simulate and
AC left should contain the protection you wish to simulate as an upper segment. Furthermore, if
the low order bit of AC left (bit 17--the 1,0 bit) is on, your "upper segment” will be write protected;
and if the low order bit of AC right (bit 35--the 0,1 bit) is on, the relocation specified will be
assumed relative to your core image--that is, your own true relocation constant will be added in to
<reloc> before setting the second prot/reloc register. Upon success, this UUO takes the skip return;
if your request specifications are impossible to satisfy, then the direct (error) return is taken.

If you give an absolute <reloc> and you are not privileged, your "upper segment” will automatically
be write protected. Finally, the system will ad just the values you specify in AC to 1K boundaries;
for <reloc> the low order =10 bits (0,1777 bits) will be turned off, and for <prot> the low order =10
bits (1777,0 bits) will be turned on. Thus, a <prot> of 4321 will be made into 5777, and a <reloc>
of 3210 will be made into 2000, with all this happening after the system has taken note of the low
order bits of both AC left and AC right.

Now, if you still don't understand (and even if you do), let me explain further. Suppose you wish
to look at certain locations in the monitor (for whatever reason). You can use this UUQO once and
then do simple MOVEs (or their equivalent) to get the information you want. For instance, if you
would like to put into AC whatever is in the system at EXEC location 220, you can execute the
following sequence of instructions.. '

MOVS1  ACl1,377777 s<reloc> = B, <prot> = 377777
SETPRZ2 ACl, smake the first 128K of core
3 into your "upper segmertt"
HALT thalt on error return: .
f.1él\./E AC, 400228 iget whatever is in EXEC 228

The relative mode use of this UUO allows you to write code as if it were going to run as a second









7/ i Mail System 95

SECTION 7

INTER-JOB MAIL SYSTEM

The inter-job mail system provided by the monitor allows =32 word letters to be passed between
jobs. Each job in the system has a mailbox which can hold exactly one =32 word letter. For a
letter to be sent, the sending job identifies the destination job by either the job number or the
sixbit job mame. This causes the letter to be placed in the mailbox of the destination job, who can
then take the letter out of his own mailbox (i.e, receive the letter) whenever he wants. While a
job's mailbox is full (holding a letter he hasn't read yet), no one can send that job a letter.

Note: The RESET UUO (see page 126) will cause any letter in your mailbox to be thrown away.

MAIL [0P=718]

MAIL <function>,ADR

The MAIL UUO is an extended- UUO that uses the AC field to determine which of several
mail-handling functions is to be executed. Each of these functions is described separately below.
Notice that MAIL is an IOT UUO and hehce cannot be given by a program that is currently in
USER-1IOT mode (which is explained in Appendix 3).

7.1 Sending Mail

T he following two UUQOs allow you to send a letter to any job.

SEND [OP=718, AC=8] TMAIL 8,

SEND ADR
<error return>

ADR: <destination job name or number>
<address of =32 word letter to be sent>

The SEND UUO is used to send a letter to any job in the system. The effective address of the
UUQ should point to a two-word block. The first word of this block should be the job number or
the sixbit job name of the job to which the letter is to be sent. The second word of the block
should contain the address of the =32 word letter.



96 Mail System ' 7.1

If the letter is successfully sent, the skip return is taken. If the destination job already has a letter
in his mailbox (meaning the letter cannot be sent at this time), the direct (error) return is taken. If
there is no job with the name or number you give, you get the system error message NON-EX
JOB NAME OR NUMBER. If there are two or more jobs with the job name you give, you get
the system error message AMBIGUOUS JOB NAME. With either of these last two errors, your
program will be stopped and you will be permitted to type CONTINUE, which will cause this
UUO to be tried again.

SKPSEN [OP=718, AC=5]1 MAIL S,

SKPSEN ADR

<return for destination mailbox full>

<return for letter successfully sent>

<return for non ex job name or number, or ambiguous name>

ADR: <job name or number> _
<address of =32 word letter to be sent>

The SKPSEN UUQ is used to send a letter to another job just as the SEND UUOQO (see above)
does except that there is an extra return, which is taken when there is no job with the given name
or number or when there are two or more jobs with the given name. Thus, there are three
possible returns that this UUQO can take. The direct return (no skip) is taken if the letter cannot be
sent because the addressee already has a letter in his mailbox. The skip return is taken if the letter
is successfully sent. The- double skip return is taken if there is no job with the given name or
number or if there are two or more jobs with the given name.

7.2 Receiving Mail

The following two UUOs allow you to receive mail sent to you, that is, to have a letter removed
from your mailbox and deposited in your core image.

WRCV {OP=718, AC=1] mMAIL .1,

- o " = " " - = - = - = = - = - - Y= = = =~ = = = =

WRCV AOR |
ADR: <block =32 words long to receive a letters>
The WRCY UUO takes the letter, if any, that is in your mailbox and places it in the =32 word

block specified by the effective address of the UUO. If there is no letter in your mailbox, this
UUO waits until someone sends you one and then gives it to you.



2 Receiving Mail 97

SRCV (OP=718, AC=2] MAIL 2,

SRCV ADR
<return if no letter is in your mailbox>
<success return>

ADR: <hlock =32 words long to receive a letter>

The SRCV UUO checks to see if there is a letter in your mailbox. If there is one, it is returned to
you in the =32 word block pointed to by the effective address (ADR) of this UUO and the skip
return is taken. If there is no letter in your mailbox, the direct return is taken and the block at
ADR is untouched.

7.3 Peeking at Mailboxes

The following two UUOs allow you to find out whether a job has a letter in its mailbox.

SKPME (0P=718, AC=3]1 MAIL 3,

e e - am o e - - - - -

SKPME
<return for your mailbox empty>

The SKPME UUO tells you whether or not there is a letter in your mailbox. If there is a letter
there, the'skip return is taken; if not, the direct return is taken.

SKPHIM {OP=718, AC=4] MAIL 4,

SKPHIM ADR
<return for his mailbox empty>

ADR: <name or number of job you are interested in>

The SKPHIM UUO is used to find out if a given job has a letter in his mailbox. The job
number or sixbit job name of the job of interest should be in the word pointed to by the effective
address of this UUO. If that job has a letter in his mailbox, the skip return is taken; if his
mailbox is empty, the direct return is taken. If there is no job with the name or number given, you
will get the system error message NON-EX JOB NAME OR NUMBER.. If there are two or more
jobs with the job name given, then you will get the system error message AMBIGUOUS JOB
NAME. If either of these two errors occurs, your program will be stopped and you will be
permitted to type CONTINUE, which will cause this UUO to be tried again.






8. Spacewar Mode 99

SECTION 8

SPACEWAR MODE

in a timesharing system the available CPU time must be split up among all the programs that are
trying to run. Any one program will be run only for a short period of time, then stopped for a
while to let other programs run, then run a little more, etc. The intervals between, and durations
of, the times when a program is ailowed to run are generally irregular and depend on the system
load. Certain programs require fairly regular service (in the form of CPU time allocated) in order
to operate meaningfully. The system provides spacewar mode to assure regular service to such
Programs.

To use spacewar mode, a job teils the system the starting address of the spacewar module (process)
and how often and on which processor(s) (PDP-10, PDP-6) it should be run. A spacewar module is
a separate process from your job’s main process (the one that initiates the spacewar module) but
runs in the same core image. The spacewar module will be restarted at a fixed interval after it last
stopped; you specify this interval when you initiate the module. A spacewar process cannot quite
be guaranteed of running every so often because, for example, another spacewar process on the
same processor could have conflicting time demands. After you have initiated a spacewar module,
your job’s main process can continue doing whatever it wants. You are allowed to have one
spacewar module active on each processor; i.., you can have one on the PDP-10 and another one
on the PDP-6.

While you have a spacewar module active, your job usually will not be swapped out although it
may be shuffled to a different place in core. Before your job is either shuffied or swapped out, your
spacewar module will be warned that it is not going to be run for a while; so it can take whatever
]precautions are necessary to see that nothing bad happens while it is away.

Each time a spacewar process is started up, it is allowed to run until either it signals by the
DISMIS UUO (see page 102) that it is done or it times out. Normally a spacewar process will time
out if it runs for more that half a second during a single activation. If you set the
timeout-suppression bit (see the SPCWGO UUO below) for a spacewar process, then that process
will never time out. However, running for very long (like more than a few milliseconds) will cause
system performance to deteriorate noticeably, especially if the process is running on the PDP-10! In
fact, a spacewar module running on either processor for more than about half a second will cause
the other processor to think that the first processor is dead.

If a spacewar process makes an illegal or non-existent memory reference, or if it gets a push-down
overflow, then the message SPACEWAR LOSSAGE will be typed on the job’s terminal and both
the spacewar process and the main process will be stopped. If you try to initiate a spacewar process
when one is already active, or if you indicate that a spacewar process shouid be run on the PDP-6
and the PDP-6 is not running, or if one of your spacewar processes times out, then you will get an
error message and your spacewar processes will be killed.

Spacewar modules are started in IOT-USER mode; this means that operation codes 700:777 are
machine 1/O instructions rather then UUOs. Thus a spacewar process can do its own I/O directly;



100  Spacewar Mode 8.

however, it should make sure that its use of 1/O devices will not conflict with the system. For more
information on 10T-USER mode, see its description in Appendix 3.

Spacewar modules running on the PDP-6 can never do UUQOs. Any attempt by such a process to
do a UUO wili result in termination of that run (as by DISMIS). Spacewar modules running on
the PDP-10 are allowed to do certain UUOs. However, a UUO that attempts to reference any
accumulators will never access the correct set of ACs (whether the AC is referenced as an AC or as
a memory location); and a UUO that returns results in the ACs may in fact return the results in
the ACs of the job's main process (if the main pracess is at UUO level), thus clobbering whatever
the main process had in its AC(s)! Furthermore, any UUO that must wait for something to happen
will not work from a spacewar module. Finally, some illegal UUOs will cause the SPACEW AR
LOSSAGE message to be printed and the spacewar modules to be killed. With those warnings in
mind, note that spacewar modules on the PDP-10 can in general do any of the 1OT UUOs, that is,
those with opcodes over 700 (including the display UUOs) but not until the process gets itself out
of IOT-USER mode" See the preceding paragraph.

Each time a spacewar process is started up, the system loads up several accumulators with data that
might be needed by the spacewar module. The ACs set up and the data they contain are listed
below.

AC Contents

I The current value of the spacewar buttons. See the SPWBUT UUO
on page 134.

2 Your current protection-relocation constant. Your protection constant
is in the left half and your relocation constant is in the right half of
this AC.

s A warning value. This AC usually contains zero but is set up with -]

if this is the last time your spacewar process will be run for a while
(because your job is being swapped out or shuffled). The next time
your spacewar module runs, this AC will contain the number of 60ths
of a second for which your spacewar module was suspended.

4 The number of the processor this spacewar module is running on.
This number is 1 for the PDP-10 and 2 for the PDP-6.

5 A flag indicating the status of the processor that this spacewar process
is not running on. This flag is zero if that processor is running
(normal state) and -1 if that processor is dead.

6 Your job status word. See the JBTSTS UUO on page 90. If the run
bit (bit 0--the 400000,0 bit) of this word is zero, then your main
process has stopped for some reason; for instance, control-C may have
been typed.

If you initiate a spacewar process with the time between runs set to zero, then the process will be
run only once.



8. . Spacewar Made 101

Whenever you do a RESET (see page 126), any spacewar modules active will be killed. The EXIT
UUO (see page 125) will also kill any spacewar modules you have. Finally, the SPCWAR UUO
can also be used to kill your spacewar modules; see below.

8.1 Spacewar UUOs

Here are the UUOs used to initiate and to kill spacewar processes and to terminate spacewar
activations.

SPCWAR [0P=043]

SPCWAR <number of ticks betueen startups>,<starting address>

The SPCWAR UUQ initiates a spacewar process on the PDP-6. If the PDP-6 is not running, the
spacewar process will be run on the PDP-10 instead. The effective address of the UUO is the
process’ starting address. The number of 60ths of a second between startups is specified by the AC
field of the instruction (possible values of 0:17). If the AC field is zero, then the spacewar process
will be run only once. Timeout suppression is not possible with the SPCWAR UUO; any process
started with this UUQ will time cut if it runs for more than half a second during a single
activation. -

If the effective address of this UUO is 636367 (that's 'SSW’ in sixbit) and the AC field is zero, then
instead of a spacewar module being initiated, all your spacewar modules will be kiiled. This is the
normal way to kill spacewar modules. The RESET UUO (see page 126) and all flavors of the
EXIT UUO (see page 125) will also kill your spacewar modules.

SPCWGO [0P=847, ADR=482083] CALLI 488983

MOVE AC, [<Bits 9:1 (600008, ,8 bits) = processors;
bitse 2:3 (1400088,,0 bitsl = timeout suppression;
bits 14:17 (800817,,8 bits) = startup interval;
bits 18:35 (B8,,777777 bits) = starting address>]
SPCWGO AC, :

The SPCWGO UUQ is used to initiate a spacewar process on either the PDP-6 or the PDP-10 or
both. The starting address of the spacewar module should be in the right half of the AC. Bits
14:17 (17,0 bits) of the AC should contain the time in 60ths of a second between startups of the
spacewar module. A zero time means run the spacewar process only once and then kill it. Bits 0:1
(600000,,0 bits) determine which processor(s) will run this module. If bit 0 (400000,0 bit) is a one,
then the module will be run on the PDP-10; if bit 1 (200000,0 bit) is a one, the module will be run
on the PDP-6. If both bits 0 and | are one, then both processors will run this module, with each






User Interrupts 103

&

SECTION 9

USER INTERRUPTS

The user interrupt system allows a program to take action upon the occurrence of any of various
special conditions, without the program having to test continuously for these conditions. There are
two versions of interrupts available--the old style and the new style. The main differences between
the two are: 1) while you are processing an old style interrupt you can still be interrupted, which
can cause all sorts of trouble, but while you are processing a new style interrupt you cannot receive
another interrupt until you dismiss the current one; 2) the only interrupts you can receive with the
old system are processor interrupts such as push-down overflow, illegal memory reference and
arithmetic overflow. You can also enable for clock interrupts with the old system, but only clock
ticks that occur while you are actually running will be seen by your program. All interrupts are
possible with the new system; and clock interrupts will happen whether or not you are actuafly
running at the time. Before going into more differences between the old and new style interrupts,. I
shall explain the basics of the interrupt system and the features that are the same for both styles.

A user program indicates that it wants to use the interrupt system by enabling itself for the
particular interrupts that it is interested in. Interrupt conditions that are not enabled for will be
handled by the system. For instance, if you get a push-down overflow, and if you are not enabled
for push-down overflow interrupts, then you will get the system error message PDL OV. If, on the
other hand, you are enabled for this interrupt, then you will get an interrupt indicating that you
had a push-down overflow. Some interrupt conditions are lgnored by the system unless you are
enabled for them.

When an interrupt that you are enabled for does occur, your program is stopped, the program
counter (PC) and PC flags are saved in JOBTPC in your job data area (see Appendix 4), the
cause of the interrupt is saved in JOBCNI and your interrupt handler is started at the address
contained in JOBAPR.

The PC that you get in JOBTPC generally points to the next instruction that your main process
would otherwise have executed if the interrupt had not occurred. However, there are certain
conditions under which the value of this PC is not quite obvious.

First of all, if you were executing a UUO (and hence your PC was in monitor mode while
executing some system code for that UUQ), then the PC saved in JOBTPC will not be your real
(monitor mode) PC that you had at the time of the interrupt; instead JOBTPC will contain the
location of the UUQ call in your core image, and the user-made bit (bit 5--the 10000,,0 bit) in the
left half of JOBTPC will be off to indicate this condition.

Secondly, when you receive a processor interrupt (either old or new style) such as illegal memory
reference, the PC saved in JOBTPC will point to the instruction that caused the interrupt.
However, if you jump to an illegal location, then the PC returned with the iilegal memory reference
interrupt will point to the illegal location. For instance, on an AOJA 1,777777, the AC will have
been incremented and the PC changed to 777777 before the ill mem ref occurs, so the PC stored in
this case would be 777777.



104  User Interrupts 9.

Finally, if an interrupt occurs in the middle of an ILDB or an IDPB instruction after the byte
pointer has been incremented but before the byte has been moved, then JOBTPC will-point to the
byte instruction and the byte-increment suppression flag (bit 4--the 20000,0 bit), will be on in the
left half of JOBTPC. Thus the byte pointer will not be incremented again when (and if) the
instruction is resumed.

Each condition for which an interrupt can occur is represented by a specific bit. You enable a
given interrupt by setting to one the bit corresponding to that condition; this can be done with
various UUOs that will be described in detail later. When you get an interrupt, the bit
representing the cause of the interrupt is given to you in the word at JOBCNIL For new style
interrupts this word will have exactly one bit on. With old style interrupts there may be some
extraneous bits on that do not represent old style interrupts. The word returned in this case is the
CONI word from the processor, and the extra bits currently set in this word are the 0,6043 bits.

The interrupt conditions represented by the different bits are listed below. The bits marked with
asterisks (:’s) represent the only conditions for which you can receive interrupts under the old style
interrupt system. You are not allowed to enable a given interrupt condmon for both old and new
style interrupts at the same time.

Note: The RESET UUO (see page 126) clears all of your interrupt enablings.

Bits Octal Name Interrupt conditions
0 400000,,0 INTSWW  Your job is about to be swapped out.
] - 200000,,0 INTSWD Your job has just been swapped back in.

If you enable for both INTSWW and
INTSWD, then you will receive these two
interrupts as a pair in the expected order
every time your job is swapped.

2 160000,,0 INTSHW Your job is abeut to be shuffled.
3 40000,,0 INTSHD Your job has just been shuffied.
4 20000,0 INTTTY Your user-level job would be activated.

by TTY input if it were waiting for it.
When you are enabled for this interrupt,
you will be interrupted every time either
a character or a line is typed in,
depending on whether you are in
character mode or line mode. As long as
you do not ask for more than there is in
the TTY input buffer, you may read
from the terminal at interrupt level.

5 10000,0° INTPTO A PTY job has just gone into a wait
state waiting for you to send it characters.









9.1 y New Style Interrupts 107
9.1 New Style Interrupts

The new interrupt system is highly recommended over the old system; thus I will explain the new
system first. The bit representations of the particular interrupts are the same in both systems
(except for clock interrupts), but with the new system there are more interrupts which you can
enable.

When you receive a new style interrupt, all sorts of things happen. First of all, as usual your PC
and flags are saved in JOBTPC and the bit representing the cause of the interrupt is stored in
JOBCNIL. Unless you were executing a UUO at the time of the interrupt, the PC word in
JOBTPC will be perfectly accurate. If, however, you were executing a UUQ, then the PC saved in
JOBTPC is really the address in your core image where the UUO in progress is located; in this
case, the user-mocdle bit (bit 5--the 10000,0 bit) in JOBTPC will be off. Thus the user-mode bit in
JOBTPC will tell you if a UUO was in progress when the interrupt occurred.

With a new style interrupt, your accumulators are saved. Then, before your interrupt routine is
started, certain ACs are loaded up with data as listed in the table below. Your user-level ACs are
saved in locations 20:37 of your core image unless you were executing a 'UUO at the time of the
interrupt, in which case your ACs are saved somewhere in the system.

AC ‘ Contents

1 The current value of the spacewar buttons. See the SPWBUT UUO
on page 134.

2 Your current protection-relocation constant.

3 A warning value. This AC usually contains zero but is set up with -1
if this is the last interrupt you will get before your job is swapped out
or shuffled.

e The number of the processor this interrupt module is running on.

This number is 1 for the PDP-10 and 2 for the PDP-6. Since
interrupts are (currently) always run on the PDP-10, this AC will
always contain 1.

5 A flag indicating the status of the processor that this interrupt-level
process is not running on. This flag is zero if that processor is running
(normal state) and -1 if that processor is dead.

6 Your job status word. See the JBTSTS UUO on page 90.

7 JOBREL for your upper segment, if any. This is the size, minus one,
of your upper segment, if you have one, and zero if you do not.

10 The datum for this particular interrupt. Currently, the only interrupt
with a datum is the parity error interrupt, for which you get here the
address at which bad parity has been detected. This value can be



108  User Interrupts 9.1

invalid if you have some pending interrupts which generate data (e.g.,
if you get several parity errors in a row), in which case this is the last
datum seen by the system.

14 Your positive queue number. This tells you which queue your
user-level process is in.

After these ACs have been set up, your interrupt routine is run at interrupt level starting at the
address contained in the right half of JOBAPR. The PC flags for your interrupt-ievel routine are
set from the bits in the left half of JOBAPR. (The PC flags are explained in Appendix 3.) For
example, if bit 6 (the 4000,0 bit) in JOBAPR is on, your interrupt process will be started up in
IOT-USER mode (see Appendix 3). Your interrupt process is actually started by the system doing
a JRST 13,eJOBAPR (see the JRST instruction in the PDP-10 manuals) and you are then allowed
to run uninterrupted (except for I/O interrupt services) for up to 8 ticks (8/60 of a second). If you
are still running at interrupt level when that time runs out, you will get the system error message
ILLEVEL TIMEOUT and your program will be stopped.

When your interrupt-level routine finishes and wishes to return to the interrupted program, it
should issue the DISMIS UUO (see page 110). If, however, the interrupt-level routine does not
wish to return to the user-level pro